An Approach for Facilating Knowledge Data Warehouse

Size: px
Start display at page:

Download "An Approach for Facilating Knowledge Data Warehouse"

Transcription

1 International Journal of Soft Computing Applications ISSN: Issue 4 (2009), pp EuroJournals Publishing, Inc An Approach for Facilating Knowledge Data Warehouse Ala a H. AL-Hamami Amman Arab University for Graduate Studies Graduate College for Computing Studies Zip Code: 11953, P.O.B Amman, Jordan, [email protected] Soukaena Hssan Hashem University of Technology, Computer Science Dept Baghdad, Iraq [email protected] Abstract The main promise of Business Intelligence (BI), and other knowledge-based technologies, is to provide the enterprise with the necessary knowledge to compete in the global economy. From a technical point of view, the DWH is basically a large reservoir of integrated data. The DWH does not provide the intelligence or the knowledge sought by users. The burden of data analysis, and information and knowledge extraction from such analysis, lies upon the analyst. The DWH merely provides the right environment that allows the analyst to achieve such goals. In the recent times the use of data mining is increased and being very usual especially with data warehouse after was previously difficult, so in addition to the results of warehouse application SQL and OLAP there are also the results of DM. The main problems addressed in this research are the creation, and sharing of information/knowledge from the data warehouse and, as a derived problem, the increasing population of the DWH users. We are proposing an alternative method to the capturing and distributing of information and/or knowledge obtained from the DWH, we called the knowledge warehouse (KWH). In this research the following suggestions have been proposed: grouping all the results obtained with warehouse then store and organize these results with new suggested database suitable for saving these different results. The database will be saved on new suggested server added to the traditional architecture of the warehouse to make the infrastructure of warehouse supporting the new suggested database. The suggested database will be knowledge base which stores all the results of SQL, OLAP and DM. The purpose of this suggestion is: instead of extracting the results from warehouse databases by using an extraction tool (Data Mining, SQL, or OLAP), this research aims to save the time by searching the stored results of previous analysis to check if the desired analysis is extracted and stored previously. The result of the analysis will be displayed directly since it is suitable to be presented for user request. This will save the time and gives a fast and accurate result. If there is no result convenient for the user request, the system will use a tool for extraction to meet the user requirements.

2 An Approach for Facilating Knowledge Data Warehouse 36 Keywords: SQL, OLAP, DM, knowledge base, and Data warehouse. 1. Introduction A data warehouse means different things to different people. Some definitions are limited to data; others refer to people, processes, software, tools, and data. One of the global definitions is that the data warehouse is a collection of integrated, subject-oriented databases designed to support the Decision- Support Functions (DSF), where each unit of data is relevant to some moment in time. Based on this definition, a data warehouse can be viewed as an organization's repository of data, set up to support strategic decision-making. The function of the data warehouse is to store the historical data of an organization in an integrated manner that reflects the various facets of the organization and business. The data in a warehouse are never updated but used only to respond to queries from end users who are generally decision-makers. Typically, data warehouses are huge, storing billions of records. In many instances, an organization may have several local or departmental data warehouses often called data marts. A data mart is a data warehouse that has been designed to meet the needs of a specific group of users. It may be large or small, depending on the subject areas. The DWH is a relatively new concept/technology that came about in response to a major business need: The analysis of extremely large volumes of historical, disparate data in an efficient manner to help answer difficult businesses questions like "What segment of customers will respond favourably to a certain marketing campaign?" or "Which credit card customer segment will most probably default on payments for more than three months?" etc. Existing technology before the DWH lacked the ability to integrate the disparate data or efficiently extract accurate answers to such questions. Most information systems at that time were designed to produce pre-defined reports containing shallow knowledge. 2. The Proposed System To explain the proposed system in all its details there is a need to discuss some important issues Warehouse Operations There are three basic applications with the warehouse, these are: 1. Data mining (DM): represents one of the major applications for data warehousing, since the sole function of a data warehouse is to provide information to end users for decision support. Unlike other query tools and application systems, the data-mining process provides an end-user with the capacity to extract hidden, nontrivial information. 2. Structured Query Languages (SQL): is a standard relational database language that is good for queries that impose some kind of constraints on data in the database in order to extract an answer. In contrast, data-mining methods are good for queries that are exploratory in nature, trying to extract hidden, not so obvious information. SQL is useful when we know exactly what we are looking for and we can describe it formally. We will use data-mining methods when we know only vaguely what we are looking for. Therefore, these two classes of data-warehousing applications are complementary. 3. On Line Analytical Process (OLAP): tools and methods have become very popular in recent years as they let users analyze data in a warehouse by providing multiple views of the data, supported by advanced graphical representations. In these views, different dimensions of data correspond to different business characteristics. OLAP tools make it very easy to look at dimensional data from any angle or to slice-and-dice it. Although OLAP tools, like data-mining tools, provide answers that are derived from data, the similarity between them ends here. The derivation of answers from data in OLAP is analogous to calculations in a spreadsheet; because

3 37 Ala a H. AL-Hamami and Soukaena Hssan Hashem they use simple and given-in-advance calculations, OLAP tools do not learn from data, nor do they create new knowledge. They are usually special-purpose visualization tools that can help end-users draw their own conclusions and decisions, based on graphically condensed data. OLAP tools are very useful for the data-mining process; they can be a part of it but they are not a substitute The Design and Infrastructure of the Proposed System After explaining the three basic operations with warehouse and we saw how the results were extracted from warehouse by these operations, it is noticeable that they are different in structure. This research suggests the following steps: First step: this step will explain the proposed architecture of the proposed system, see Figure 1. This architecture will composed of the following components: Figure 1: the proposed system architecture 1. KWH-Manager: this component will represent the interface between the user and the data warehouse where, the user will present the request over one of the warehouse operations, and then waiting for the results. The request may be a query for SQL, request for analyze specific probability by OLAP, or a request for prediction novel pattern for specific knowledge from the data stored in warehouse by data mining techniques. 2. KWH-base: it is a proposed base which contains the results files of previous user's requests of SQL, OLAP and DM.This knowledge warehouse base will have four attributes, see Figure 2. The first is called the type of the file operation result (SQL, OLAP and DM), and the second attribute called name of the result file, the third attribute called path of the result file (the storing location in the proposed server) and the fourth attribute called metadata. This will present the basic keywords and subject of the results for SQL, subject of analysis for OLAP, or subject to extract the novel pattern for DM. This knowledge base deals with a local search engine, which takes the request of the user and the type of results (SQL, OLAP, and DM) from the KWH-interface and then search in the KWH-base. Finally if this engine finds the desired results file it will load it and display the content over the KWH-interface to the user. If it is not found the desired file it will present the requested information to Warehouse system to extract the results according to its traditional manner then take the results and store it and download all its information and metadata to the KWH-base.

4 An Approach for Facilating Knowledge Data Warehouse 38 Figure 2: The Attributes of Type of file Name of file Path of file Metadata of Content SQL customer avg c:\my document video store, customer Second step: Now these two components (KWH-Manager and KWH-base) and the search engine must be stored and implemented in the architecture, Figure 3 presents the general traditional warehouse architecture while Figure 4 shows the general proposed warehouse architecture. Figure 4 contains the added new component which is KWH-Server. This server will accommodate all files of the results, KWH-base and KWH-Manager. Figure 3: Warehouse Architecture Figure 4: The proposed architecture KWH- Server 3. The Implementation To implement the proposed system, it will begin with the main interface which represents the KWHmanager, see Figure 5. Figure 5: KWH-Manager

5 39 Ala a H. AL-Hamami and Soukaena Hssan Hashem This interface accepts the request from the user and then analyzes the query to extract the critical keywords. It takes these keywords and submits them as an input for the local search engine to search the KWH-base (see Figure 2) by comparing these keywords with the keywords recorded in metadata attribute to find the similarities. If there is no similar query or analysis found in the KWHbase, the local search engine will notify the KWH-Manager that: there is no suitable results for the submitted query and the system must extract the results from the warehouse databases. Figure 6 shows the process of taking the critical keywords that extracted from the submitted query to determine which operation of warehouse will be considered to extract the desired result. The critical keywords will be supplied to the related procedure from small database, see Figure 6. Figure 6: Small database Operation type SQL OLAP DM Related keywords all record, records with attribute a has value b, compare, Analyze prediction, Classify This small data base has two attributes the first one called operation type and the second called related keyword. By using this database, the system will determine which operation of warehouse must be applied to extract the results. For example if the critical keywords of the submitted query are: salary, loans, customers and relation, the procedure takes these keywords and search the small database. If the keyword relation in the second attribute, it will take the OLAP operation type from the first attribute which lies on the same raw. Then the proposed system will extract the result from warehouse using OLAP technique and save these results in a file in the proposed server. Also it will save the file name, file path, metadata (critical keywords obtained from the analysis) and the warehouse operation type in the proposed KWH-base. Finally the obtained results will be displayed. If the request is already stored in the KDW-base, the system will take the query for analysis and extract the critical keywords. The critical keywords, then submitted to the local search engine to search the KWH-base by compare it with metadata of all lines. If the local search engine finds the suitable line which contains the convenient metadata for critical keywords then this engine will take the operation type, name and path of the file and display its contents. The display process (visualization) will depend on the type of operation. The user will gain all the desired results in much more speed since the results are retrieved and not extracted. 4. Conclusions 1. The traditional manner of warehouse is to deal with different customer query by submitting the query and extracts the knowledge from the data in it according to the operation types that determined by the customer. This will take a considerable time and less automatic operation. 2. The proposed system aims to make the warehouse works in full automatic, by allowing the user to write the query results without determining the operation that is suitable for the query. 3. The proposed system aims to reduce the spent processing time as much as possible. This is done by retrieving all the results that obtained previously if they are exist in the KDW-base. 4. KWH-manger represents the basic step in the proposed system since it receives the query and then sends it for analysis. This will produce the critical keywords of query to the local search engine.

6 An Approach for Facilating Knowledge Data Warehouse KWH-base represents the core of the system since it represents the proposed database which will be the storage of the previous results. So the local engine will search it to check if the results extracted previously are exist to display it immediately without any extraction process. 6. To make the proposed system efficient, this is done by building the KWH-base to have four attributes: metadata attribute which will depended for searching by comparing it with critical keywords, name and path file which determine the file location in the proposed server and the last attribute referring to the operation type. References [1] Alberto Pan and Angel Vina; An Alternative Architecture for Financial Data Integration; CACM, (5/2004), Vol. 47, No. 5, pp [2] Alkis Simitsis; Mapping Conceptual to Logical Models for ETL Processes; DOLAP Proceedings, (4-5/11/2005), Bremen, Germany; pp [3] Alkis Simitsis, Panos Vassiliadis, and Spiros Skiadoupolos; Conceptual Modeling for ETL Processes; DOLAP Proceedings, (8/11/2002), Bremen, Germany; pp [4] Angela Bonifati, Stephano Ceri, Alfonso Fuggetta, Stephano Paraboschi; Designing Data marts for data warehouses; ACM transactions on Software Engineering and methodology, (Oct. 2001), Vol. 10, No. 4, pp [5] Anne-Muriel Arigon; Handling Multiple Points of View in a Multi-Media Data Warehouse; ACM Transactions on Multi Media Computing, Communications and Applications, Vol. 2, No. 3, pp , August [6] Arron Ceglar, John Roddick; Association Mining; ACM Computing Surveys, Vol. 38, No. 2, Article 5, pp. 1-42, July [7] Arun Sen and Atish P. Sinha, A comparison of data warehousing methodologies using a common set of attributes to determine which methodology to use in a particular warehousing project, CACM, March 2005, Vol. 48, No. 3, pp

A Knowledge Management Framework Using Business Intelligence Solutions

A Knowledge Management Framework Using Business Intelligence Solutions www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

Data Warehousing and Data Mining

Data Warehousing and Data Mining Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge

More information

Data Warehousing Systems: Foundations and Architectures

Data Warehousing Systems: Foundations and Architectures Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository

More information

Knowledge Discovery and Data Mining. Structured vs. Non-Structured Data

Knowledge Discovery and Data Mining. Structured vs. Non-Structured Data Knowledge Discovery and Data Mining Unit # 2 1 Structured vs. Non-Structured Data Most business databases contain structured data consisting of well-defined fields with numeric or alphanumeric values.

More information

BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT

BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT ISSN 1804-0519 (Print), ISSN 1804-0527 (Online) www.academicpublishingplatforms.com BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT JELICA TRNINIĆ, JOVICA ĐURKOVIĆ, LAZAR RAKOVIĆ Faculty of Economics

More information

OLAP Theory-English version

OLAP Theory-English version OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction

More information

Fluency With Information Technology CSE100/IMT100

Fluency With Information Technology CSE100/IMT100 Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

Business Intelligence: Effective Decision Making

Business Intelligence: Effective Decision Making Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College [email protected] Current Status What do I do??? How do I increase

More information

Data Mart/Warehouse: Progress and Vision

Data Mart/Warehouse: Progress and Vision Data Mart/Warehouse: Progress and Vision Institutional Research and Planning University Information Systems What is data warehousing? A data warehouse: is a single place that contains complete, accurate

More information

Data Mining for Successful Healthcare Organizations

Data Mining for Successful Healthcare Organizations Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge

More information

Data Analytics and Reporting in Toll Management and Supervision System Case study Bosnia and Herzegovina

Data Analytics and Reporting in Toll Management and Supervision System Case study Bosnia and Herzegovina Data Analytics and Reporting in Toll Management and Supervision System Case study Bosnia and Herzegovina Gordana Radivojević 1, Gorana Šormaz 2, Pavle Kostić 3, Bratislav Lazić 4, Aleksandar Šenborn 5,

More information

Turkish Journal of Engineering, Science and Technology

Turkish Journal of Engineering, Science and Technology Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server

More information

www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28

www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28 Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT

More information

BUSINESS INTELLIGENCE. Keywords: business intelligence, architecture, concepts, dashboards, ETL, data mining

BUSINESS INTELLIGENCE. Keywords: business intelligence, architecture, concepts, dashboards, ETL, data mining BUSINESS INTELLIGENCE Bogdan Mohor Dumitrita 1 Abstract A Business Intelligence (BI)-driven approach can be very effective in implementing business transformation programs within an enterprise framework.

More information

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2 Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue

More information

OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA

OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,

More information

IST722 Data Warehousing

IST722 Data Warehousing IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF

More information

CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University

CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University Given today s business environment, at times a corporate executive

More information

Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar

Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar A Comprehensive Study on Data Warehouse, OLAP and OLTP Technology Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar Abstract: Data warehouse

More information

LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES

LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision

More information

Data Warehousing and OLAP Technology for Knowledge Discovery

Data Warehousing and OLAP Technology for Knowledge Discovery 542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories

More information

A Review of Contemporary Data Quality Issues in Data Warehouse ETL Environment

A Review of Contemporary Data Quality Issues in Data Warehouse ETL Environment DOI: 10.15415/jotitt.2014.22021 A Review of Contemporary Data Quality Issues in Data Warehouse ETL Environment Rupali Gill 1, Jaiteg Singh 2 1 Assistant Professor, School of Computer Sciences, 2 Associate

More information

Integrating SAP and non-sap data for comprehensive Business Intelligence

Integrating SAP and non-sap data for comprehensive Business Intelligence WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst

More information

The Role of Data Warehousing Concept for Improved Organizations Performance and Decision Making

The Role of Data Warehousing Concept for Improved Organizations Performance and Decision Making Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

OLAP. Business Intelligence OLAP definition & application Multidimensional data representation

OLAP. Business Intelligence OLAP definition & application Multidimensional data representation OLAP Business Intelligence OLAP definition & application Multidimensional data representation 1 Business Intelligence Accompanying the growth in data warehousing is an ever-increasing demand by users for

More information

A Survey on Data Warehouse Architecture

A Survey on Data Warehouse Architecture A Survey on Data Warehouse Architecture Rajiv Senapati 1, D.Anil Kumar 2 1 Assistant Professor, Department of IT, G.I.E.T, Gunupur, India 2 Associate Professor, Department of CSE, G.I.E.T, Gunupur, India

More information

An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of

An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction

More information

BUILDING OLAP TOOLS OVER LARGE DATABASES

BUILDING OLAP TOOLS OVER LARGE DATABASES BUILDING OLAP TOOLS OVER LARGE DATABASES Rui Oliveira, Jorge Bernardino ISEC Instituto Superior de Engenharia de Coimbra, Polytechnic Institute of Coimbra Quinta da Nora, Rua Pedro Nunes, P-3030-199 Coimbra,

More information

A Critical Review of Data Warehouse

A Critical Review of Data Warehouse Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin

More information

Research on Airport Data Warehouse Architecture

Research on Airport Data Warehouse Architecture Research on Airport Warehouse Architecture WANG Jian-bo FAN Chong-jun Business School University of Shanghai for Science and Technology Shanghai 200093, P. R. China. Abstract Domestic airports are accelerating

More information

Dimensional Modeling for Data Warehouse

Dimensional Modeling for Data Warehouse Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or

More information

B.Sc (Computer Science) Database Management Systems UNIT-V

B.Sc (Computer Science) Database Management Systems UNIT-V 1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used

More information

Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University

Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products

More information

The Role of the BI Competency Center in Maximizing Organizational Performance

The Role of the BI Competency Center in Maximizing Organizational Performance The Role of the BI Competency Center in Maximizing Organizational Performance Gloria J. Miller Dr. Andreas Eckert MaxMetrics GmbH October 16, 2008 Topics The Role of the BI Competency Center Responsibilites

More information

Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8

Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8 Enterprise Solutions Data Warehouse & Business Intelligence Chapter-8 Learning Objectives Concepts of Data Warehouse Business Intelligence, Analytics & Big Data Tools for DWH & BI Concepts of Data Warehouse

More information

Data Warehousing and Data Mining in Business Applications

Data Warehousing and Data Mining in Business Applications 133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business

More information

Agile Business Intelligence Data Lake Architecture

Agile Business Intelligence Data Lake Architecture Agile Business Intelligence Data Lake Architecture TABLE OF CONTENTS Introduction... 2 Data Lake Architecture... 2 Step 1 Extract From Source Data... 5 Step 2 Register And Catalogue Data Sets... 5 Step

More information

How To Use Data Mining For Knowledge Management In Technology Enhanced Learning

How To Use Data Mining For Knowledge Management In Technology Enhanced Learning Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 115 Data Mining for Knowledge Management in Technology Enhanced Learning

More information

Prediction of Heart Disease Using Naïve Bayes Algorithm

Prediction of Heart Disease Using Naïve Bayes Algorithm Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,

More information

Business Intelligence Solution for Small and Midsize Enterprises (BI4SME)

Business Intelligence Solution for Small and Midsize Enterprises (BI4SME) Business Intelligence Solution for Small and Midsize Enterprises (BI4SME) Preface Not only large Enterprises can benefit from the advantages of Business Intelligence (BI) Solutions. BI4SME is a cost efficient,

More information

A Service-oriented Architecture for Business Intelligence

A Service-oriented Architecture for Business Intelligence A Service-oriented Architecture for Business Intelligence Liya Wu 1, Gilad Barash 1, Claudio Bartolini 2 1 HP Software 2 HP Laboratories {[email protected]} Abstract Business intelligence is a business

More information

Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring

Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

Conceptual Workflow for Complex Data Integration using AXML

Conceptual Workflow for Complex Data Integration using AXML Conceptual Workflow for Complex Data Integration using AXML Rashed Salem, Omar Boussaïd and Jérôme Darmont Université de Lyon (ERIC Lyon 2) 5 av. P. Mendès-France, 69676 Bron Cedex, France Email: [email protected]

More information

Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram

Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram Cognizant Technology Solutions, Newbury Park, CA Clinical Data Repository (CDR) Drug development lifecycle consumes a lot of time, money

More information

Microsoft Services Exceed your business with Microsoft SharePoint Server 2010

Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Business Intelligence Suite Alexandre Mendeiros, SQL Server Premier Field Engineer January 2012 Agenda Microsoft Business Intelligence

More information

CHAPTER 5: BUSINESS ANALYTICS

CHAPTER 5: BUSINESS ANALYTICS Chapter 5: Business Analytics CHAPTER 5: BUSINESS ANALYTICS Objectives The objectives are: Describe Business Analytics. Explain the terminology associated with Business Analytics. Describe the data warehouse

More information

TOWARDS A FRAMEWORK INCORPORATING FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTS FOR DATAWAREHOUSE CONCEPTUAL DESIGN

TOWARDS A FRAMEWORK INCORPORATING FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTS FOR DATAWAREHOUSE CONCEPTUAL DESIGN IADIS International Journal on Computer Science and Information Systems Vol. 9, No. 1, pp. 43-54 ISSN: 1646-3692 TOWARDS A FRAMEWORK INCORPORATING FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTS FOR DATAWAREHOUSE

More information

Datawarehousing and Business Intelligence

Datawarehousing and Business Intelligence Datawarehousing and Business Intelligence Vannaratana (Bee) Praruksa March 2001 Report for the course component Datawarehousing and OLAP MSc in Information Systems Development Academy of Communication

More information

Business Intelligence and Analytics SCH-MGMT 553 (New course number being proposed) Tu/Th 11:15 AM 12:30 PM in SOM Lab 20

Business Intelligence and Analytics SCH-MGMT 553 (New course number being proposed) Tu/Th 11:15 AM 12:30 PM in SOM Lab 20 SCH-MGMT 553: Business Intelligence and Analytics - Syllabus Course Information Title Number Business Intelligence and Analytics SCH-MGMT 553 (New course number being proposed) Course dates Jan 18, 2011

More information

ENABLING OPERATIONAL BI

ENABLING OPERATIONAL BI ENABLING OPERATIONAL BI WITH SAP DATA Satisfy the need for speed with real-time data replication Author: Eric Kavanagh, The Bloor Group Co-Founder WHITE PAPER Table of Contents The Data Challenge to Make

More information

Technology-Driven Demand and e- Customer Relationship Management e-crm

Technology-Driven Demand and e- Customer Relationship Management e-crm E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data

More information

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers 60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative

More information

A Design and implementation of a data warehouse for research administration universities

A Design and implementation of a data warehouse for research administration universities A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon

More information

University of Gaziantep, Department of Business Administration

University of Gaziantep, Department of Business Administration University of Gaziantep, Department of Business Administration The extensive use of information technology enables organizations to collect huge amounts of data about almost every aspect of their businesses.

More information

Optimization of ETL Work Flow in Data Warehouse

Optimization of ETL Work Flow in Data Warehouse Optimization of ETL Work Flow in Data Warehouse Kommineni Sivaganesh M.Tech Student, CSE Department, Anil Neerukonda Institute of Technology & Science Visakhapatnam, India. [email protected] P Srinivasu

More information

Keywords: Data Warehouse, Data Warehouse testing, Lifecycle based testing, performance testing.

Keywords: Data Warehouse, Data Warehouse testing, Lifecycle based testing, performance testing. DOI 10.4010/2016.493 ISSN2321 3361 2015 IJESC Research Article December 2015 Issue Performance Testing Of Data Warehouse Lifecycle Surekha.M 1, Dr. Sanjay Srivastava 2, Dr. Vineeta Khemchandani 3 IV Sem,

More information

Business Intelligence in E-Learning

Business Intelligence in E-Learning Business Intelligence in E-Learning (Case Study of Iran University of Science and Technology) Mohammad Hassan Falakmasir 1, Jafar Habibi 2, Shahrouz Moaven 1, Hassan Abolhassani 2 Department of Computer

More information

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved

CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information

More information

Integrated Data Mining and Knowledge Discovery Techniques in ERP

Integrated Data Mining and Knowledge Discovery Techniques in ERP Integrated Data Mining and Knowledge Discovery Techniques in ERP I Gandhimathi Amirthalingam, II Rabia Shaheen, III Mohammad Kousar, IV Syeda Meraj Bilfaqih I,III,IV Dept. of Computer Science, King Khalid

More information

Data Warehouse Architecture for Financial Institutes to Become Robust Integrated Core Financial System using BUID

Data Warehouse Architecture for Financial Institutes to Become Robust Integrated Core Financial System using BUID Data Warehouse Architecture for Financial Institutes to Become Robust Integrated Core Financial System using BUID Vaibhav R. Bhedi 1, Shrinivas P. Deshpande 2, Ujwal A. Lanjewar 3 Assistant Professor,

More information

Deriving Business Intelligence from Unstructured Data

Deriving Business Intelligence from Unstructured Data International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 971-976 International Research Publications House http://www. irphouse.com /ijict.htm Deriving

More information

10 Biggest Causes of Data Management Overlooked by an Overload

10 Biggest Causes of Data Management Overlooked by an Overload CAS Seminar on Ratemaking $%! "! ###!! !"# $" CAS Seminar on Ratemaking $ %&'("(& + ) 3*# ) 3*# ) 3* ($ ) 4/#1 ) / &. ),/ &.,/ #1&.- ) 3*,5 /+,&. ),/ &..- ) 6/&/ '( +,&* * # +-* *%. (-/#$&01+, 2, Annual

More information

Query Dispatching Tool Supporting Fast Access to Data Warehouse

Query Dispatching Tool Supporting Fast Access to Data Warehouse The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013 269 Query Dispatching Tool Supporting Fast Access to Data Warehouse Anmar Aljanabi 1, Alaa Alhamami 2, and Basim Alhadidi

More information

14. Data Warehousing & Data Mining

14. Data Warehousing & Data Mining 14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1 Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics

More information

Hybrid Support Systems: a Business Intelligence Approach

Hybrid Support Systems: a Business Intelligence Approach Journal of Applied Business Information Systems, 2(2), 2011 57 Journal of Applied Business Information Systems http://www.jabis.ro Hybrid Support Systems: a Business Intelligence Approach Claudiu Brandas

More information

Breadboard BI. Unlocking ERP Data Using Open Source Tools By Christopher Lavigne

Breadboard BI. Unlocking ERP Data Using Open Source Tools By Christopher Lavigne Breadboard BI Unlocking ERP Data Using Open Source Tools By Christopher Lavigne Introduction Organizations have made enormous investments in ERP applications like JD Edwards, PeopleSoft and SAP. These

More information

DATA WAREHOUSING AND OLAP TECHNOLOGY

DATA WAREHOUSING AND OLAP TECHNOLOGY DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are

More information

CHAPTER 4 Data Warehouse Architecture

CHAPTER 4 Data Warehouse Architecture CHAPTER 4 Data Warehouse Architecture 4.1 Data Warehouse Architecture 4.2 Three-tier data warehouse architecture 4.3 Types of OLAP servers: ROLAP versus MOLAP versus HOLAP 4.4 Further development of Data

More information

CHAPTER 4: BUSINESS ANALYTICS

CHAPTER 4: BUSINESS ANALYTICS Chapter 4: Business Analytics CHAPTER 4: BUSINESS ANALYTICS Objectives Introduction The objectives are: Describe Business Analytics Explain the terminology associated with Business Analytics Describe the

More information

Implementing a Data Warehouse with Microsoft SQL Server 2014

Implementing a Data Warehouse with Microsoft SQL Server 2014 Implementing a Data Warehouse with Microsoft SQL Server 2014 MOC 20463 Duración: 25 horas Introducción This course describes how to implement a data warehouse platform to support a BI solution. Students

More information

Conventional BI Solutions Are No Longer Sufficient

Conventional BI Solutions Are No Longer Sufficient Exceeding Standards LOGO Mind Offers Quick Integration and Dynamic Reporting and Analysis! Provided by an avant-garde technology in its field, Logo Mind will carry your business one step ahead and offer

More information

Data Search. Searching and Finding information in Unstructured and Structured Data Sources

Data Search. Searching and Finding information in Unstructured and Structured Data Sources 1 Data Search Searching and Finding information in Unstructured and Structured Data Sources Erik Fransen Senior Business Consultant 11.00-12.00 P.M. November, 3 IRM UK, DW/BI 2009, London Centennium BI

More information

5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2

5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2 Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on

More information

A Model-based Software Architecture for XML Data and Metadata Integration in Data Warehouse Systems

A Model-based Software Architecture for XML Data and Metadata Integration in Data Warehouse Systems Proceedings of the Postgraduate Annual Research Seminar 2005 68 A Model-based Software Architecture for XML and Metadata Integration in Warehouse Systems Abstract Wan Mohd Haffiz Mohd Nasir, Shamsul Sahibuddin

More information

A Review of Data Warehousing and Business Intelligence in different perspective

A Review of Data Warehousing and Business Intelligence in different perspective A Review of Data Warehousing and Business Intelligence in different perspective Vijay Gupta Sr. Assistant Professor International School of Informatics and Management, Jaipur Dr. Jayant Singh Associate

More information

Data Warehouse Snowflake Design and Performance Considerations in Business Analytics

Data Warehouse Snowflake Design and Performance Considerations in Business Analytics Journal of Advances in Information Technology Vol. 6, No. 4, November 2015 Data Warehouse Snowflake Design and Performance Considerations in Business Analytics Jiangping Wang and Janet L. Kourik Walker

More information

HYPERION MASTER DATA MANAGEMENT SOLUTIONS FOR IT

HYPERION MASTER DATA MANAGEMENT SOLUTIONS FOR IT HYPERION MASTER DATA MANAGEMENT SOLUTIONS FOR IT POINT-AND-SYNC MASTER DATA MANAGEMENT 04.2005 Hyperion s new master data management solution provides a centralized, transparent process for managing critical

More information

A Study on Integrating Business Intelligence into E-Business

A Study on Integrating Business Intelligence into E-Business International Journal on Advanced Science Engineering Information Technology A Study on Integrating Business Intelligence into E-Business Sim Sheng Hooi 1, Wahidah Husain 2 School of Computer Sciences,

More information

Integrating Business Intelligence Module into Learning Management System

Integrating Business Intelligence Module into Learning Management System Integrating Business Intelligence Module into Learning Management System Mario Fabijanić and Zoran Skočir* Cognita Address: Radoslava Cimermana 64a, 10020 Zagreb, Croatia Telephone: 00 385 1 6558 440 Fax:

More information

Enabling Better Business Intelligence and Information Architecture With SAP PowerDesigner Software

Enabling Better Business Intelligence and Information Architecture With SAP PowerDesigner Software SAP Technology Enabling Better Business Intelligence and Information Architecture With SAP PowerDesigner Software Table of Contents 4 Seeing the Big Picture with a 360-Degree View Gaining Efficiencies

More information

DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT

DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT Scientific Bulletin Economic Sciences, Vol. 9 (15) - Information technology - DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT Associate Professor, Ph.D. Emil BURTESCU University of Pitesti,

More information

SAS BI Course Content; Introduction to DWH / BI Concepts

SAS BI Course Content; Introduction to DWH / BI Concepts SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console

More information

Talend Metadata Manager. Reduce Risk and Friction in your Information Supply Chain

Talend Metadata Manager. Reduce Risk and Friction in your Information Supply Chain Talend Metadata Manager Reduce Risk and Friction in your Information Supply Chain Talend Metadata Manager Talend Metadata Manager provides a comprehensive set of capabilities for all facets of metadata

More information

DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS

DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational

More information

Database Marketing, Business Intelligence and Knowledge Discovery

Database Marketing, Business Intelligence and Knowledge Discovery Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski

More information

An Integrated ERP with Web Portal Yehia M. Helmy 1, Mohamed I. Marie 2, Sara M. Mosaad 3

An Integrated ERP with Web Portal Yehia M. Helmy 1, Mohamed I. Marie 2, Sara M. Mosaad 3 An Integrated ERP with Web Portal Yehia M. Helmy 1, Mohamed I. Marie 2, Sara M. Mosaad 3 (1) Managment Information System Department, Faculty of Commerce & Business administration, Helwan University [email protected]

More information

SimCorp Solution Guide

SimCorp Solution Guide SimCorp Solution Guide Data Warehouse Manager For all your reporting and analytics tasks, you need a central data repository regardless of source. SimCorp s Data Warehouse Manager gives you a comprehensive,

More information

The Role of Metadata for Effective Data Warehouse

The Role of Metadata for Effective Data Warehouse ISSN: 1991-8941 The Role of Metadata for Effective Data Warehouse Murtadha M. Hamad Alaa Abdulqahar Jihad University of Anbar - College of computer Abstract: Metadata efficient method for managing Data

More information

Implementation of Model-View-Controller Architecture Pattern for Business Intelligence Architecture

Implementation of Model-View-Controller Architecture Pattern for Business Intelligence Architecture Implementation of -- Architecture Pattern for Business Intelligence Architecture Medha Kalelkar Vidyalankar Institute of Technology, University of Mumbai, Mumbai, India Prathamesh Churi Lecturer, Department

More information