Chapter 1. Introduction. 1.1 Motivation. A high-performance processor requires large power consumption to operate at

Size: px
Start display at page:

Download "Chapter 1. Introduction. 1.1 Motivation. A high-performance processor requires large power consumption to operate at"

Transcription

1 Chapter 1 Introduction 1.1 Motivation A high-performance processor requires large power consumption to operate at its high clock rate. For example, a Pentiunm-4 class processor currently consumes more than 50W. The increased power consumption demands advanced technology including thermal packaging, electricity, and air conditioning to deal with its heat dissipation. Furthermore, it takes significantly more energy to complete a task because the power consumption of a processor grows cubically with its clock rate. Both concerns considerably stall the deployment of high-performance processors on low-cost battery-powered embedded systems. Instead, many modern embedded systems such as cellphones [8], PDA [21], and Tablet PC [25] are now equipped with several low-power processors to achieve the same performance at a reduced cost and lower energy requirement. A variety of Instruction Set Architecture (ISA) and processor cores have been developed, each of which provides the best performance for a specific set of applications. In our local performance study between S3C2410 (an ARM-9 processor) [23] and TI5520 (a TI-DSP processor) [27], we observed that TI5520 consumes 9.2 times more energy than S3C2410 to execute multiplication instructions. In contrast, S3C2410 takes 2.2 times more energy than TI5520 to do matrix operations. 1

2 For this reason, many embedded system adopts a heterogeneous multi-processor (HeMP) design to further reduce its energy consumption. To fully utilize computational power in such a HeMP system, several research studies [11, 20, 26] have been proposed to construct a flexible programming paradigm in which a program can be executed and migrated among these heterogeneous processors. In this paper, we propose a low-power real-time scheduling algorithm for HeMP systems. A number of studies have been reported [7,10,12,14] to schedule real-time tasks on a homogeneous multi-processor (HoMP) system. These algorithms schedule tasks to complete before their deadline while minimize energy reduction. However, because heterogeneous performance on different processors is not considered, existing work delivers poor energy-saving performance if directly applied on a HeMP system. This observation is confirmed by our experimental results described later. To the best of our knowledge, our work is the first one that addresses low-power real-time scheduling on HeMP systems. Due to the complexity of this problem, we focus on scheduling a set of n framebased tasks on m heterogeneous processors to achieve minimum energy consumption. Each task must complete before a common deadline. All tasks are independent and non-preemptible. Finding an optimal solution of this problem takes exponential time complexity. Instead, we provide a couple of algorithms that solve this problem in polynomial time. Both algorithms use a local-optimal analysis to initially partition all tasks into m processors. The first algorithm takes a greedy-based approach to migrate tasks out of an over-loaded processor to achieve load-balanced and reduce energy consumption. It has O(mn log n) time complexity. The second 2

3 algorithm achieves load-balanced by a dynamic programming (DP) method. Its time complexity is at O(mnB), where B is the sum of execution cycles of all tasks. We find that by simply modifying the traditional HoMP list scheduling method using the index matrix as a priority basis, we get at least 30% energy improvement comparing to the most simple list scheduling, but it is not good enough. According our final experiment result, our algorithm just need 40% energy or even less can schedule a set of tasks under HeMP system than the list scheduling. Thus, the schedule decision influences energy consumption very much on HeMP system and is worthy to be taken a good care. The rest of this paper is structured as follows. Section 2 describes the energy model and the task model. Section 3 presents our task-partition method. Section 4 presents the greedy-based load-balanced algorithm. The DP-based load-balanced algorithm is described in Section 5. Section 6 presents the experimental results. Finally, Section 7 concludes this paper and discusses future works. 1.2 Related Work The technique of voltage scaling has been widely used to reduce energy consumption by speeding down the processor and extending task execution time. A real-time task must complete its computation before its deadline to avoid failure. A number of low-power real-time scheduling algorithms have been proposed [3,4,30,31] to make use of this technique to minimize energy reduction without missing any deadline. All these algorithms addressed this issue on a single-processor system. 3

4 As multi-processor platforms gain its popularity nowadays, the problem of scheduling real-time tasks on a set of homogeneous processors has received a lot of attentions recently [1, 2, 5, 6, 9, 29]. The Proportionate-fair (Pfair) algorithm, proposed by Baruah et al. [2, 5, 6], is an optimal one to take as input a set of periodic tasks and provide a feasible real-time HoMP schedule if such a schedule exists. This algorithm, however, considers no energy consumption and is not suitable for low-power systems. Anderson et al. [1] proposed a method of finding an optimal number of processors on which a given set of periodic tasks incurs minimum energy consumption. J.-J Chen et al. [9] finds an optimal bound on energy consumption for a set of frame-based tasks, each of which has different power characteristics. All these algorithms focused their discussion on HoMP systems. Without considering that a task may have different performance on heterogeneous processors, these algorithms cannot be directly applied on HeMP systems. There are several studies [18, 19, 24, 28] that addressed on scheduling issues on HeMP systems. All these studies [19, 24, 28] focused on the problem of scheduling a set of dependent tasks to minimize their completion time. Maheswaran et al. [19] solved this problem by dynamically mapping tasks to processors and Sih et al. [24] proposed a compile-time solution. Topcuouglu et al. [28] improved this work by providing an efficient solution at a reduced time complexity. No energy reduction and real-time constraints are considered in this group of work. Instead, Luo et al. [18] proposed an algorithm to schedule a set of dependent tasks and complete them within a common deadline while minimizing its total energy consumption. However, all above work considered only dependent tasks and cannot be generalized 4

5 to work with independent and concurrent tasks. In summary, we propose a novel solution to schedule a set of independent tasks on a HeMP system. Our goal is to complete all tasks within a common deadline while minimizing total energy consumption. To our best knowledge, our work is the first one to consider the issue of performance difference on heterogeneous processors in low-power real-time scheduling. 5

Advanced Operating Systems (M) Dr Colin Perkins School of Computing Science University of Glasgow

Advanced Operating Systems (M) Dr Colin Perkins School of Computing Science University of Glasgow Advanced Operating Systems (M) Dr Colin Perkins School of Computing Science University of Glasgow Rationale Radical changes to computing landscape; Desktop PC becoming irrelevant Heterogeneous, multicore,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Background The command over cloud computing infrastructure is increasing with the growing demands of IT infrastructure during the changed business scenario of the 21 st Century.

More information

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.

More information

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration 1 Harish H G, 2 Dr. R Girisha 1 PG Student, 2 Professor, Department of CSE, PESCE Mandya (An Autonomous Institution under

More information

An Implementation of Active Data Technology

An Implementation of Active Data Technology White Paper by: Mario Morfin, PhD Terri Chu, MEng Stephen Chen, PhD Robby Burko, PhD Riad Hartani, PhD An Implementation of Active Data Technology October 2015 In this paper, we build the rationale for

More information

Multi-core real-time scheduling

Multi-core real-time scheduling Multi-core real-time scheduling Credits: Anne-Marie Déplanche, Irccyn, Nantes (many slides come from her presentation at ETR, Brest, September 2011) 1 Multi-core real-time scheduling! Introduction: problem

More information

Chapter 13 Embedded Operating Systems

Chapter 13 Embedded Operating Systems Operating Systems: Internals and Design Principles Chapter 13 Embedded Operating Systems Eighth Edition By William Stallings Embedded System Refers to the use of electronics and software within a product

More information

Dynamic Power Variations in Data Centers and Network Rooms

Dynamic Power Variations in Data Centers and Network Rooms Dynamic Power Variations in Data Centers and Network Rooms By Jim Spitaels White Paper #43 Revision 2 Executive Summary The power requirement required by data centers and network rooms varies on a minute

More information

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example Real-Time Scheduling (Part 1) (Working Draft) Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS 41,

More information

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology

More information

A Lab Course on Computer Architecture

A Lab Course on Computer Architecture A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,

More information

The new 32-bit MSP432 MCU platform from Texas

The new 32-bit MSP432 MCU platform from Texas Technology Trend MSP432 TM microcontrollers: Bringing high performance to low-power applications The new 32-bit MSP432 MCU platform from Texas Instruments leverages its more than 20 years of lowpower leadership

More information

Dynamic Power Variations in Data Centers and Network Rooms

Dynamic Power Variations in Data Centers and Network Rooms Dynamic Power Variations in Data Centers and Network Rooms White Paper 43 Revision 3 by James Spitaels > Executive summary The power requirement required by data centers and network rooms varies on a minute

More information

Feb.2012 Benefits of the big.little Architecture

Feb.2012 Benefits of the big.little Architecture Feb.2012 Benefits of the big.little Architecture Hyun-Duk Cho, Ph. D. Principal Engineer ([email protected]) Kisuk Chung, Senior Engineer ([email protected]) Taehoon Kim, Vice President ([email protected])

More information

Real-Time Task Scheduling for Energy-Aware Embedded Systems 1

Real-Time Task Scheduling for Energy-Aware Embedded Systems 1 Real-Time Task Scheduling for Energy-Aware Embedded Systems 1 Vishnu Swaminathan and Krishnendu Chakrabarty Dept. of Electrical & Computer Engineering Duke University Durham, NC 27708 fvishnus,[email protected]

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

Design and Implementation of the Heterogeneous Multikernel Operating System

Design and Implementation of the Heterogeneous Multikernel Operating System 223 Design and Implementation of the Heterogeneous Multikernel Operating System Yauhen KLIMIANKOU Department of Computer Systems and Networks, Belarusian State University of Informatics and Radioelectronics,

More information

Chapter 13 Selected Storage Systems and Interface

Chapter 13 Selected Storage Systems and Interface Chapter 13 Selected Storage Systems and Interface Chapter 13 Objectives Appreciate the role of enterprise storage as a distinct architectural entity. Expand upon basic I/O concepts to include storage protocols.

More information

ELEC 5260/6260/6266 Embedded Computing Systems

ELEC 5260/6260/6266 Embedded Computing Systems ELEC 5260/6260/6266 Embedded Computing Systems Spring 2016 Victor P. Nelson Text: Computers as Components, 3 rd Edition Prof. Marilyn Wolf (Georgia Tech) Course Topics Embedded system design & modeling

More information

Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems

Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems Power-Aware Scheduling of Conditional Task Graphs in Real-Time Multiprocessor Systems Dongkun Shin School of Computer Science and Engineering Seoul National University [email protected] Jihong Kim

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,

More information

CHAPTER 7 SUMMARY AND CONCLUSION

CHAPTER 7 SUMMARY AND CONCLUSION 179 CHAPTER 7 SUMMARY AND CONCLUSION This chapter summarizes our research achievements and conclude this thesis with discussions and interesting avenues for future exploration. The thesis describes a novel

More information

Throughput constraint for Synchronous Data Flow Graphs

Throughput constraint for Synchronous Data Flow Graphs Throughput constraint for Synchronous Data Flow Graphs *Alessio Bonfietti Michele Lombardi Michela Milano Luca Benini!"#$%&'()*+,-)./&0&20304(5 60,7&-8990,.+:&;/&."!?@A>&"'&=,0B+C. !"#$%&'()* Resource

More information

Overview. Surveillance Systems. The Smart Camera - Hardware

Overview. Surveillance Systems. The Smart Camera - Hardware Overview A Mobile AgentAgent-based System for Dynamic Task Allocation in Clusters of Embedded Smart Cameras Introduction The Smart Camera Michael Bramberger1,, Bernhard Rinner1, and Helmut Schwabach Surveillance

More information

Real-Time Operating Systems for MPSoCs

Real-Time Operating Systems for MPSoCs Real-Time Operating Systems for MPSoCs Hiroyuki Tomiyama Graduate School of Information Science Nagoya University http://member.acm.org/~hiroyuki MPSoC 2009 1 Contributors Hiroaki Takada Director and Professor

More information

Which ARM Cortex Core Is Right for Your Application: A, R or M?

Which ARM Cortex Core Is Right for Your Application: A, R or M? Which ARM Cortex Core Is Right for Your Application: A, R or M? Introduction The ARM Cortex series of cores encompasses a very wide range of scalable performance options offering designers a great deal

More information

Group Based Load Balancing Algorithm in Cloud Computing Virtualization

Group Based Load Balancing Algorithm in Cloud Computing Virtualization Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information

More information

A Novel Adaptive Virtual Machine Deployment Algorithm for Cloud Computing

A Novel Adaptive Virtual Machine Deployment Algorithm for Cloud Computing A Novel Adaptive Virtual Machine Deployment Algorithm for Cloud Computing Hongjae Kim 1, Munyoung Kang 1, Sanggil Kang 2, Sangyoon Oh 1 Department of Computer Engineering, Ajou University, Suwon, South

More information

Automated Software and Hardware Evolution Analysis for Distributed Real-time and Embedded Systems

Automated Software and Hardware Evolution Analysis for Distributed Real-time and Embedded Systems Cent. Eur. J. Comp. Sci. 1-26 Author version Central European Journal of Computer Science Automated Software and Hardware Evolution Analysis for Distributed Real-time and Embedded Systems Research Article

More information

CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun

CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun CS550 Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun Email: [email protected], Phone: (312) 567-5260 Office hours: 2:10pm-3:10pm Tuesday, 3:30pm-4:30pm Thursday at SB229C,

More information

The Heartbeat behind Portable Medical Devices: Ultra-Low-Power Mixed-Signal Microcontrollers

The Heartbeat behind Portable Medical Devices: Ultra-Low-Power Mixed-Signal Microcontrollers The Heartbeat behind Portable Medical Devices: Ultra-Low-Power Mixed-Signal Microcontrollers The proliferation of sophisticated yet affordable personal medical devices is transforming the health care industry,

More information

Optimized Scheduling in Real-Time Environments with Column Generation

Optimized Scheduling in Real-Time Environments with Column Generation JG U JOHANNES GUTENBERG UNIVERSITAT 1^2 Optimized Scheduling in Real-Time Environments with Column Generation Dissertation zur Erlangung des Grades,.Doktor der Naturwissenschaften" am Fachbereich Physik,

More information

An examination of the dual-core capability of the new HP xw4300 Workstation

An examination of the dual-core capability of the new HP xw4300 Workstation An examination of the dual-core capability of the new HP xw4300 Workstation By employing single- and dual-core Intel Pentium processor technology, users have a choice of processing power options in a compact,

More information

Cloud Computing and Robotics for Disaster Management

Cloud Computing and Robotics for Disaster Management 2016 7th International Conference on Intelligent Systems, Modelling and Simulation Cloud Computing and Robotics for Disaster Management Nitesh Jangid Information Technology Department Green Research IT

More information

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the

More information

Optimizing Configuration and Application Mapping for MPSoC Architectures

Optimizing Configuration and Application Mapping for MPSoC Architectures Optimizing Configuration and Application Mapping for MPSoC Architectures École Polytechnique de Montréal, Canada Email : [email protected] 1 Multi-Processor Systems on Chip (MPSoC) Design Trends

More information

Common Approaches to Real-Time Scheduling

Common Approaches to Real-Time Scheduling Common Approaches to Real-Time Scheduling Clock-driven time-driven schedulers Priority-driven schedulers Examples of priority driven schedulers Effective timing constraints The Earliest-Deadline-First

More information

Contents. Chapter 1. Introduction

Contents. Chapter 1. Introduction Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Parametric Analysis of Mobile Cloud Computing using Simulation Modeling

Parametric Analysis of Mobile Cloud Computing using Simulation Modeling Parametric Analysis of Mobile Cloud Computing using Simulation Modeling Arani Bhattacharya Pradipta De Mobile System and Solutions Lab (MoSyS) The State University of New York, Korea (SUNY Korea) StonyBrook

More information

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

The Future of the ARM Processor in Military Operations

The Future of the ARM Processor in Military Operations The Future of the ARM Processor in Military Operations ARMs for the Armed Mike Anderson Chief Scientist The PTR Group, Inc. http://www.theptrgroup.com What We Will Talk About The ARM architecture ARM performance

More information

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems RUPAM MUKHOPADHYAY, DIBYAJYOTI GHOSH AND NANDINI MUKHERJEE Department of Computer

More information

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.

More information

D5.6 Prototype demonstration of performance monitoring tools on a system with multiple ARM boards Version 1.0

D5.6 Prototype demonstration of performance monitoring tools on a system with multiple ARM boards Version 1.0 D5.6 Prototype demonstration of performance monitoring tools on a system with multiple ARM boards Document Information Contract Number 288777 Project Website www.montblanc-project.eu Contractual Deadline

More information

Improving Grid Processing Efficiency through Compute-Data Confluence

Improving Grid Processing Efficiency through Compute-Data Confluence Solution Brief GemFire* Symphony* Intel Xeon processor Improving Grid Processing Efficiency through Compute-Data Confluence A benchmark report featuring GemStone Systems, Intel Corporation and Platform

More information

A Review of Customized Dynamic Load Balancing for a Network of Workstations

A Review of Customized Dynamic Load Balancing for a Network of Workstations A Review of Customized Dynamic Load Balancing for a Network of Workstations Taken from work done by: Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy Computer Science Department, University of Rochester

More information

VHDL DESIGN OF EDUCATIONAL, MODERN AND OPEN- ARCHITECTURE CPU

VHDL DESIGN OF EDUCATIONAL, MODERN AND OPEN- ARCHITECTURE CPU VHDL DESIGN OF EDUCATIONAL, MODERN AND OPEN- ARCHITECTURE CPU Martin Straka Doctoral Degree Programme (1), FIT BUT E-mail: [email protected] Supervised by: Zdeněk Kotásek E-mail: [email protected]

More information

A hypervisor approach with real-time support to the MIPS M5150 processor

A hypervisor approach with real-time support to the MIPS M5150 processor ISQED Wednesday March 4, 2015 Session 5B A hypervisor approach with real-time support to the MIPS M5150 processor Authors: Samir Zampiva ([email protected]) Carlos Moratelli ([email protected])

More information

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by

More information

ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD

ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD Mrs. D.PONNISELVI, M.Sc., M.Phil., 1 E.SEETHA, 2 ASSISTANT PROFESSOR, M.PHIL FULL-TIME RESEARCH SCHOLAR,

More information

Virtual Machines. www.viplavkambli.com

Virtual Machines. www.viplavkambli.com 1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software

More information

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to

More information

Dynamic resource management for energy saving in the cloud computing environment

Dynamic resource management for energy saving in the cloud computing environment Dynamic resource management for energy saving in the cloud computing environment Liang-Teh Lee, Kang-Yuan Liu, and Hui-Yang Huang Department of Computer Science and Engineering, Tatung University, Taiwan

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems DR.K.P.KALIYAMURTHIE 1, D.PARAMESWARI 2 Professor and Head, Dept. of IT, Bharath University, Chennai-600 073 1 Asst. Prof. (SG), Dept. of Computer Applications,

More information

Load Balancing in Structured Peer to Peer Systems

Load Balancing in Structured Peer to Peer Systems Load Balancing in Structured Peer to Peer Systems Dr.K.P.Kaliyamurthie 1, D.Parameswari 2 1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073. 2.Asst. Prof.(SG), Dept. of Computer Applications,

More information

Least Slack Time Rate First: an Efficient Scheduling Algorithm for Pervasive Computing Environment

Least Slack Time Rate First: an Efficient Scheduling Algorithm for Pervasive Computing Environment Journal of Universal Computer Science, vol. 17, no. 6 (2011), 912-925 submitted: 15/5/10, accepted: 30/11/10, appeared: 28/3/11 J.UCS Least Slack Time Rate First: an Efficient Scheduling Algorithm for

More information

ARM Architecture. ARM history. Why ARM? ARM Ltd. 1983 developed by Acorn computers. Computer Organization and Assembly Languages Yung-Yu Chuang

ARM Architecture. ARM history. Why ARM? ARM Ltd. 1983 developed by Acorn computers. Computer Organization and Assembly Languages Yung-Yu Chuang ARM history ARM Architecture Computer Organization and Assembly Languages g Yung-Yu Chuang 1983 developed by Acorn computers To replace 6502 in BBC computers 4-man VLSI design team Its simplicity it comes

More information

Chapter 2 Heterogeneous Multicore Architecture

Chapter 2 Heterogeneous Multicore Architecture Chapter 2 Heterogeneous Multicore Architecture 2.1 Architecture Model In order to satisfy the high-performance and low-power requirements for advanced embedded systems with greater fl exibility, it is

More information

Summer projects for Dept. of IT students in the summer 2015

Summer projects for Dept. of IT students in the summer 2015 Summer projects for Dept. of IT students in the summer 2015 Here are 7 possible summer project topics for students. If you are interested in any of them, contact the person associated with the project

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2014 年 11 月 19 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Chapter 1: Introduction. What is an Operating System?

Chapter 1: Introduction. What is an Operating System? Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments

More information

CUTTING-EDGE SOLUTIONS FOR TODAY AND TOMORROW. Dell PowerEdge M-Series Blade Servers

CUTTING-EDGE SOLUTIONS FOR TODAY AND TOMORROW. Dell PowerEdge M-Series Blade Servers CUTTING-EDGE SOLUTIONS FOR TODAY AND TOMORROW Dell PowerEdge M-Series Blade Servers Simplifying IT The Dell PowerEdge M-Series blade servers address the challenges of an evolving IT environment by delivering

More information

Navigating the Enterprise Database Selection Process: A Comparison of RDMS Acquisition Costs Abstract

Navigating the Enterprise Database Selection Process: A Comparison of RDMS Acquisition Costs Abstract Navigating the Enterprise Database Selection Process: A Comparison of RDMS Acquisition Costs Abstract Companies considering a new enterprise-level database system must navigate a number of variables which

More information

Energy-aware job scheduler for highperformance

Energy-aware job scheduler for highperformance Energy-aware job scheduler for highperformance computing 7.9.2011 Olli Mämmelä (VTT), Mikko Majanen (VTT), Robert Basmadjian (University of Passau), Hermann De Meer (University of Passau), André Giesler

More information

Analysis and Simulation of Scheduling Techniques for Real-Time Embedded Multi-core Architectures

Analysis and Simulation of Scheduling Techniques for Real-Time Embedded Multi-core Architectures Institute of Software Technology Department of Programming Languages and Compilers University of Stuttgart Universitätsstraße 38 D 70569 Stuttgart Master Thesis Nr. 3578 Analysis and Simulation of Scheduling

More information

A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING

A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 5 May, 2013 Page No. 1636-1640 A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING S. Mohana Priya,

More information

Zeenov Agora High Level Architecture

Zeenov Agora High Level Architecture Zeenov Agora High Level Architecture 1 Major Components i) Zeenov Agora Signaling Server Zeenov Agora Signaling Server is a web server capable of handling HTTP/HTTPS requests from Zeenov Agora web clients

More information

Resource Management In Cloud Computing With Increasing Dataset

Resource Management In Cloud Computing With Increasing Dataset Resource Management In Cloud Computing With Increasing Dataset Preeti Agrawal 1, Yogesh Rathore 2 1 CSE Department, CSVTU, RIT, Raipur, Chhattisgarh, INDIA Abstract In this paper we present the cloud computing

More information

A Novel Load Balancing Algorithms in Grid Computing

A Novel Load Balancing Algorithms in Grid Computing A Novel Load Balancing Algorithms in Grid Computing Shikha Gautam M.Tech. Student Computer Science SITM LKO Abhay Tripathi Assistant Professor Computer Science SITM LKO Abstract: The Grid is emerging as

More information

PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL

PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL Najib A. Kofahi Associate Professor Department of Computer Sciences Faculty of Information Technology and Computer Sciences

More information

Weighted Total Mark. Weighted Exam Mark

Weighted Total Mark. Weighted Exam Mark CMP2204 Operating System Technologies Period per Week Contact Hour per Semester Total Mark Exam Mark Continuous Assessment Mark Credit Units LH PH TH CH WTM WEM WCM CU 45 30 00 60 100 40 100 4 Rationale

More information

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1 Module 6 Embedded System Software Version 2 EE IIT, Kharagpur 1 Lesson 30 Real-Time Task Scheduling Part 2 Version 2 EE IIT, Kharagpur 2 Specific Instructional Objectives At the end of this lesson, the

More information

A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture

A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture Yangsuk Kee Department of Computer Engineering Seoul National University Seoul, 151-742, Korea Soonhoi

More information