THERMOFORMING OVERVIEW PROCESS DESCRIPTION VACUUM FORMING MATERIALS APPLICATION GUIDE: Time Required Cost Skill Level
|
|
|
- Jayson Norman
- 9 years ago
- Views:
Transcription
1 APPLICATION GUIDE: THERMOFORMING Time Required Cost Skill Level By Brian Sabart, Stratasys Inc. and Jeff Gangel, Formech International, Ltd. OVERVIEW Thermoforming is a relatively simple manufacturing process that is inexpensive when compared to other plastic molding and forming methods. Although thermoforming is often associated with manufacturing of packaging items such as blister packs and disposable coffee cup lids, the cost and time advantages are realized in a broad spectrum of products in an equally broad range of industries. When using a Fortus 3D Production System with FDM technology to construct thermoforming tooling, the process becomes simpler, more efficient and increasingly cost-effective. PROCESS DESCRIPTION Thermoforming is a collection of manufacturing methods that heat and form sheets of extruded plastic. Thermoforming processes include drape, vacuum and pressure forming. Packaging thermoformed using an FDM mold. Drape forming relies on gravity to pull the sheet against the tool. Vacuum forming, as the name implies, draws the heated sheet against the tool with the assistance of a vacuum. Pressure forming combines vacuum and pressure to simultaneously pull and push the plastic sheet to the contours of the tool. This process guide documents the steps for vacuum forming since it is the most common thermoforming method. However, many of the details presented may also be applied to drape and pressure forming. In vacuum forming, heated plastic sheet is drawn down onto a male or female tool that has vent holes around the periphery and in areas requiring crisp detail. The application of a vacuum offers improved feature definition and greater wall thickness consistency. Vacuum forming also allows the use of thicker sheet stock and reduces forming time, when compared to drape forming. Simple and straightforward, vacuum forming should be considered when prototyping or manufacturing plastic parts. Virtually any thermoplastic that is available as extruded sheet stock may be used (see figure 1). And unlike injection or blow molding processes, wall thicknesses can range from foils to thick-gauge stock thicknesses ranging from to 0.50 inch ( to 12.7 mm) with no molding stresses to combat. Another advantage of vacuum forming is that part and tooling costs remain reasonable for large parts. There are a few considerations when choosing vacuum forming. The process does not support variable wall thicknesses, and the part s geometry must allow a straight pull (no undercuts or side action). Additionally, vacuum forming cannot manufacture strengthening ribs or mounting bosses that are common in injection molded parts. The final consideration when using forming equipment designed for prototyping, such as the those offered by Formech International Limited is that the side of the part that does not contact the tool surface will lack detail and definition. Dual-sided texture and feature definition are only available with matched tools, which are used with production vacuum forming equipment. For large production runs, vacuum forming tools are machined from aluminum. However, the low pressure and temperature of the forming operation facilitates the use of tooling constructed from many materials, including ABS, polycarbonate (PC) and polyphenolsulfone (PPSF/PPSU). Although tool life will not equal that from an aluminum tool, these three materials, which are available from the FDM process, are ideal for prototyping and short-run manufacturing. Depending on the Fortus material used for the tool and the thermoplastic used in the part, tool life can range from 100 to 1,000 parts (figure 6 shows a tool that has been used for over 500 parts with no visible signs of wear.). VACUUM FORMING MATERIALS ABS Polyvinylchloride (PVC) Polycarbonate (PC) Polyethylene (PE) Low Density Polyethylene (LDPE) High Density Polyethylene (HDPE) Polypropylene (PP) Polystyrene (PS) Polyphenylene Oxide (PPO) Polyphenylene Ether (PPE) Polymethyl-Methacrylate (PMMA) Acrylic Closed Cell Foam Polyester (PBT, PET) Polyester Copelymer (PETG) Thermoplastic Olefin (TPO) Thermoplastic Elastomer (TPE) Thermoplastic Rubber (TPR) Figure 1: Examples of thermoplastics suitable for vacuum forming. The FDM process eliminates much of the time and labor associated with machining of vacuum forming tools. Data preparation is completed in minutes, so tool construction can begin immediately after tool design. Automated and unattended operations also eliminate the time needed for fixturing, set-up and operation of CNC milling machines. Another advantage of FDM is that modified build parameters will produce a tool that is porous. The porosity eliminates the time needed for drilling of vent holes, which are necessary for other vacuum forming tools, while improving part quality with an evenly distributed vacuum draw. Combining the advantages of the FDM technology with those of vacuum forming, prototyping and short-run manufacturing can be completed quickly, efficiently and cost effectively.
2 THERMOFORMING PAGE 2 APPLICATIONS Packaging is the leading application for vacuum forming. The clear plastic bubble (blister pack) that contains a product is vacuumed formed. The disposable plastic lid on a coffee cup is vacuum formed as are the plastic and foam containers used in delicatessens and fast food restaurants. While the packaging industry is the leading consumer of vacuum formed parts, the applications extend across many product types and throughout many industries. Automotive applications for vacuum forming include instrument panels (IPs), wheel covers and door liners. In aerospace, covers and cowlings are commonly vacuum formed. Used for boat hulls, the marine industry shows that vacuum formed parts can be large. There are many applications in electronics, including antistatic conveyance trays. For custom machinery, covers and shrouds are made quickly and cost-effectively with the vacuum forming process. The list of applications for vacuum forming is virtually endless, as illustrated in figure 2. AEROSPACE VEHICLE DESIGN AND PRODUCTION Military aircraft and airborne vehicles are sophisticated tools that are used for intelligence, surveillance, targeting, and reconnaissance. A defense contractor applies FDM and vacuum forming to prototyping and manufacturing of these complex systems. The company uses a Fortus system and Formech vacuum forming system to reduce time, cost and labor demands for components that include air ducts, engine cowlings and antennae covers In one application, vacuum forming replaces pre-preg (pre-impregnated) carbon fiber lay-up. This manufacturing method is a labor-intensive process that requires cavity fabrication, hand lay-up of the pre-preg material and a lengthy heat curing cycle. The process takes days and numerous man-hours to complete. Using the Titan to construct a tool, vacuum forming begins in as little as one day after a design is completed, and it is done with minimal labor requirements. Since vacuum forming of the parts takes only minutes, prototype and production ducts, covers and cowlings are made in less time than it takes to fabricate a fiber lay-up tool. This company demonstrates that vacuum forming is not just for prototyping vacuum formed parts. It can replace other processes. CONSUMER GOODS PACKAGE DEVELOPMENT Saving time and money are desirable outcomes. But phenomenal gains arise when the process is changed. And that is what FDM and vacuum forming have done for the package development efforts of one mass-market, consumer goods company. Prior to implementation of FDM technology, creating tooling for vacuum forming required a full man-day just for drilling of vent holes. Many of the tools used are multi-cavity, forming a dozen or more parts in one cycle. With all of the cavities, there are 1,000 to 2,000 vent holes to be drilled. With FDM tooling, the operation was eliminated. However, the biggest benefit is not in labor savings. It is in process improvement. The typical product development cycle has package design and development as one of the last tasks before product launch. Being last meant that any delays in prior processes reduced the time available for package design. With FDM, the company now produces prototype products and prototype packing well before final design release. Removed from the critical path, there is more time to design and prototype innovative packaging. The results are less time pressure on the package development team and more creativity in package design. For consumer products that are picked from a display rack, package design is often the key difference that motivates the consumer to buy a product. FDM for vacuum forming enables the company to stand out on product shelves. PROCESS GUIDE Vacuum forming is a simple, five-step process: tool design, tool building, tool preparation, part forming and part finishing. For many parts, the entire process can be completed in one to two days at a cost of U.S. $100 to $1,000 for the first part. Additional parts will have a typical cost of only $1.00 to $3.00, including process labor. INDUSTRIES AND APPLICATIONS Aerospace: Interior trim panels, covers, cowlings Agriculture: Seed trays, lawn mower enclosures, covers Automotive: Wheel covers, storage racks, door interiors, wind/rain deflectors, electronic housings, liners, seat backs, dash surrounds Building and Construction: Drainpipe anti-drip fittings, roof lights, internal door liners, door panels Marine: Boat hulls, hatches, electrical, enclosures, dashboards Confectionery: Chocolate molds Computer: Transparent keyboard covers, enclosures Electronics: Enclosures, anti-static trays Furniture: Chair backs, cutlery trays, kitchen panels, storage modules Medical: Radiotherapy masks, pressure masks, prosthetics, medical devices Machinery: Machine guards, electrical enclosures Packaging: Pop displays, trays, cosmetic cases, blister packs, food containers Plumbing: Bathroom fittings, bathtubs, whirlpools, showers surrounds, shower trays Figure 2: Examples of vacuum forming applications. The vacuum forming process, as described below, is specific to the capabilities and operations of Formech vacuum forming machines. This information is applicable to the full line of Formech equipment, from the small, manually operated devices to the large-format, semi-automatic machines. However, the process guide also applies to the operation of a wide array of vacuum forming systems. 1. Tool Design Vacuum forming uses three types of tools: male, female and matched. The selection of tool type is based on design specifications and consideration of the vacuum forming process.
3 THERMOFORMING PAGE 3 Male tools (figure 3) offer detail and texture on the inside of the part (contact surface) while female tools (figure 4) offer the opposite. An additional consideration is that male tools are likely to have thicker sections at the periphery of the part and thinner sections in the center. The opposite is true of female tools. Matched tools incorporate both male and female tools for consistent wall thickness with detail and texture on both sides of the part. Match tools are also used to prevent compression of foam cells when forming foam materials. However, matched tools are not used with prototype vacuum forming machines. In cases where there is a deep draw, plug assist can be used to overcome excessive thinning at the bottom of a pocket and to eliminate webbing between multiple cavities on a tool. The plug is a male form that presses through the sheet stock and into the mating cavity in the tool. Figure 3: Illustration of a male tool. Once the type of tool has been selected, it must be designed. Starting with CAD data of the part, the geometry is offset to compensate for the thickness of the sheet stock, and draft angles are added to improve part release from the tool. Compensation for sheet thickness is only necessary when the sheet is not restrained by the tool. For example, if a prototype is made from a male tool and the critical dimensions are on the inside surface of the formed part, no compensation would be necessary. When compensation is required, it is important to note that the thickness of the sheet stock will not be the final thickness of the part. As the sheet is drawn over or into the tool, there will be some material thinning, and the thickness will vary across the part. Note that the rate of thinning is a function of the size, surface area and detail of the part geometry and the type of plastic and thickness of the sheet stock. Vacuum forming sheet thickness may range from to 0.50 inch ( to 12.7 mm). However, for prototype applications, the Formech machines are limited to sheet thicknesses between to 0.25 inch ( to 6.35 mm). Figure 4: Illustration of a female tool. After a prototype is vacuum formed, it will shrink and grip the tool. To facilitate part release, draft angles are incorporated into the tool design. Ranging from 0 to 5, the amount of draft is determined by the vertical rise of the feature and the amount of contact area between the part and the tool. In many cases, the blow release function of a Formech machine can eliminate the need for draft angles. An important design rule is that any cavities in the tool should be no deeper that 75% of the width of the cavity opening (figure 5). Higher aspect ratios (height : width) will result in excessive sheet thinning and may cause sheet tearing. 2. Tool Making With the exception of venting and the addition of the perimeter rib, the tool is designed like any machined mold. Cooling channels may be constructed in the FDM tool, but it is simpler and faster to use a standard mounting plate with cooling lines. Once the tool has been designed, it is exported as an STL file and processed for production on a Fortus system. Figure 5: Cavities must have an aspect ratio of less than 75 As with production of a prototype or tool on any rapid prototyping system, the STL file should balance file size and facet size. The goal is to produce an STL file with no visible facets while avoiding excessively tight facet tolerance that inflates the total file size. In most cases, a facet deviation of to inch ( to mm) will suffice. Prior to processing the STL file, the material for the tool is selected. ABS is suitable for the majority of vacuum forming applications. It offers mechanical properties that exceed the requirements of vacuum forming and thermal properties that match those of injection molded ABS. The glass transition temperature (Tg) of ABS is 220 F (104 C). Although this Tg is less than or equal to that of many vacuum formed materials, the heat applied to the sheet is localized, which means that the tool is not exposed to the elevated temperatures required to soften the thermoplastic. For demanding applications, PC or PPSF/PPSU (figure 6) may be selected. Both offer higher glass transition temperatures than ABS, which extends tool life and accommodates the forming of high temperature thermoplastics. PC (Tg = 320 F/160 C) and PPSF/PPSU (Tg = 445 F/229 C) offer increased resistance to thermal degradation often resulting in a glazing of the tool surface from repeated heating and cooling cycles that extends the life of the tool. When forming high temperature materials, such as polycarbonate or HDPE, PC or PPSF/PPSU should be selected. With just one exception, the STL file is processed in Insight software in the same manner as any other prototype or tool. Increasing road width (the width of the extruded path) yields a tool that is porous on all non-vertical surfaces (figure 7). This porosity allows the vacuum to be drawn through all areas of the tool. Porosity is advantageous when vacuum forming. For other tool creation methods, vacuum holes (small vents in the tool) are added around the periphery of the tool, in areas of detail, and in central areas of the tool where the vacuum pressure may be too low to pull the sheet to the tool. In order to obtain a prototype with good detail, all air must be removed during the forming cycle. If air becomes trapped (in corners for example), the sheet stock will not draw down onto the tool surface. The quantity and placement of the vents directly affects the quality of the formed part. Vent placement also affects the cycle time of the forming process.
4 THERMOFORMING PAGE 4 With an FDM tool, porosity is designed into the rapid prototype, eliminating the need to locate and drill vent holes around and across the part. Using modified FDM build parameters, the tool offers excellent feature detail and fast vacuum cycles while eliminating the labor and time for drilling vents. The sparse fill build style should be used wherever possible. Minimizing the amount of material in the part decreases both build time and tool cost without affecting the performance of the vacuum forming tool. Note, however, that sparse fill parameters should be modified to increase wall thickness so that tool damage is avoided. Once the tool has been processed in Insight, it is built on a Fortus system. 3. Tool Preparation After completion of the FDM build, the tool is finished and mounted to a tooling base. Since vacuum forming can pick up fine detail, it is important to finish the FDM tool to appropriate levels. While there are many techniques for finishing FDM parts, vacuum forming tools should only be filed, sanded or ground. Other FDM finishing techniques could plug the pores in the FDM tool, which would impede the vacuum flow. After sanding the FDM tool, any debris should be blown out of the pores. The next step is to mount the tool onto a base board. The mounting board is cut to the size specified for the vacuum forming system that will be used. It can be made from any rigid material that will withstand the heat of the vacuum forming process. Common materials include plywood, Masonite and aluminum. As with the tools, the mounting plate requires venting for the vacuum. However, unlike the vents in the tool, a single one-inch hole is all that is required. Figure 6: FDM tool, made in PPSF/ PPSU, has formed more than 500 parts with no sign of wear 4. Vacuum Forming Vacuum forming parts may be done with manual, semi-automatic or fully automatic machines (figure 8). The selection of the machine will be based on availability or expected throughput and desired level of process control. The two key factors that affect vacuumed formed part quality are the heating cycle and the forming cycle. In both steps, if the plastic sheet is either too cool or too hot, the quality of the formed part will suffer. The heating cycle s time and temperature will vary with material and sheet thickness. Although there are guides available for common materials, some trial-and-error may be required. Once the sheet is in a pliable state, the speed at which the tool press into the sheet and the vacuum is drawn must be fast enough to prevent sheet cooling but slow enough to allow the material to conform to the tool. As with the heating cycle, the forming cycle time may require experimentation to get the desired results. Figure 7: Close up of the tool in figure 6 shows the porosity that results from modified build parameters. To begin the vacuum forming process, the tool is placed in the machine, and the extruded plastic sheet stock is firmly clamped in a frame located above the tool (figures 9 and 10). Next, infrared ceramic heating elements warm the plastic sheet to soften the material to a point at which it will slightly sag, but not droop (figure 11). At this temperature, the sheet deforms to the contours of the tool. Forming the part begins with a pre-stretch (figure 12). Air is introduced between the tool and plastic sheet to cause the sheet to billow away from the tool. This stretching improves the consistency of the wall thickness across the part. Immediately after the pre-stretch, the tool is raised into the plastic sheet (figure 13), and a vacuum, approximately -24 to -30 inches of mercury, is pulled through the tool (figure 14). The plastic sheet draws tight to the tool surface to form the plastic part. When using plug assist, the plug is forced down through the plastic sheet into the matching cavity in the tool before the vacuum is applied (figure 15). To prevent deformation of the part, it is allowed to cool prior to removal. The cooling cycle can be accelerated with air or a fine mist blown onto the part. Once rigid, the part is released with air pressure forced up through the tool (figure 16). Figure 8: The Formech 686 is an example of a semi-automatic thermoforming system. A system such as this works well with FDM-produced tooling.
5 THERMOFORMING PAGE 5 Figure 9: Diagram of vacuum forming machine. Figure 10: Thermoplastic sheet is clamped in frame. Figure 11: Heating elements warm thermoplastic sheet. Figure 12: Air is forced upward for the material pre-stretch. Figure 13: The tool rises, pressing into the sheet. Figure 14: Vacuum is drawn to remove air from between the tool and sheet. Figure 15: Plug pushes into sheet and tool cavity. Figure 16: Blow release forces air between tool and formed part. 5. Part Finishing After part removal, excess sheet stock that surrounds the vacuumed formed part is then trimmed. Depending on the quantity of parts, this can be done with hand tools, bandsaws, air-powered routers, CNC routers or semi-automatic Roller presses. The part is then cut, drilled, polished and deburred as needed. The completed part may then be painted or decorated.
6 CONCLUSION In just five simple steps, vacuum forming delivers plastic parts for prototyping and short-run manufacturing. Whether the application is prototype blister packs or production engine cowlings, plastic parts are delivered quickly and cost-effectively. Applying FDM to the creation of vacuum forming tools offers additional advantages. Eliminating the time and labor required of machined tools CAM programming, set-up and operation and eliminating the vent drilling operation, FDM expedites the vacuum forming process while decreasing costs and labor demands. With this process guide and the necessary tools, companies in all industries can capitalize on the efficiency, simplicity and cost-effectiveness of vacuum forming. For information on Formech vacuum forming machines, visit the company s web site at formech.com. Images and information in figure 1-5 and 8-16 are courtesy of Formech International Limited. FDM PROCESS DESCRIPTION Fortus 3D Production Systems are based on patented Stratasys FDM (Fused Deposition Modeling) technology. FDM is the industry s leading Additive Fabrication technology, and the only one that uses production grade thermoplastic materials to build the most durable parts direct from 3D data. Fortus systems use the widest range of advanced materials and mechanical properties so your parts can endure high heat, caustic chemicals, sterilization, high impact applications. The FDM process dispenses two materials one material to build the part and another material for a disposable support structure. The material is supplied from a roll of plastic filament on a spool. To produce a part, the filament is fed into an extrusion head and heated to a semi-liquid state. The head then extrudes the material and deposits it in layers as fine as inch (0.127 mm) thick. Unlike some Additive Fabrication processes, Fortus systems with FDM technology require no special facilities or ventilation and involve no harmful chemicals and by-products. Stratasys [email protected] 7665 Commerce Way Eden Prairie, MN (US Toll Free) (Intl) (Fax) 2 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel (Fax) ISO 9001:2008 Certified 2009 Stratasys Inc. All rights reserved. Stratasys, FDM and Fortus are registered trademarks and Fused Deposition Modeling, FDM Technology, Fortus 250mc, Fortus 360mc, Fortus 400mc, Fortus 900mc, Insight and Control Center are trademarks of Stratasys Inc., registered in the United States and other countries. *ULTEM 9085 is a trademark of SABIC Innovative Plastics IP BV. All other trademarks are the property of their respective owners. Product specifications subject to change without notice. Printed in 2013 and in the USA. AG-THERMO AG-FDM-Thermoforming-EN /09 For more information about Stratasys systems, materials and applications, contact Stratasys Application Engineering at (toll free), (local/international) or [email protected].
INJECTION BLOW MOLDING WITH FDM
INJECTION BLOW MOLDING WITH FDM 3D PRODUCTION SYSTEMS Time Required Cost Skill Level By Susan Sciortino, Stratasys Inc. OVERVIEW Blow molding is a manufacturing process in which air pressure inflates heated
BENEFITS OF 3D PRINTING VACUUM FORM MOLDS
WHITE PAPER BENEFITS OF 3D PRINTING VACUUM FORM MOLDS AUTHORS COLE HARTMAN (MECHANICAL ENGINEER) & VERONICA DE LA ROSA (INDUSTRIAL DESIGNER) FATHOM is driven by advanced technologies. We leverage our expertise
High performance thermoforming materials from Penn Fibre Plastics, Inc
High performance thermoforming materials from Penn Fibre Plastics, Inc The material performance pyramid shown in figure 1 is probably one of the most widely used figures in the plastics industry. While
1. Injection Molding (Thermoplastics)
1. Injection Molding (Thermoplastics) l Molding: Injection (thermoplastics) INJECTION MOLDING of thermoplastics is the equivalent of pressure die casting of metals. Molten polymer is injected under high
Technical Brief. Thermoforming Processes. Vacuum Forming and Methods
Processes The process of forming a thermoplastic sheet into a three dimensional shape by clamping the sheet in a frame, heating it to render it soft, then applying differential pressure to make the sheet
Injection Molding Design Guide. Table of Contents
Injection Molding Design Guide 400 Injection Molding Design Guide Table of Contents Injection Mold Tooling Process Comparison...2 Size Limitations...3 Straight Pull Design...4 Other Geometric Considerations...5
A Guide to Thermoform Processing of Polypropylene. Introduction
A Guide to Thermoform Processing of Polypropylene Introduction Thermoforming is the process of heating plastic sheet to a pliable state and forming it into shape. Thermoforming offers processing advantages
PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY
By Lior Zonder, Applications Team Leader Nadav Sella, Solutions Sales Manager, Global Field Operations Injection molding (IM) the process of injecting plastic material into a mold cavity where it cools
3D Printed Injection Molding Tool ("PIMT") Guide. Objet Ltd.
3D Printed Injection Molding Tool ("PIMT") Guide Objet Ltd. 2 Injection molding is a high speed, automated and versatile process that can produce high precision complex three dimensional parts from a fraction
Solid shape molding is not desired in injection molding due to following reasons.
PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which
Redeye On Demand. Direct Digital Manufacturing
Redeye On Demand Direct Digital Manufacturing Redeye on Demand Jeff Hanson Manager, Business Development Business Unit of Stratasys Inc Global Business with Digital Production facilities in North America,
Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data.
Glossary # 2D Control Drawing A line drawing showing various views of a product with details such as material, surface finish, volume, tolerances and critical dimensions. 3D Animation Using computer software
Additive Manufacturing: Processes and Standard Terminology
Additive Manufacturing: Processes and Standard Terminology Gary Coykendall Copyright Edmonds Community College 2012; Permission granted for use and reproduction for educational purposes only. Abstract
Allison Rae Paramount Industries Rhode Island School of Design ID 87. Prototyping Overview
Allison Rae Paramount Industries Rhode Island School of Design ID 87 Prototyping Overview Prototyping for Mechanical Parts Paramount Industries Started as prototyping vendor, then added: Industrial Design
Tutorial: Rapid Prototyping Technologies
1. Introduction Tutorial: Rapid Prototyping Technologies Rapid prototyping (RP) is a new manufacturing technique that allows for fast fabrication of computer models designed with three-dimension (3D) computer
What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004
2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring
1) Cut-in Place Thermoforming Process
Standard Thermoforming Equipment Overview There are three standard configurations for thermoforming equipment: 1. Heat and Cut-in-Place Forming 2. In-Line Forming with Steel Rule or Forged Steel Trim wand
FDM for Robotic End of Arm Tooling
STRATASYS.COM OVERVIEW Robots are used to perform tasks such as sorting, transporting, palletizing, inspecting and machining. A robot s end of arm tool (EOAT), also called an end-effector, is selected
PROCESSING OF VARIOUS MATERIALS
4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good
Somos Materials. Injection Molding Using Rapid Tooling
Somos Materials Injection Molding Using Rapid Tooling Introduction Testing a new design before costly tooling is created can save companies time and money. For many years, the only process available to
Profiles On Display CERTIFIED ISO 9001:2000. Call Toll Free 1.800 279.0991 Canada 800.361.4774 Montreal 514.325.9840 www.plastifab.
From design to delivery Profiles On Display CERTIFIED ISO 9001:2000 Profiles On Display I n d u s t r i e s When Plastifab Industries and the former World Plastics combined their capabilities under one
Application booklet Thermoforming
Application booklet Thermoforming 2 Thermoforming is one of the oldest and most common methods of processing plastic materials. Thermoformed plastic products are all around us and play a major part in
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS 5.1 3D SYSTEMS SELECTIVE LASER SINTERING (SLS) 5.1.1 Company 3D Systems Corporation was founded by Charles W. Hull and Raymond S. Freed in 1986. The founding
Fused Deposition Modeling: A Technology Evaluation
Fused Deposition Modeling: A Technology Evaluation Todd Grimm T. A. Grimm & Associates, Inc. Selecting the best rapid prototyping process can be challenging. Without hands-on experience, uncovering both
Prototyping Process Choosing the best process for your project
Prototyping Process Choosing the best process for your project Proto Labs, Inc. 5540 Pioneer Creek Dr. Maple Plain, MN 55359 P: (763) 479 3680 F: (763) 479 2679 www.protolabs.com 2009 Proto Labs. All rights
How To Build A 3D Model From Scratch
SERVICES AND CAPABILITIES 1. Rapid prototyping What is rapid prototyping? Rapid prototyping (RP) or more recently Free Form Fabrication refers to the fabrication of a physical, three-dimensional part of
Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)
Welding of Plastics Amit Mukund Joshi (B.E Mechanical, A.M.I.Prod.E) Introduction Mechanical fasteners, adhesives, and welding processes can all be employed to form joints between engineering plastics.
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes,
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes, STEREOLITHOGRAPHY (SLA) Selective Laser Sintering (SLS) RTV MOLDING AND CAST URETHANE PROTOTYPES Tel : +86 574
ID@GT prepared by Gabe Landes for T. Purdy 2009
Rapid prototyping is the automatic construction of physical objects using solid freeform fabrication. The first techniques for rapid prototyping became available in the late 1980s and were used to produce
Foam Injection Molding:
Foam Injection Molding: Unique Process Solutions for Light Weighting Automotive Plastic Parts Steve Braig President & CEO Trexel, Inc. AGENDA Technology Overview > Chemical Foaming > Physical Foaming Foamed
Two-Shot Silico e Thermoplastic Medical Molding
Two-Shot Silico e Thermoplastic Medical Molding Author: Sarah J. Voss, Product Specialist, Medical Co-Authors: Mark Simon, Ph. D. Research & Development Manager Danny Ou, Ph D. Research & Development,
How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs
How to Effectively Move from 3D Printing to Injection Molding Tony Holtz Technical Specialist, Proto Labs Overview 3D Printing CNC Machining Injection Molding Design Considerations for Injection Molding
Effects of the MuCell Molding Process
Effects of the MuCell Molding Process Molding MuCell versus Solid Shot size is reduced Final mold fill is completed with cell growth Little or no Hold Time or Pressure Reduced molded-in stress Less warp
Reaction Injection Molding (RIM)
Reaction Injection Molding (RIM) Low Volume Covers and Housings for Specialty Equipment Presented by Lucas Boettcher, Regional Manager at Premold Corp Areas to be Covered: -Overview of RIM -Advantages
A NEW MINDSET IN PRODUCT DESIGN
A NEW MINDSET IN PRODUCT DESIGN 3D PRINTING CAN HELP BRING BETTER PRODUCTS TO MARKET FASTER By Stratasys Inc. The terms 3D printing and additive manufacturing refer to processes that automatically build
3D Printer Extruder. Application Note. Martez Steverson ECE 480. Design Team 8 3/28/14. Abstract
3D Printer Extruder Abstract Application Note By Martez Steverson ECE 480 Design Team 8 3/28/14 The purpose of this paper is to instruct the reader on how to construct an extruder for a 3D printer and
Determining the Right Molding Process for Part Design
Determining the Right Molding Process for Part Design How RIM Molding Advantages Compare with Traditional Production Technologies Page 2 Introduction This White Paper details the part production processes
Lightweighting Custom enewsletter
MuCell Injection Molding: Unique Process Solutions for Light Weighting Plastic Parts MuCell Injection Molding Brent Strawbridge, Vice President Sales Lightweighting Custom enewsletter AGENDA Technology
Rapid Prototyping Technologies. May, 2016
Rapid Prototyping Technologies May, 2016 WE HAVE ALL THE NECESSARY TOOLS TO ENSURE THE FINAL SUCCESS OF YOUR PROTOTYPE. Andaltec can help you in all the steps, from the design to fully finished prototype
INJECTION MOULD DESIGN: MARPLEX PVC RESINS
MACHINE RECCOMENDATIONS PVC requires reciprocating screw injection moulding machine with a plasticising screw to produce homogeneous melt. It is recommended that a shot weight of the part should take two
INJECTION MOLDING PROCESSING GUIDE Polymer
FOAMAZOL Chemical Foaming Agents INJECTION MOLDING PROCESSING GUIDE Polymer Foaming Agent INJECTION MOLDING WITH CHEMICAL FOAMING AGENTS Introduction The injection molding of structural foam molded parts
Injection molding overview
Injection molding overview This injection molding overview is designed to help our customers understand the process of injection molding and mold-making. Please read it fully as it helps to define what
Why Plastic Flows Better in Aluminum Injection Molds
Why Plastic Flows Better in Aluminum Injection Molds An investigative study directly comparing melt flow characteristics of general purpose resins in QC-10 aluminum molds and P20 steel molds. By: David
Scotch-Weld Polyurethane Reactive (PUR) Easy Adhesive Systems
3 Scotch-Weld Polyurethane Reactive (PUR) Easy Adhesive Systems Structural adhesive benefits with hot melt adhesive speed for wood, plastic and more. 3M Scotch-Weld Polyurethane Reactive (PUR) Easy (170
Rapid Prototyping. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will understand the principles and practical applications of Rapid Prototyping. Basic concepts are explained
Envelope INSULATION BATT (2) Avoid Using Batt Insulation With Metal Framing. Pressure or Friction Fit
R-H-DI1 INSULATION BATT NR-E-IB1 Avoid Using Batt Insulation With Metal Framing Batt insulation should not be used with metal framing systems. Although it is common to see fiberglass batt insulation installed
first look at GigaCrete s revolutionary new New Construction GigaHouse GigaHouse Utilizing GigaPanel
first look at GigaCrete s revolutionary new New Construction GigaHouse GigaHouse Utilizing GigaPanel What is GigaCrete GigaCrete is a family of products based on low carbon footprint Green ceramic binders
ARMSTRONG MOLD GRAPHITE DIE CASTING DIVISION
ARMSTRONG MOLD CORPORATION GRAPHITE DIE CASTING DIVISION Getting Started The Evolution of GDC The GDC technology was developed as a hybrid of traditional permanent mold, graphite mold and the die casting
New Advances in Rapid Prototyping using Inkjet-based 3D Printing
New Advances in Rapid Prototyping using Inkjet-based 3D Printing April 2011 Objet Geometries Ltd. DISCLAIMER: Objet Geometries Ltd. ("Objet") does not guarantee the final release and availability of materials,
DEVELOPMENT. Shorter time to market More product variants Increasing design complexity. Rapid. Prototyping PRODUCTION
EOSINT P EOSINT P Plastic laser-sintering for direct manufacture of styling models, functional prototypes, patterns for plaster, investment and vacuum casting, end products and spare parts Laser-sintering
Sheet Metal Stamping Dies & Processes
Training Objectives After watching the program and reviewing this printed material, the viewer will gain knowledge and understanding of the stamping process and the die systems used to form sheet metal.
Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes
Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to
Die casting Figure M2.3.1
Die casting Die casting is a moulding process in which the molten metal is injected under high pressure and velocity into a split mould die. It is also called pressure die casting. The split mould used
Plastic Injection Molds
Training Objective After watching the program and reviewing this printed material, the viewer will become familiar with the variety, design, and productive use of plastic injection molds. Mold components
SOHOline and SOHO Slimline The SOHOline and SOHO Slimline offer a modular, sturdy and compact design
SOHOline and SOHO Slimline The SOHOline and SOHO Slimline offer a modular, sturdy and compact design Ideal installation for; Offices Branch Offices Schools Computer Aided Classes Government Offices Hotels
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural
CHEMICAL FOAM EXTRUSION PROCESSING GUIDE
FOAMAZOL Chemical Foaming Agents CHEMICAL FOAM EXTRUSION PROCESSING GUIDE Polymer Foaming Agent foam FOAM EXTRUSION USING CHEMICAL FOAMING AGENTS Introduction The basics of foam extrusion consist of mixing
Innovation From Concept to Production
Industrial Design Product Development Rapid Prototypes 3D Mold Design Short Run Production Legacy Data Translation Paradigm Engineering, Inc. is built on a foundation of innovation. Our unique expertise
How to build a Pizza Oven in 4 days
How to build a Pizza Oven in 4 days Preparation day (slab) 1. Foundation 1500 deep x 1300 wide x 75mm deep Required 20 bags cement pre mix. If you already have a concrete base, you save this prep day DAY
Autobody/Collision and Repair Technology/Technician CIP 47.0603 Task Grid
1 Secondary Task List 100 ORIENTATION 101 Identify opportunities in the auto body field. 102 Identify basic auto body construction. 103 Identify program rules and policies. 104 Identify government agencies
MANUFACTURING THE FUTURE
Paul Miller 803-554-3590 [email protected] MANUFACTURING THE FUTURE PAUL MILLER DIRECTOR OF SALES WWW.3DSYSTEMS.COM NYSE:DDD 2013 3DSYSTEMS A 3D PRINTER FOR YOU RESULTING IN UNMATCHED 3D PRINTER
Liquid Silicone Rubber TAKES THE HEAT
Liquid Silicone Rubber TAKES THE HEAT For many of us, the easiest place to find liquid silicone rubber (LSR) is at the auto store. It comes in a tube and can be used to create flexible, formed-in-place
Technical Data Sheet February 2014
Scotch-Weld Technical Data Sheet February 2014 Product Description s are high performance, two-part acrylic adhesives that offer excellent shear, peel, and impact performance. These toughened products
RAPID PROTOTYPING. Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping
RAPID PROTOTYPING Learning Objectives: By the end of the lecture the student should be able to: Explain the fundamentals of Rapid Prototyping Outline and explain differences of Rapid Prototyping Technologies
glass & Glazing Products
glass & Glazing Products WallMaker Create an unlimited variety of bright, beautiful and secure interior environments with the easy-to-install Stylmark WallMaker glass wall system. This versatile system
DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING
RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING
Copyright 1998 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING NARRATION (VO): NARRATION (VO):
FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING SCENE 1. CG: EXTRUSION BLOW MOLDING white text centered on black SCENE 2. tape 401, 07:25:29-07:25:41 zoom in, extrusion process tape 401, 07:08:50-07:09:06
SALES (800) 445-6607 FAX
Acrylic Information Cell Cast Acrylic Sheet comes in a wide range of sizes and thicknesses and is available as a colorless sheet, as well as in a variety of transparent, translucent and opaque colors.
DIY CABINET REFACING INSTALLATION GUIDE
DIY CABINET REFACING INSTALLATION GUIDE CABINET REFACING INSTALLATION Are you ready to reface your outdated cabinets? This guide will show you how to install your new Facelifters Cabinet Refacing Products
Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters
Outline 2.008 Polymer Equipment and process steps Injection Molding Considerations for process parameters Design for manufacturing, tooling and defects 1 2.008 spring 2004 S. Kim 2 Materials Solid materials
6 Design of Gates. 6.1 The Sprue Gate
6 Design of Gates 6.1 The Sprue Gate The sprue gate is the simplest and oldest kind of gate. It has a circular cross-section, is slightly tapered, and merges with its largest cross-section into the part.
Heavy Glass Frameless Shower Door With Return Panel
202 Anderson Ave., elvue, KS 66407 Phone: 800-669-9867 Fax: 800-393-6699 www.onyxcollection.com Heavy Glass Frameless Shower Door With Return Panel Full Showers with Return ench Seat with Return FRLSDRPL-0116
SCREEN PRINTING INSTRUCTIONS
SCREEN PRINTING INSTRUCTIONS For Photo-Imageable Solder Masks and Idents Type 5600 Two Part Solder Masks and Idents Mega Electronics Ltd., Mega House, Grip Industrial Estate, Linton, Cambridge, ENGLAND
plumbing products guide
plumbing products guide radiator pipe guide & seals A significant development in the drive to reduce air leakage and heat loss. Installations such as that shown are all too common. The detail is poorly
Fredriksons conveyor systems handle goods with a width from 20 mm up to 600 mm.
Conveyor Solutions Whatever your logistic needs, we can offer a conveyor solution. Our flexible systems primary and secondary packaging for single and multi packages, can transport your goods from one
Good Boards = Results
Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.
RAPID PRODUCT DEVELOPMENT
Rapid Product Development and Rapid Prototyping service American Engineering Group (AEG) offer rapid product development service, a rapid and more costeffective solution for manufacturing. Bringing new
WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12
WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12 87 88 GOOD INDUSTRY PRACTICES 12 WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12.1 BACKGROUND Most roofs in Singapore are constructed using reinforced
Balancing the Electrical and Mechanical Requirements of Flexible Circuits. Mark Finstad, Applications Engineering Manager, Minco
Balancing the Electrical and Mechanical Requirements of Flexible Circuits Mark Finstad, Applications Engineering Manager, Minco Table of Contents Abstract...............................................................................................
Plastic Injection Molding
Training Objective After watching this video and reviewing the printed material, the student/trainee will understand the principles and physical operations of the plastic injection molding process. An
CORNER FRIDGE REFRIGERATION UNIT INSTALLATION AND OPERATION INSTRUCTIONS
CORNER FRIDGE REFRIGERATION UNIT INSTALLATION AND OPERATION INSTRUCTIONS D E F Y I N G C O N V E N T I O N Congratulations on your new Corner Fridge Your new corner fridge may have different functions
Whitley Manufacturing Co., Inc. 201 W. First Street S. Whitley, IN 46787 Phone (260) 723-5131 Sales Fax (260) 723-6396 whitley@whitleyman.
Building Type Building Code Whitley Classroom Buildings BOCA, UBC, SBCCI, NEC, ADA Structural Support Outrigger construction standard, Whitley model classrooms. Main support beams to be 12 11.8# per lineal
Double Coated Urethane Foam Tapes
3 Double Coated Urethane Foam Tapes 4004 4008 4016 4026 4032 4052 4056 4085 Technical Data April, 2009 Product Description 3M Double Coated Urethane Foam Tapes are conformable foams that offer high shear
ETP 45 (EXTERNAL TECHNICAL PAPER NUMBER 45)
TAPPEX THREAD INSERTS LIMITED Masons Road Stratford-upon-Avon Warwickshire CV37 9NT Telephone: +44(0) 1789 206600 Fax: +44(0) 1789 414194 Email: [email protected] ETP 45 (EXTERNAL TECHNICAL PAPER NUMBER
*Trademark of The Dow Chemical Company A business unit of The Dow Chemical Company and its subsidiaries Copyright 2003 The Dow Chemical Company.
Dow Chemical is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members.
How to Build a Printed Circuit Board. Advanced Circuits Inc 2004
How to Build a Printed Circuit Board 1 This presentation is a work in progress. As methods and processes change it will be updated accordingly. It is intended only as an introduction to the production
INSTALLATION INSTRUCTIONS for Bifold Doors (JII103)
Thank you for selecting JELD-WEN products. Attached are JELD-WEN s recommended installation instructions for premium composite, hollow and solid core molded Bifold Doors. Bifolds are designed for fast
FRAMED & MOUNTED TILE MURAL
Page 1 of 5 There is no denying that tile murals have taken the sublimation industry by storm. The unique ability to take a customer s artwork or high resolution photograph, tile it using your software
QWALL 4 ACRYLIC SHOWER WALL INSTALLATION INSTRUCTIONS
QWALL 4 ACRYLIC SHOWER WALL INSTALLATION INSTRUCTIONS IMPORTANT DreamLine TM reserves the right to alter, modify or redesign products at any time without prior notice. For the latest up-to-date technical
Profiles in stock Standard catalogue. Discover the possibilities with aluminium profiles from Sapa
Profiles in stock Standard catalogue Discover the possibilities with aluminium from Sapa You can create your own profile or you can choose from a wide selection of standard. Delivery: 1 2 weeks for standard
Investigating Methods of Prototyping with ABS
Investigating Methods of Prototyping with ABS Ben Chapman, Shivam Desai, Mark Muraoka, Teodora Vidolova 1 Abstract In this comparative study of the mechanical properties of plastic parts produced by three
T100. BioTube Rack. Rack is made of 3 components: A white base A removable grid plate that can hold individual or strips of tubes A translucent cover
BiotubeTM System Simport offers a wide choice of racks containing 96 x 1.2 ml tubes (8.8 mm top dia. x 45 mm H, or strips of 8 or 12. Tubes, strips, caps and boxes are available as separate units as well.
Technical Services & Capabilities
Technical Services & Capabilities Machining Welding MIG TIG Robotic TIG Friction Stir Welding Solution Heat Treat & Artificial Aging Assemblies & Fabrication Bike Frame Specialists Technical Services Product
3D Printing Design Guidelines Sierra College CACT
3D Printing Design Guidelines Sierra College CACT Prepared by ARW Consulting June 30, 2009 Table of Contents Scope of this Document.. 1 General Overview... 2 File Format.. 3 SST Support Material.. 4 Venting
Section 5: Machine Overview
Section 5: Machine Overview Machine Floor Plan Machine Specifications Sequence of Operation Theory of Operation Sensor Location Floor Plan 2007 Douglas Machine Inc. 5.1 Machine Floor Plan Figure 5.1: Machine
LOST FOAM PROTOTYPING METHODS
LOST FOAM PROTOTYPING METHODS A Comparison of Methods and Processes Copyright 2002 Austin Group, LLC. All rights reserved. INTRODUCTION TERRY AUSTIN PRESIDENT AUSTIN GROUP, LLC QUINCY, ILLINOIS INTRODUCTION
