Why Plastic Flows Better in Aluminum Injection Molds
|
|
|
- Francis Francis
- 9 years ago
- Views:
Transcription
1 Why Plastic Flows Better in Aluminum Injection Molds An investigative study directly comparing melt flow characteristics of general purpose resins in QC-10 aluminum molds and P20 steel molds. By: David Bank, Aluminum Injection Mold Co. Dave Klafhen, Plastic Processing Consultant Ron Smierciak, Alcoa Forged and Cast Products
2 Part 1 Introduction There have been numerous articles published regarding the cycle time advantage aluminum molds have over steel when configured with the same gate, part geometry and cooling channels, but there is little specific information available to demonstrate why this happens and how it improves the injection mold process. Alcoa Forge and Cast Products teamed up with Aluminum Injection Mold Co. (Rochester, NY) and sponsored a case study to uncover the differences known to exist when molding thermoplastics in aluminum versus steel molds. The key objectives were to quantify the differences by comparing how thermoplastics react in an aluminum mold versus a steel one, measure those differences, and share the results of the experiment. The results should help mold makers and molders better understand the potential savings and improvements for molding plastic components in aluminum tools, specifically addressing how: 1) Plastic material flows longer distances with less injection pressure, when compared to steel 2) Molds fill faster and more efficiently 3) Parts have minimal warp and better dimensional stability Aluminum s thermal conductivity is nearly 5 times greater than that of steel (table 1). In a 2002 article published in Moldmaking Technology 1, Douglas Bryce discusses an IBM tooling study comparing identical aluminum and steel molds producing the same plastic components over a five year period. The article suggested that the aluminum molds cost up to 50% less to build and can be delivered in one half the time. It went on to say these tools produced higher quality products having cycle times that were 25 to 40% less than the steel molds. Measurement QC-10 P20 Thermal Conductivity BTU/ft/hr/ft 2 / F Table 1 In 2005, an article written in the Moldflow publication, Flowfront 2, looked at computer simulation of cycle time and cooling versus actual molding. After carrying out simulations on 12 parts which had very different characteristics in terms of shape, size and plastic materials, it was concluded that significant savings in total cycle time could be realized by using aluminum instead of steel molds. Cycle time savings of 10-20% were seen in cases where there were no critical tolerances linked to the deformation of the part due to the effect of the heat. However, savings of % were seen in cases where heat deformation affected critical design tolerance levels. Studies like these are relevant to the industry and this case study looks at the basis of why plastic flows better in aluminum. 1
3 Part 2 Tooling Spiral test molds, built in accordance to ASTM D were selected for the tool design. This shape would standardize the channel length, size of overall mold, cooling and gate location. In addition, each mold was fitted with a series of 4 thermocouples to monitor and document, in real time, what the metal does when injected with molten plastic. All the thermocouples were connected to a data logger and computer for data collection. For the aluminum molds, we used QC-10 mold plate and for the steel molds, P20. Six molds of identical geometry were built - three in QC-10 and three in P20. The spiral mold shape was sized at 6 mm wide and channel depths of 1 mm, 2mm and 3mm, respectively. The sizes of the tools were a standard 7" x 8" master unit die and all the mold plates were the same thicknesses. (Fig. 1) The sprue diameter was identically sized for each of the six unit molds. Identical water lines were drilled to complete the cooling circuits. Four of the six molds, the 1 mm and 2 mm molds in both materials, were fitted with thermocouples that came in from the back and were approximately 0.5 mm from the cavity surface. On the 3 mm spiral unit molds, a 5th thermocouple was placed into secondary vent area to monitor the vent temperature during molding. All six molds were laser engraved on the "A" side in inch increments from 1" to 67". The surfaces were finished with a 600 grit stone. The test was set up in a 55 ton Toyo injection mold machine. Seven unfilled, general purpose thermoplastic resins were selected for this trial: polyethylene, polypropylene, polystyrene, ABS, PC/ABS, nylon, and polycarbonate. Part 3 Molding Trials Fig. 1 Trial 1: Same melt temperature, same mold temperature per manufacturer s recommended parameters; seven resins, six tools This trial fixed a predefined orifice, a predefined temperature and a predefined injection pressure ( < 1000 psi). A 25-piece sample was run for each mold group. Our hypothesis suggests that the flow lengths would be dramatically different between the QC-10 and the P20 molds because of aluminum s higher thermal conductivity. The material was dried for the prerequisite period of time and prepped for molding. The melt temperatures were set to the resin manufacturers recommended settings and the molds were brought up to 2
4 the manufacturer s recommended temperature as well. The P20 molds were run first in all the materials. The data found the average spiral flow length to be 10" to 15", consistent with the manufacturer s specifications. The QC-10 molds were run in all the materials as, expecting to see a dramatic difference in flow length. We did not. The flow length results were in the same range of the P20 molds. We were puzzled by these findings. In the end, all the materials yielded basically the same results in all the molds used. Not the expected outcome. With over 25 years experience in processing aluminum tools, we were sure that this trial would demonstrate what is known to be true. The group had to stop and rethink the situation. We were searching for something that we knew was there, but did not know how to quantify it, yet. After much discussion, it was decided we needed to run the same materials in a trial that included pack and hold. Trial Two: Seven resins; six molds with monitored temperatures, pack and hold The second trial was initiated, again recording temperatures. The injection mold pressure remained at the baseline of the material used from trial one. This time the experiment was to process each unit mold as if molding a run of parts in production. Each mold trial began as a short shot (shorter length spiral, in this case) and proceeded to pack out the part to get the best achievable result. Cycle was established when the sucker pin pulled the sprue clean and the part was cool enough to eject. Cycle time and mold temperatures were documented for each tool running at least 25 parts at cycle. Temp Polystyrene, 465 Melt Temp, 90 Sec. In the QC-10 molds, the temperature graph during this process showed a near vertical increase in temperature from mold set point of about 10 to 12 degrees to an immediate drop back to set point before the mold opened. For a point of reference, the mold cycle for polystyrene was 12.2 seconds as we finished with the QC-10 group of molds. All three thicknesses, although yielding shorter flow lengths going from 3mm thick to 1mm thick, were in the same 12.0 to 12.5 second range for total shot to shot cycle. The P20 steel molds were run at the same temperatures as QC-10. The first observation was the change in how the mold temperatures reacted as the molten plastic was injected. The temperature did not spike up and down with the same intensity as it did in the QC-10 molds. In addition, the cool down time was much Time Thermolator Set Point QC10 Ch1 QC10 Ch2 QC10 Ch3 QC10 Ch4 QC10 Ch5 P20 Ch1 P20 Ch2 P20 Ch3 P20 Ch4 P20 Ch5 3
5 more gradual. Also, P20 typically over ran the mold temperature set point by an average of about 20 degrees. The increase in the mold temperature due to the injection melt was an additional degrees. With all this excess temperature, i.e. mold overshooting and temperature increases with very slow recovery, we saw a difference of 20+ second cycle shot to shot in P20 versus the QC-10 cycle of about 12 seconds. At this point, we believed we had finally found the reason that plastic molds better in QC-10, and decided to continue another trial to verify our findings. Trial Three - Two materials, 1 amorphous and 1 semi-crystalline, 3 mm unit molds of QC-10-and P20, pack and hold We decided to use only polystyrene (amorphous) and nylon (semi-crystalline) with the 3 mm unit molds in QC-10 and P20 in this verification trial because we had found virtually no difference in flow length between any particular mold family and between any materials in the previous trials. We then wanted to look at melt temperature versus flow length versus cycle time. We started with temperatures on the low side of the resin manufacturers recommended barrel temperature for the resin we were using. Temp (F) QC-10 P20 QC-10 P20 Polystyrene Melt F Mold F Cycle sec Flow Length 34" 34" 27" 27.5" Nylon Melt - F Mold - F Cycle - sec Flow Length 52" 53" 39" 39.5" Table 2 Nylon, 555 Melt Temp, 90 Sec We also set the mold temperature to the lowest recommended set temperature. We ran the P20 mold in both materials, noted cycle times, mold temperatures and injection pressure. We then ran the QC-10 mold in both materials, again noting cycle times, mold temperatures and injection pressures. After compiling data, we moved all temperatures to the highest barrel temperature and ran each mold, both materials, again collecting same data. In both temperature tests in trial three for polystyrene, QC-10 cycle time stayed consistent with findings of trial two, seconds. In the lowest temperature test, P20's cycle time was in Time Thermolator Set Point QC10 Ch1 QC10 Ch2 QC10 Ch3 QC10 Ch4 QC10 Ch5 P20 Ch1 P20 Ch2 P20 Ch3 P20 Ch4 P20 Ch5 4
6 the second range, similar to trial two's findings, but in the higher temperature test, it jumped nearly 25%. Part 4 Findings The QC-10 molds heated five times faster than the P20 molds, as we set up to run each trial. Across all the trials, the QC-10 mold temperature stayed consistently within 1-3 degrees of the mold temperature set point. During the inject phase, a temperature spike of degrees with an abrupt return to set point was observed. The P20 mold temperature stayed consistently degrees above mold temperature set point. During the inject phase, additional increases of degrees were observed before slowly trending downward. When using the QC-10 molds, we did not see an appreciable change in cycle time, part to part, even when we ran the materials at the high end of the manufacturers recommended melt/mold temperatures. However, the P20 molds continued to get hotter and the cycle time became even longer. In view of these findings, it is not surprising that there are some plastic consultants extolling the virtues of running plastic resin as much as 100 degrees below the manufacturer's recommended settings when using P20 or other steel injection molds, even though doing so could void the manufacturer's guarantees. Part 5 Conclusion The results of this experiment were both a surprise and not a surprise. We were not surprised to prove what we set out to prove, but the road that led us there was an unexpected one. We were pleased to show that plastic parts molded in aluminum would minimize warp and enhance dimensional stability, allow molds to fill faster and more efficiently and allow plastic material to flow greater distances with less injection pressure when compared to steel. We demonstrated that using aluminum gives the benefit of making molds less expensive to produce, shortening mold delivery time, producing higher quality molded plastic parts and enabling the realization of producing more plastic parts per day. The surprise in the experiment was that the expected results were achieved in a different, unexpected way. We thought we would arrive at the desired results because aluminum molds would take on heat from the hot melt during the injection phase, enabling the plastic to fill the mold cavity more quickly with less pressure and less density change. Conversely, we felt that the steel molds would take on less heat, thereby creating more "skinning", and restricting the flow front resulting in the need for higher injection pressure and causing density changes from the gate to the longest flow length. 5
7 What we actually found was that the QC-10 did not take on or hold as much heat as we previously thought, thus allowing the molten plastic to move in quickly and quench quickly, therefore there was not a density change due to excess injection pressure. We discovered that the steel actually took on and held much more heat. During the inject phase, plastic filled the cavity and stayed molten much longer allowing for additional inject pressure which caused density changes before solidification. We hope the information provided in this paper adds to the knowledge base used to consider aluminum as a choice for your next production injection mold. References: 1. Douglas Bryce, Moldmaking Technology, "Why Offer Aluminum Molds for Production", April Claudia Zironi, Flowfront Magazine, "Competitive Advantages of Aluminum Molds for Injection Molding Applications: Process Simulation Used to Evaluate Cycle Times", April American Society for Testing and Materials (ASTM), West Conshohocken, PA. Is a nationally recognized independent test agency. The ASTM test number D describes a spiral flow mold for use with thermosetting molding compound, and also states there appears to be no universal standard for thermoplastics. 6
8 Biographies David Bank, President, Aluminum Injection Mold, Co. Dave has over 25 years of experience manufacturing aluminum injection molds. He is the founder of Papago Industries, a maker of prototype and short-run injection molds, which he sold in Beginning in 2003, Dave re-entered the injection mold building business and opened what is now Aluminum Injection Mold, Co. Aluminum Injection Mold is an industry leader in providing creative solutions in plastic to a wide range of customers including automotive, medical, computer/business machines, telecommunications, and consumer products. Additionally, Dave is the inventor of the AIM Frame. AIM Frames are Alcoa QC-10 molds with tool steel clamp rails and support pillars. The pillars have diameters scaled to the mold frame and are ground to the full thickness of the mold halves. Steel opens and closes on steel. Dave has spoken at numerous technical events over his 25+ years and has chaired several committees involved in product and tooling design. Dave Klafehn, Processing Consultant Dave has more than 29 years experience in the injection molding industry. He worked at Eastman Kodak for over 10 years in component manufacturing, specializing in equipment maintenance, calibration, and process troubleshooting. During his time as director of manufacturing he gained interest and experience using aluminum molds to decrease tooling and manufacturing costs while improving part quality. He implemented the use of aluminum molds for production including the use of the MuCell Process. He also designed and processed hybrid aluminum and steel tooling with annual volumes of over 40 million parts. Ron Smierciak, Market Development Manager, Alcoa Forged Products Ron has been engaged with the development of Alcoa s mold alloy, QC-10, since He is responsible for the market development of Alcoa QC-10 mold product. Ron actively promotes the benefits of aluminum tooling to molders and original equipment manufacturers in North America, Europe, and Asia. Prior to his involvement with Alcoa and QC-10, Ron developed and marketed metal products in diverse industries including thin film coatings for the semiconductor and flat panel display industries, and fabricated products for the chemical processing and petrochemical industries. 7
What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004
2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring
Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling Channels for Block Laminated Molds
International Journal of Engineering and Advanced Technology (IJEAT ISSN: 2249 8958 Volume-4 Issue-5 June 2015 Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling
Plastic Injection Molding
Training Objective After watching this video and reviewing the printed material, the student/trainee will understand the principles and physical operations of the plastic injection molding process. An
CHAPTER 2 INJECTION MOULDING PROCESS
CHAPTER 2 INJECTION MOULDING PROCESS Injection moulding is the most widely used polymeric fabrication process. It evolved from metal die casting, however, unlike molten metals, polymer melts have a high
Injection molding overview
Injection molding overview This injection molding overview is designed to help our customers understand the process of injection molding and mold-making. Please read it fully as it helps to define what
General Guidelines for Building Aluminum Production Injection Molds
General Guidelines for Building Aluminum Production Injection Molds Using 7000 series Aluminum Mold Plate By David Bank Aluminum Injection Mold Company Rochester, New York 1 Introduction This high strength
3D Printed Injection Molding Tool ("PIMT") Guide. Objet Ltd.
3D Printed Injection Molding Tool ("PIMT") Guide Objet Ltd. 2 Injection molding is a high speed, automated and versatile process that can produce high precision complex three dimensional parts from a fraction
Effects of the MuCell Molding Process
Effects of the MuCell Molding Process Molding MuCell versus Solid Shot size is reduced Final mold fill is completed with cell growth Little or no Hold Time or Pressure Reduced molded-in stress Less warp
Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters
Outline 2.008 Polymer Equipment and process steps Injection Molding Considerations for process parameters Design for manufacturing, tooling and defects 1 2.008 spring 2004 S. Kim 2 Materials Solid materials
A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations
VOL. 3 NO. 2 A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations www.beaumontinc.com A Systematic Approach to Diagnosing Mold Filling and Part Quality Variations Applying Fundamental
Solid shape molding is not desired in injection molding due to following reasons.
PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which
Part and tooling design. Eastman Tritan copolyester
Part and tooling design Eastman Tritan copolyester Part and tooling design Process Part design Tooling design High cavitation considerations Process Process Project development flow chart Concept OEM generates
ARMSTRONG MOLD GRAPHITE DIE CASTING DIVISION
ARMSTRONG MOLD CORPORATION GRAPHITE DIE CASTING DIVISION Getting Started The Evolution of GDC The GDC technology was developed as a hybrid of traditional permanent mold, graphite mold and the die casting
INJECTION MOULD DESIGN: MARPLEX PVC RESINS
MACHINE RECCOMENDATIONS PVC requires reciprocating screw injection moulding machine with a plasticising screw to produce homogeneous melt. It is recommended that a shot weight of the part should take two
PRECISION PROTOTYPING THE ROLE OF 3D PRINTED MOLDS IN THE INJECTION MOLDING INDUSTRY
By Lior Zonder, Applications Team Leader Nadav Sella, Solutions Sales Manager, Global Field Operations Injection molding (IM) the process of injecting plastic material into a mold cavity where it cools
4 Thermomechanical Analysis (TMA)
172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.
DESIGN OF PLASTIC INJECTION MOLD FOR AN AIR VENT BEZEL THROUGH FLOW ANALYSIS (CAE) FOR DESIGN ENHANCEMENT
DESIGN OF PLASTIC INJECTION MOLD FOR AN AIR VENT BEZEL THROUGH FLOW ANALYSIS (CAE) FOR DESIGN ENHANCEMENT Jitendra Dilip Ganeshkar 1, R.B.Patil 2 1 ME CAD CAM Pursuing, Department of mechanical engineering,
SOLUTIONS FOR MOLD DESIGNERS
SOLUTIONS FOR MOLD DESIGNERS White Paper Abstract For CAE analysis tools to be truly useful, they must provide practical information that drives design decisions. Moldflow Plastics Advisers (MPA ) solutions
Kursus i Produktions- og materialeteknologi
Kursus i Produktions- og materialeteknologi Plastsprøjtestøbning / Injection Molding Basics Short history of plastics 1862 first synthetic plastic 1866 Celluloid 1891 Rayon 1907 Bakelite 1913 Cellophane
p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e
p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e H R O R o t t e r d a m B r n o U T j o i n t p r o j e c t 1 plastic injection
Plastic Injection Molds
Training Objective After watching the program and reviewing this printed material, the viewer will become familiar with the variety, design, and productive use of plastic injection molds. Mold components
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural
AN OVERVIEW OF GAS ASSIST
GAS ASSIST INJECTION MOLDING AN OVERVIEW OF GAS ASSIST April 2010 www.bauerptg.com GAS ASSIST INJECTION MOLDING TECHNOLOGY It is a fact that packing force must be applied and maintained to an injection
the runnerless types of molds are explained post molding operations are described the basic methods of applied decoration methods are examined
Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of the various plastic finishing processes used in industry and their
INJECTION BLOW MOLDING WITH FDM
INJECTION BLOW MOLDING WITH FDM 3D PRODUCTION SYSTEMS Time Required Cost Skill Level By Susan Sciortino, Stratasys Inc. OVERVIEW Blow molding is a manufacturing process in which air pressure inflates heated
Injection molding equipment
Injection Molding Process Injection molding equipment Classification of injection molding machines 1. The injection molding machine processing ability style clamping force(kn) theoretical injection volume(cm3)
Injection Molding Design Guide. Table of Contents
Injection Molding Design Guide 400 Injection Molding Design Guide Table of Contents Injection Mold Tooling Process Comparison...2 Size Limitations...3 Straight Pull Design...4 Other Geometric Considerations...5
DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING
RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING
ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report
ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective
ALUMINUM CASTING PROCESS COMPARISON CHARTS. Copyright 2002 Austin Group, LLC. All rights reserved.
ALUMINUM CASTING COMPARISON CHARTS A Qualitative Comparison of Several Competing Processes for the Production of Aluminum Castings The following charts are intended to provide a relative guide to compare
DIE CASTING. This process if for high volume, high detail, and value added economically priced cast parts. HOW IT WORKS
DIE CASTING PROCESS This process if for high volume, high detail, and value added economically priced cast parts. HOW IT WORKS A metal tool is built and attached to a furnace of molten metal Then molten
Understanding Plastics Engineering Calculations
Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,
MIT 2.810 Manufacturing Processes and Systems. Homework 6 Solutions. Casting. October 15, 2015. Figure 1: Casting defects
MIT 2.810 Manufacturing Processes and Systems Casting October 15, 2015 Problem 1. Casting defects. (a) Figure 1 shows various defects and discontinuities in cast products. Review each one and offer solutions
Leading Today s Technology in Injection Molding
2050 Sunnydale Boulevard Clearwater, Florida USA 33765 Tel 727-446-8593 Fax 727-446-8595 Leading Today s Technology in Injection Molding Your Partner in: Product Development Material Selection Product
NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807
Metal Injection Molding Design Guide NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Solon, OH 44139 [email protected] 1 Frequently Asked Questions Page What
How to Effectively Move from 3D Printing to Injection Molding. Tony Holtz Technical Specialist, Proto Labs
How to Effectively Move from 3D Printing to Injection Molding Tony Holtz Technical Specialist, Proto Labs Overview 3D Printing CNC Machining Injection Molding Design Considerations for Injection Molding
PROCESSING OF VARIOUS MATERIALS
4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good
Casting. Training Objective
Training Objective After watching the program and reviewing this printed material, the viewer will learn the essentials of the various metal casting processes used in industry today. The basic principles
Effective Cooling Method for Spin Casting Process
Effective Cooling Method for Spin Casting Process Yong-Ak Song, Sehyung Park, Yongsin Kwon Korea Institute of Science and Technology KIST, CAD/CAM Research Center P.O. Box 131, Cheongryang, Seoul, Korea
CLASSIFICATIONS OF INJECTION MOLDS
CLASSIFICATIONS OF INJECTION MOLDS General Notes The following classifications are guidelines to be used in obtaining quotations and placing orders for uniform types of molds. It is our desire, through
Troubleshooting Guide. PS Injection moulding. Splay marks. Burning (Black streaks) Cool feed zone. Dry material, check source of moisture.
Troubleshooting Guide PS Injection moulding Splay marks Trapped air that contains moisture Raise nozzle and front zone temperature. Cool feed zone. Wet feed Dry material, check source of moisture. Irregular
How to reduce the cure time without damaging the rubber compound during injection molding?
How to reduce the cure time without damaging the rubber compound during injection molding? 0Introduction This article aims at analyzing the rubber injection process and highlighting the limits that prevent
Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods
Section Number 3563 Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods Nicole Hoekstra Engineering Technology Department Western Washington University Abstract Prior to rapid
Somos Materials. Injection Molding Using Rapid Tooling
Somos Materials Injection Molding Using Rapid Tooling Introduction Testing a new design before costly tooling is created can save companies time and money. For many years, the only process available to
Mould and Die Standard Parts
Mould and Die Standard Parts Tampere University of technology - Tuula Höök Mould standard parts can be divided into the following groups: Standard mould set with guide bars, guide sleeves and other guiding
Philosophy of Troubleshooting Injection Molding Problems
PLASTICS ENGINEERING COMPANY SHEBOYGAN, WISCONSIN 53082-0758 U.S.A 3518 LAKESHORE ROAD POST OFFICE BOX 758 PHONE 920-458 - 2121 F A X 920-458 - 1923 Philosophy of Troubleshooting Injection Molding Problems
Characterization of an Injection Molding Process for Improved Part Quality
Characterization of an Injection Molding Process for Improved Part Quality A. Ghose, M. Montero, D. Odell Berkeley Manufacturing Institute, Dept. of Mechanical Engineering University of California - Berkeley
Determining the Right Molding Process for Part Design
Determining the Right Molding Process for Part Design How RIM Molding Advantages Compare with Traditional Production Technologies Page 2 Introduction This White Paper details the part production processes
Fundamentals of Design for Plastic Injection Molding. Kelly Bramble
Fundamentals of Design for Plastic Injection Molding Kelly Bramble 1 Fundamentals of Design for Plastic Injection Molding Copyright, Engineers Edge, LLC www.engineersedge.com All rights reserved. No part
NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE
NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE A. TROUBLESHOOTING GUIDE FOR INJECTION MOLDERS. I. INTRODUCTION The source of problems in injection molding of nylon resins can depend
APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective
APPLYING RAPID TOOLING FOR INJECTION MOLDING & DIE CASTING From a RT users perspective Glenn Anderson Senior Engineer, Research and Development Southco, Inc. RPA/SME Technical Forum on Rapid Tooling 20
Facts About. Industrial gases for better injection molding. This article appeared in the trade journal Kunststoffe plast europe, issue 12/2004.
Facts About. Industrial gases for better injection molding. This article appeared in the trade journal Kunststoffe plast europe, issue 12/2004. 2 Industrial gases for better injection molding Gas injection
6 Design of Gates. 6.1 The Sprue Gate
6 Design of Gates 6.1 The Sprue Gate The sprue gate is the simplest and oldest kind of gate. It has a circular cross-section, is slightly tapered, and merges with its largest cross-section into the part.
Sample Feasibility Study XYZ Company Widget Part Design
Sample Feasibility Study XYZ Company Widget Part Design Prepared For: XYZ Company 1234 Anywhere Street Any Town, State 12345-6789 Prepared By: Some Engineer Plastics Technology Center Penn State Erie,
Good Boards = Results
Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.
Reaction Injection Molding (RIM)
Reaction Injection Molding (RIM) Low Volume Covers and Housings for Specialty Equipment Presented by Lucas Boettcher, Regional Manager at Premold Corp Areas to be Covered: -Overview of RIM -Advantages
Gas Assist and Microcellular (MuCell ) ) Molding Process. Vishu Shah Consultek
Gas Assist and Microcellular (MuCell ) ) Molding Process Vishu Shah Consultek What is Gas Assist Injection Molding? Gas Assist injection molding is a process enhancement to conventional injection molding,
Investigation of process parameters for an Injection molding component for warpage and Shrinkage
Investigation of process parameters for an Injection molding component for warpage and Shrinkage Mohammad Aashiq M 1, Arun A.P 1, Parthiban M 2 1 PGD IN TOOL & DIE DESIGN ENGINEERING-PSG IAS 2 ASST.PROFESSOR
Quick Guide to Injection Molding
Quick Guide to Injection Molding Amodel polyphthalamide (PPA) Equipment Amodel PPA resins can be processed on conventional injection molding equipment. Estimated clamp tonnage of 5.5 kn/cm 2 (4 T/in 2
A Guide to Thermoform Processing of Polypropylene. Introduction
A Guide to Thermoform Processing of Polypropylene Introduction Thermoforming is the process of heating plastic sheet to a pliable state and forming it into shape. Thermoforming offers processing advantages
Lightweighting Custom enewsletter
MuCell Injection Molding: Unique Process Solutions for Light Weighting Plastic Parts MuCell Injection Molding Brent Strawbridge, Vice President Sales Lightweighting Custom enewsletter AGENDA Technology
Foam Injection Molding:
Foam Injection Molding: Unique Process Solutions for Light Weighting Automotive Plastic Parts Steve Braig President & CEO Trexel, Inc. AGENDA Technology Overview > Chemical Foaming > Physical Foaming Foamed
Die casting Figure M2.3.1
Die casting Die casting is a moulding process in which the molten metal is injected under high pressure and velocity into a split mould die. It is also called pressure die casting. The split mould used
BENEFITS OF 3D PRINTING VACUUM FORM MOLDS
WHITE PAPER BENEFITS OF 3D PRINTING VACUUM FORM MOLDS AUTHORS COLE HARTMAN (MECHANICAL ENGINEER) & VERONICA DE LA ROSA (INDUSTRIAL DESIGNER) FATHOM is driven by advanced technologies. We leverage our expertise
Session 13 Design for Injection Moulding
Session 13 Design for Injection Moulding Lecture delivered by Prof. M. N. Sudhindra Kumar Professor MSRSAS-Bangalore 1 Session Objectives At the end of this session the delegate would have understood Applying
RESEARCH PROJECT. High Pressure Die Casting Defects and Simulation Process by Computer Added Engineering (CAE)
RESEARCH PROJECT High Pressure Die Casting Defects and Simulation Process by Computer Added Engineering (CAE) ME8109 CASTING AND SOLIDIFICATION OF MATERIALS Presented by: Irshad Ali (Student # 500482510)
Liquid Silicone Rubber TAKES THE HEAT
Liquid Silicone Rubber TAKES THE HEAT For many of us, the easiest place to find liquid silicone rubber (LSR) is at the auto store. It comes in a tube and can be used to create flexible, formed-in-place
Allison Rae Paramount Industries Rhode Island School of Design ID 87. Prototyping Overview
Allison Rae Paramount Industries Rhode Island School of Design ID 87 Prototyping Overview Prototyping for Mechanical Parts Paramount Industries Started as prototyping vendor, then added: Industrial Design
Glossary of Terms Used in Plastic Injection Mold Manufacturing
Acceptable Runner/Cavity Ratio: Runner systems designed for high pressure drops to minimize material usage and increase frictional heating in the runner. Annealing: The process of relieving internal stresses
1. Injection Molding (Thermoplastics)
1. Injection Molding (Thermoplastics) l Molding: Injection (thermoplastics) INJECTION MOLDING of thermoplastics is the equivalent of pressure die casting of metals. Molten polymer is injected under high
DESIGN IMAGINEERING DESIGNING YOUR PLASTIC PART KEY DEFINITIONS DESIGNING YOUR PLASTIC PART KEY DEFINITIONS IDEAL CONDITIONS IN PART DESIGN
DESIGN GUIDELINES FOR PLASTIC DESIGN RTP COMPANY IMAGINEERING DESIGNING YOUR PLASTIC PART DESIGNING YOUR PLASTIC PART When designing parts for injection molding, the manufacturing process must be considered.
Ensuring Injection Molded Part Consistency and Conformance through In-Mold Cavity Sensor Technology
Ensuring Injection Molded Part Consistency and Conformance through In-Mold Cavity Sensor Technology by Steven Chrystal Plastics Engineer Lacey Manufacturing, a unit of Precision Engineered Products Lacey
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes,
Ningbo Yinzhou Keao Prototyping & Mould Factory Services include : CNC machining prototypes, STEREOLITHOGRAPHY (SLA) Selective Laser Sintering (SLS) RTV MOLDING AND CAST URETHANE PROTOTYPES Tel : +86 574
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut
PEEK tm. A Practical Design Guide For Injection Molded Components. www.performanceplastics.com. 4435 Brownway Avenue Cincinnati, OH 45209 513.321.
PEEK tm A Practical Design Guide For Injection Molded Components www.performanceplastics.com 4435 Brownway Avenue Cincinnati, OH 45209 513.321.8404 Warranty Disclaimer No information supplied by Performance
DIE CASTING AUTOMATION AN INTEGRATED ENGINEERING APPROACH
DIE CASTING AUTOMATION AN INTEGRATED ENGINEERING APPROACH Applied Manufacturing Technologies 219 Kay Industrial Drive, Orion, MI 48359 (248) 409-2100 www.appliedmfg.com 2 Die Casting Automation: An Integrated
Notes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity
CARL HANSER VERLAG. Herbert Rees. Mold Engineering 2nd edition 3-446-21659-6. www.hanser.de
CARL HANSER VERLAG Herbert Rees Mold Engineering 2nd edition 3-446-21659-6 www.hanser.de 45 4 General Mold Design Guidelines 4.1 Before Starting to Design a Mold he mold designer starts with the design
TECHNICAL DATA SHEET GRILON BG-15 S
TECHNICAL DATA SHEET GRILON BG-1 S Grilon BG-1 S is a heat stabilised PA6 injection moulding grade with 1% glass fibres. Grilon BG-1 S has the following important properties: Excellent surface finish Easy
Gas-Assist Injection Molding: An Innovative Medical Technology
COVER STORY >> MOLDING Gas-Assist Injection Molding: An Innovative Medical Technology In certain medical device applications, gas-assist molding can provide solutions that conventional injection molding
AISI O1 Cold work tool steel
T OOL STEEL FACTS AISI O1 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their
NORTHFIELD METAL PRODUCTS
NORTHFIELD METAL PRODUCTS CUSTOM METAL & PLASTIC COMPONENT MANUFACTURING SINCE 1974 PROGRESS through engineering & design WHO WE ARE Northfield Metal Products, located in Waterloo Ontario Canada, has been
The Fallacies of Injection Molding as compared to MicroMolding. by Scott Herbert Rapidwerks Inc.
The Fallacies of Injection Molding as compared to MicroMolding. by Scott Herbert Rapidwerks Inc. Over the years MicroMolding has become a hot bed for solutions to problems that have been plaguing companies
Influence of material data on injection moulding simulation Application examples Ass.Prof. Dr. Thomas Lucyshyn
TRAINING IN THE FIELD OF POLYMER MATERIALS / PLASTICS Influence of material data on injection moulding simulation Application examples Ass.Prof. Dr. Thomas Lucyshyn 24 th April 2014 Otto Gloeckel-Straße
USTOM INJECTION MOLDING. Together we will make the impossible.
Together we will make the impossible. In 1978, Timothy Katen and David Mead started Micro Mold, a high precision, custom, mold-building company. After ten years of successfully producing the most challenging
Single Cavity Mould. Basic Mould Construction. Ejection System. Multi Cavity Mould
Basic Mould Construction Basic mould construction: Core plate and Core (moving) Cavity plate and cavity (fixed) Other features include Guide pillars / guide bush Sprue bush Locating ring Single Cavity
Tutorial: Rapid Prototyping Technologies
1. Introduction Tutorial: Rapid Prototyping Technologies Rapid prototyping (RP) is a new manufacturing technique that allows for fast fabrication of computer models designed with three-dimension (3D) computer
THREE-DIMENSIONAL INSERT MOLDING SIMULATION IN INJECTION MOLDING
THREE-DIMENSIONAL INSERT MOLDING SIMULATION IN INJECTION MOLDING Rong-Yeu Chang* National Tsing-Hua University, HsinChu, Taiwan 30043, ROC Yi-Hui Peng, David C.Hsu and Wen-Hsien Yang CoreTech System Co.,Ltd.,
Development of High-Speed High-Precision Cooling Plate
Hironori Akiba Satoshi Fukuhara Ken-ichi Bandou Hidetoshi Fukuda As the thinning of semiconductor device progresses more remarkably than before, uniformity within silicon wafer comes to be strongly required
Protomold Overview and Rapid Injection Molding
Protomold Overview and Rapid Injection Molding Kevin Crystal Sr. Quality Engineer What is Injection Molding? Rapid Injection Molding 1) The hopper is loaded with the plastic stock material. 2) A heated
August 2007 Rapid Prototyping Consortium. Changing the way plastics parts and molds are analyzed and optimized
August 2007 Rapid Prototyping Consortium Changing the way plastics parts and molds are analyzed and optimized Jonathan Toy Engineering Services Manager Moldflow Corporation Cost of Change Injection Molding
DEVELOPMENT OF SMALL INJECTION MOULDING MACHINE FOR FORMING SMALL PLASTIC ARTICLES FOR SMALL-SCALE INDUSTRIES
Journal of Engineering Science and Technology Vol. 5, No. 1 (2010) 17-29 School of Engineering, Taylor s University College DEVELOPMENT OF SMALL INJECTION MOULDING MACHINE FOR FORMING SMALL PLASTIC ARTICLES
Control of Temperature Profile in the Injection Molding Process for Part Consistency
17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Control of Temperature Profile in the Injection Molding
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS
Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS 5.1 3D SYSTEMS SELECTIVE LASER SINTERING (SLS) 5.1.1 Company 3D Systems Corporation was founded by Charles W. Hull and Raymond S. Freed in 1986. The founding
Microwave Multi-layer Printed Circuit Boards
Microwave Multi-layer Printed Circuit Boards MicroAPS at IEEE MTT-S IMS in Fort Worth, TX Ed Sandor, Manager of Application Engineering, Taconic Advanced Dielectric Division June 9, 2004 Abstract Over
Analysis and Optimization of Investment Castings to Reduce Defects and Increase Yield
Analysis and Optimization of Investment Castings to Reduce Defects and Increase Yield Arunkumar P 1, Anand.S.Deshpande 2, Sangam Gunjati 3 1 Associate Professor, Mechanical Engineering, KLS Gogte Institute
1) Cut-in Place Thermoforming Process
Standard Thermoforming Equipment Overview There are three standard configurations for thermoforming equipment: 1. Heat and Cut-in-Place Forming 2. In-Line Forming with Steel Rule or Forged Steel Trim wand
GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ
GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Workpiece Presentation Powder Metallurgy and Additive Manufacturing [#7] Powder Metallurgy PM parts can
Glossary. 3D Animation Using computer software to create and animate a three-dimensional representation of image data.
Glossary # 2D Control Drawing A line drawing showing various views of a product with details such as material, surface finish, volume, tolerances and critical dimensions. 3D Animation Using computer software
