PROBABILITY. Chapter. 0009T_c04_ qxd 06/03/03 19:53 Page 133

Size: px
Start display at page:

Download "PROBABILITY. Chapter. 0009T_c04_133-192.qxd 06/03/03 19:53 Page 133"

Transcription

1 0009T_c04_ qxd 06/03/03 19:53 Page 133 Chapter 4 PROBABILITY Please stand up in front of the class and give your oral report on describing data using statistical methods. Does this request to speak in front of people in public make you panic? If so, what is the likelihood, or probability, that you are a woman? Among professionals, 33% of women and 11% of men fear public speaking. (See Case Study 4 1.) What is probability, and how is it determined? We often make statements about probability. For example, a weather forecaster may predict that there is an 80% chance of rain tomorrow. A health news reporter may state that a smoker has a much greater chance of getting cancer than a nonsmoker does. A college student may ask an instructor about the chances of passing a course or getting an A if he or she did not do well on the midterm examination. Probability, which measures the likelihood that an event will occur, is an important part of statistics. It is the basis of inferential statistics, which will be introduced in later chapters. In inferential statistics, we make decisions under conditions of uncertainty. Probability theory is used to evaluate the uncertainty involved in those decisions. For example, estimating next year s sales for a company is based on many assumptions, some of which may happen to be true and others may not. Probability theory will help 4.1 Experiment, Outcomes, and Sample Space 4.2 Calculating Probability 4.3 Counting Rule 4.4 Marginal and Conditional Probabilities Case Study 4 1 Facing a Crowd Isn t Easy 4.5 Mutually Exclusive Events 4.6 Independent versus Dependent Events 4.7 Complementary Events 4.8 Intersection of Events and the Multiplication Rule Case Study 4 2 Baseball Players have Slumps and Streaks 4.9 Union of Events and the Addition Rule Uses and Misuses Glossary Key Formulas 133

2 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability Supplementary Exercises Self-Review Test Mini-Projects Technology Instruction Technology Assignment us make decisions under such conditions of imperfect information and uncertainty. Combining probability and probability distributions (which are discussed in Chapters 5 through 7) with descriptive statistics will help us make decisions about populations based on information obtained from samples. This chapter presents the basic concepts of probability and the rules for computing probability. 4.1 EXPERIMENT, OUTCOMES, AND SAMPLE SPACE Quality control inspector Jack Cook of Tennis Products Company picks up a tennis ball from the production line to check whether it is good or defective. Cook s act of inspecting a tennis ball is an example of a statistical experiment. The result of his inspection will be that the ball is either good or defective. Each of these two observations is called an outcome (also called a basic or final outcome) of the experiment, and these outcomes taken together constitute the sample space for this experiment. Definition Experiment, Outcomes, and Sample Space An experiment is a process that, when performed, results in one and only one of many observations. These observations are called the outcomes of the experiment. The collection of all outcomes for an experiment is called a sample space. A sample space is denoted by S. The sample space for the example of inspecting a tennis ball is written as S 5good, defective6 The elements of a sample space are called sample points. Table 4.1 lists some examples of experiments, their outcomes, and their sample spaces. Table 4.1 Examples of Experiments, Outcomes, and Sample Spaces Experiment Outcomes Sample Space Toss a coin once Head, Tail S {Head, Tail} Roll a die once 1, 2, 3, 4, 5, 6 S {1, 2, 3, 4, 5, 6} Toss a coin twice HH, HT, TH, TT S {HH, HT, TH, TT} Play lottery Win, Lose S {Win, Lose} Take a test Pass, Fail S {Pass, Fail} Select a student Male, Female S {Male, Female} The sample space for an experiment can also be illustrated by drawing either a Venn diagram or a tree diagram. A Venn diagram is a picture (a closed geometric shape such as a rectangle, a square, or a circle) that depicts all the possible outcomes for an experiment. In a tree diagram, each outcome is represented by a branch of the tree. Venn and tree diagrams help us understand probability concepts by presenting them visually. Examples 4 1 through 4 3 describe how to draw these diagrams for statistical experiments.

3 0009T_c04_ qxd 06/03/03 19:53 Page Experiment, Outcomes, and Sample Space 135 EXAMPLE 4 1 Draw the Venn and tree diagrams for the experiment of tossing a coin once. Solution This experiment has two possible outcomes: head and tail. Consequently, the sample space is given by Drawing Venn and tree diagrams: one toss of a coin. S 5H, T6 where H Head and T Tail To draw a Venn diagram for this example, we draw a rectangle and mark two points inside this rectangle that represent the two outcomes, head and tail. The rectangle is labeled S because it represents the sample space (see Figure 4.1a). To draw a tree diagram, we draw two branches starting at the same point, one representing the head and the second representing the tail. The two final outcomes are listed at the ends of the branches (see Figure 4.1b). S H T Head Tail Outcomes H T Figure 4.1 (a) Venn diagram and (b) tree diagram for one toss of a coin. (a) (b) EXAMPLE 4 2 Draw the Venn and tree diagrams for the experiment of tossing a coin twice. Solution This experiment can be split into two parts: the first toss and the second toss. Suppose the first time the coin is tossed we obtain a head. Then, on the second toss, we can still obtain a head or a tail. This gives us two outcomes: HH (head on both tosses) and HT (head on the first toss and tail on the second toss). Now suppose we observe a tail on the first toss. Again, either a head or a tail can occur on the second toss, giving the remaining two outcomes: TH (tail on the first toss and head on the second toss) and TT (tail on both tosses). Thus the sample space for two tosses of a coin is Drawing Venn and tree diagrams: two tosses of a coin. S 5HH, HT, TH, T T6 The Venn and tree diagrams are given in Figure 4.2. Both these diagrams show the sample space for this experiment. S HH TH HT TT First toss H T Second toss H T H Final outcomes HH HT TH (a) (b) T TT Figure 4.2 (a) Venn diagram and (b) tree diagram for two tosses of a coin.

4 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability EXAMPLE 4 3 Drawing Venn and tree diagrams: two selections. Suppose we randomly select two persons from the members of a club and observe whether the person selected each time is a man or a woman. Write all the outcomes for this experiment. Draw the Venn and tree diagrams for this experiment. Solution Let us denote the selection of a man by M and that of a woman by W. We can compare the selection of two persons to two tosses of a coin. Just as each toss of a coin can result in one of two outcomes, head or tail, each selection from the members of this club can result in one of two outcomes, man or woman. As we can see from the Venn and tree diagrams of Figure 4.3, there are four final outcomes: MM, MW, WM, WW. Hence, the sample space is written as S 5MM, MW, WM, WW6 S MM WM MW WW First selection M W Second selection M W M Final outcomes MM MW WM Figure 4.3 (a) Venn diagram and (b) tree diagram for selecting two persons. (a) (b) W WW Simple and Compound Events An event consists of one or more of the outcomes of an experiment. Definition Event An event is a collection of one or more of the outcomes of an experiment. An event may be a simple event or a compound event. A simple event is also called an elementary event, and a compound event is also called a composite event. Simple Event Each of the final outcomes for an experiment is called a simple event. In other words, a simple event includes one and only one outcome. Usually simple events are denoted by E 1, E 2, E 3, and so forth. However, we can denote them by any of the other letters, too that is, by A, B, C, and so forth. Definition Simple Event An event that includes one and only one of the (final) outcomes for an experiment is called a simple event and is usually denoted by E i. Example 4 4 describes simple events.

5 0009T_c04_ qxd 06/03/03 19:53 Page Experiment, Outcomes, and Sample Space 137 EXAMPLE 4 4 Reconsider Example 4 3 on selecting two persons from the members of a club and observing whether the person selected each time is a man or a woman. Each of the final four outcomes (MM, MW, WM, and WW) for this experiment is a simple event. These four events can be denoted by E 1, E 2, E 3, and E 4, respectively. Thus, E 1 1MM2, E 2 1MW2, E 3 1WM2, and E 4 1WW2 Illustrating simple events. Compound Event A compound event consists of more than one outcome. Definition Compound Event experiment. A compound event is a collection of more than one outcome for an Compound events are denoted by A, B, C, D... or by A 1, A 2, A 3...,B 1, B 2, B 3..., and so forth. Examples 4 5 and 4 6 describe compound events. EXAMPLE 4 5 Reconsider Example 4 3 on selecting two persons from the members of a club and observing whether the person selected each time is a man or a woman. Let A be the event that at most one man is selected. Event A will occur if either no man or one man is selected. Hence, the event A is given by A 5MW, WM, WW6 Because event A contains more than one outcome, it is a compound event. The Venn diagram in Figure 4.4 gives a graphic presentation of compound event A. Illustrating a compound event: two selections. S MM MW WM WW Figure 4.4 Venn diagram for event A. A EXAMPLE 4 6 In a group of people, some are in favor of genetic engineering and others are against it. Two persons are selected at random from this group and asked whether they are in favor of or against genetic engineering. How many distinct outcomes are possible? Draw a Venn diagram and a tree diagram for this experiment. List all the outcomes included in each of the following events and mention whether they are simple or compound events. (a) Both persons are in favor of genetic engineering. (b) At most one person is against genetic engineering. (c) Exactly one person is in favor of genetic engineering. Illustrating simple and compound events: two selections. Solution Let F a person is in favor of genetic engineering A a person is against genetic engineering

6 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability This experiment has the following four outcomes: FF both persons are in favor of genetic engineering FA the first person is in favor and the second is against AF the first person is against and the second is in favor AA both persons are against genetic engineering The Venn and tree diagrams in Figure 4.5 show these four outcomes. (a) The event both persons are in favor of genetic engineering will occur if FF is obtained. Thus, Both persons are in favor of genetic engineering 5FF6 Because this event includes only one of the final four outcomes, it is a simple event. (b) The event at most one person is against genetic engineering will occur if either none or one of the persons selected is against genetic engineering. Consequently, At most one person is against genetic engineering 5FF, FA, AF6 Because this event includes more than one outcome, it is a compound event. S Venn diagram FF FA AF AA (a) First person F A Tree diagram Second person (b) F A F A Final outcomes FF FA AF AA Figure 4.5 Venn and tree diagrams. (c) The event exactly one person is in favor of genetic engineering will occur if one of the two persons selected is in favor and the other is against genetic engineering. Hence, it includes the following two outcomes: Exactly one person is in favor of genetic engineering 5FA, AF6 Because this event includes more than one outcome, it is a compound event. EXERCISES CONCEPTS AND PROCEDURES 4.1 Define the following terms: experiment, outcome, sample space, simple event, and compound event. 4.2 List the simple events for each of the following statistical experiments in a sample space S. a. One roll of a die b. Three tosses of a coin c. One toss of a coin and one roll of a die 4.3 A box contains three items that are labeled A, B, and C. Two items are selected at random (without replacement) from this box. List all the possible outcomes for this experiment. Write the sample space S.

7 0009T_c04_ qxd 06/03/03 19:53 Page Experiment, Outcomes, and Sample Space 139 APPLICATIONS 4.4 Two students are randomly selected from a statistics class, and it is observed whether or not they suffer from math anxiety. How many total outcomes are possible? Draw a tree diagram for this experiment. Draw a Venn diagram. 4.5 In a group of adults, some are computer literate, and the others are computer illiterate. If two adults are randomly selected from this group, how many total outcomes are possible? Draw a tree diagram for this experiment. 4.6 A test contains two multiple-choice questions. If a student makes a random guess to answer each question, how many outcomes are possible? Depict all these outcomes in a Venn diagram. Also draw a tree diagram for this experiment. (Hint: Consider two outcomes for each question either the answer is correct or it is wrong.) 4.7 A box contains a certain number of computer parts, a few of which are defective. Two parts are selected at random from this box and inspected to determine if they are good or defective. How many total outcomes are possible? Draw a tree diagram for this experiment. 4.8 In a group of people, some are in favor of a tax increase on rich people to reduce the federal deficit and others are against it. (Assume that there is no other outcome such as no opinion and do not know. ) Three persons are selected at random from this group and their opinions in favor or against raising such taxes are noted. How many total outcomes are possible? Write these outcomes in a sample space S. Draw a tree diagram for this experiment. 4.9 Draw a tree diagram for three tosses of a coin. List all outcomes for this experiment in a sample space S Refer to Exercise 4.4. List all the outcomes included in each of the following events. Indicate which are simple and which are compound events. a. Both students suffer from math anxiety. b. Exactly one student suffers from math anxiety. c. The first student does not suffer and the second suffers from math anxiety. d. None of the students suffers from math anxiety Refer to Exercise 4.5. List all the outcomes included in each of the following events. Indicate which are simple and which are compound events. a. One person is computer literate and the other is not. b. At least one person is computer literate. c. Not more than one person is computer literate. d. The first person is computer literate and the second is not Refer to Exercise 4.6. List all the outcomes included in each of the following events and mention which are simple and which are compound events. a. Both answers are correct. b. At most one answer is wrong. c. The first answer is correct and the second is wrong. d. Exactly one answer is wrong Refer to Exercise 4.7. List all the outcomes included in each of the following events. Indicate which are simple and which are compound events. a. At least one part is good. b. Exactly one part is defective. c. The first part is good and the second is defective. d. At most one part is good Refer to Exercise 4.8. List all the outcomes included in each of the following events and mention which are simple and which are compound events. a. At most one person is against a tax increase on rich people. b. Exactly two persons are in favor of a tax increase on rich people. c. At least one person is against a tax increase on rich people. d. More than one person is against a tax increase on rich people.

8 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability 4.2 CALCULATING PROBABILITY Probability, which gives the likelihood of occurrence of an event, is denoted by P. The probability that a simple event E i will occur is denoted by P(E i ), and the probability that a compound event A will occur is denoted by P(A). Definition Probability occur. Probability is a numerical measure of the likelihood that a specific event will Two Properties of Probability 1. The probability of an event always lies in the range 0 to 1. Whether it is a simple or a compound event, the probability of an event is never less than 0 or greater than 1. Using mathematical notation, we can write this property as follows. First Property of Probability 0 P1E i P1A2 1 An event that cannot occur has zero probability; such an event is called an impossible event. An event that is certain to occur has a probability equal to 1 and is called a sure event. That is, For an impossible event M: P 1M2 0 For a sure event C: P 1C The sum of the probabilities of all simple events (or final outcomes) for an experiment, denoted by P(E i ), is always 1. Second Property of Probability Thus, for an experiment: P1E i 2 P1E 1 2 P1E 2 2 P1E 3 2 # # # 1 From this property, for the experiment of one toss of a coin, P1H 2 P1T 2 1 For the experiment of two tosses of a coin, P1HH 2 P1HT 2 P1TH 2 P1T T 2 1 For one game of football by a professional team, P1win2 P1loss2 P1tie2 1

9 0009T_c04_ qxd 06/03/03 19:53 Page Calculating Probability Three Conceptual Approaches to Probability The three conceptual approaches to probability are (1) classical probability, (2) the relative frequency concept of probability, and (3) the subjective probability concept. These three concepts are explained next. Classical Probability Many times, various outcomes for an experiment may have the same probability of occurrence. Such outcomes are called equally likely outcomes. The classical probability rule is applied to compute the probabilities of events for an experiment in which all outcomes are equally likely. Definition Equally Likely Outcomes Two or more outcomes (or events) that have the same probability of occurrence are said to be equally likely outcomes (or events). According to the classical probability rule, the probability of a simple event is equal to 1 divided by the total number of outcomes for the experiment. This is obvious because the sum of the probabilities of all final outcomes for an experiment is 1, and all the final outcomes are equally likely. In contrast, the probability of a compound event A is equal to the number of outcomes favorable to event A divided by the total number of outcomes for the experiment. Classical Probability Rule to Find Probability P1E i 2 P1A2 1 Total number of outcomes for the experiment Number of outcomes favorable to A Total number of outcomes for the experiment Examples 4 7 through 4 9 illustrate how probabilities of events are calculated using the classical probability rule. EXAMPLE 4 7 Find the probability of obtaining a head and the probability of obtaining a tail for one toss of a coin. Calculating the probability of a simple event. Solution The two outcomes, head and tail, are equally likely outcomes. Therefore, 1 Similarly, P1head2 1 Total number of outcomes P1tail If the final answer for the probability of an event does not terminate within three decimal places, usually it is rounded to four decimal places.

10 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability EXAMPLE 4 8 Calculating the probability of a compound event. Find the probability of obtaining an even number in one roll of a die. Solution This experiment has a total of six outcomes: 1, 2, 3, 4, 5, and 6. All these outcomes are equally likely. Let A be an event that an even number is observed on the die. Event A includes three outcomes: 2, 4, and 6; that is, If any one of these three numbers is obtained, event A is said to occur. Hence, P1A2 A 52, 4, 66 Number of outcomes included in A Total number of outcomes EXAMPLE 4 9 Calculating the probability of a compound event. In a group of 500 women, 80 have played golf at least once. Suppose one of these 500 women is randomly selected. What is the probability that she has played golf at least once? Solution Because the selection is to be made randomly, each of the 500 women has the same probability of being selected. Consequently this experiment has a total of 500 equally likely outcomes. Eighty of these 500 outcomes are included in the event that the selected woman has played golf at least once. Hence, P1selected woman has played golf at least once Relative Frequency Concept of Probability Suppose we want to calculate the following probabilities: 1. The probability that the next car that comes out of an auto factory is a lemon 2. The probability that a randomly selected family owns a home 3. The probability that a randomly selected woman has never smoked 4. The probability that an 80-year-old person will live for at least 1 more year 5. The probability that the tossing of an unbalanced coin will result in a head 6. The probability that a randomly selected person owns a Sport-Utility Vehicle (SUV) These probabilities cannot be computed using the classical probability rule because the various outcomes for the corresponding experiments are not equally likely. For example, the next car manufactured at an auto factory may or may not be a lemon. The two outcomes, it is a lemon and it is not a lemon, are not equally likely. If they were, then (approximately) half the cars manufactured by this company would be lemons, and this might prove disastrous to the survival of the firm. Although the various outcomes for each of these experiments are not equally likely, each of these experiments can be performed again and again to generate data. In such cases, to calculate probabilities, we either use past data or generate new data by performing the experiment a large number of times. The relative frequency of an event is used as an approximation for the probability of that event. This method of assigning a probability to an event is called the relative frequency concept of probability. Because relative frequencies are determined by performing an experiment, the probabilities calculated using relative frequencies

11 0009T_c04_ qxd 06/03/03 19:53 Page Calculating Probability 143 may change almost each time an experiment is repeated. For example, every time a new sample of 500 cars is selected from the production line of an auto factory, the number of lemons in those 500 cars is expected to be different. However, the variation in the percentage of lemons will be small if the sample size is large. Note that if we are considering the population, the relative frequency will give an exact probability. Using Relative Frequency as an Approximation of Probability If an experiment is repeated n times and an event A is observed f times, then, according to the relative frequency concept of probability: P1A2 f n Examples 4 10 and 4 11 illustrate how the probabilities of events are approximated using the relative frequencies. EXAMPLE 4 10 Ten of the 500 randomly selected cars manufactured at a certain auto factory are found to be lemons. Assuming that the lemons are manufactured randomly, what is the probability that the next car manufactured at this auto factory is a lemon? Approximating probability by relative frequency: sample data. Solution in n. Then, Let n denote the total number of cars in the sample and f the number of lemons n 500 and f 10 Using the relative frequency concept of probability, we obtain P1next car is a lemon2 f n This probability is actually the relative frequency of lemons in 500 cars. Table 4.2 lists the frequency and relative frequency distributions for this example. Table 4.2 Frequency and Relative Frequency Distributions for the Sample of Cars Car f Relative Frequency Good Lemon n 500 Sum 1.00 The column of relative frequencies in Table 4.2 is used as the column of approximate probabilities. Thus, from the relative frequency column, P1next car is a lemon2.02 P1next car is a good car2.98

12 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability Note that relative frequencies are not probabilities but approximate probabilities. However, if the experiment is repeated again and again, this approximate probability of an outcome obtained from the relative frequency will approach the actual probability of that outcome. This is called the Law of Large Numbers. Definition Law of Large Numbers If an experiment is repeated again and again, the probability of an event obtained from the relative frequency approaches the actual or theoretical probability. EXAMPLE 4 11 Approximating probability by relative frequency. Allison wants to determine the probability that a randomly selected family from New York State owns a home. How can she determine this probability? Solution There are two outcomes for a randomly selected family from New York State: This family owns a home and this family does not own a home. These two events are not equally likely. (Note that these two outcomes will be equally likely if exactly half of the families in New York State own homes and exactly half do not own homes.) Hence, the classical probability rule cannot be applied. However, we can repeat this experiment again and again. In other words, we can select a sample of families from New York State and observe whether or not each of them owns a home. Hence, we will use the relative frequency approach to probability. Suppose Allison selects a random sample of 1000 families from New York State and observes that 670 of them own homes and 330 do not own homes. Then, Consequently, n sample size 1000 f number of families who own homes 670 P1a randomly selected family owns a home2 f n Again, note that.670 is just an approximation of the probability that a randomly selected family from New York State owns a home. Every time Allison repeats this experiment she may obtain a different probability for this event. However, because the sample size (n 1000) in this example is large, the variation is expected to be very small. Subjective Probability Many times we face experiments that neither have equally likely outcomes nor can be repeated to generate data. In such cases, we cannot compute the probabilities of events using the classical probability rule or the relative frequency concept. For example, consider the following probabilities of events: 1. The probability that Carol, who is taking statistics, will earn an A in this course 2. The probability that the Dow Jones Industrial Average will be higher at the end of the next trading day

13 0009T_c04_ qxd 06/03/03 19:53 Page Calculating Probability The probability that the Miami Dolphins will win the Super Bowl next season 4. The probability that Joe will lose the lawsuit he has filed against his landlord Neither the classical probability rule nor the relative frequency concept of probability can be applied to calculate probabilities for these examples. All these examples belong to experiments that have neither equally likely outcomes nor the potential of being repeated. For example, Carol, who is taking statistics, will take the test (or tests) only once, and based on that she will either earn an A or not. The two events she will earn an A and she will not earn an A are not equally likely. The probability assigned to an event in such cases is called subjective probability. It is based on the individual s own judgment, experience, information, and belief. Carol may assign a high probability to the event that she will earn an A in statistics, whereas her instructor may assign a low probability to the same event. Definition Subjective Probability Subjective probability is the probability assigned to an event based on subjective judgment, experience, information, and belief. Subjective probability is assigned arbitrarily. It is usually influenced by the biases, preferences, and experience of the person assigning the probability. EXERCISES CONCEPTS AND PROCEDURES 4.15 Briefly explain the two properties of probability Briefly describe an impossible event and a sure event. What is the probability of the occurrence of each of these two events? 4.17 Briefly explain the three approaches to probability. Give one example of each approach Briefly explain for what kind of experiments we use the classical approach to calculate probabilities of events and for what kind of experiments we use the relative frequency approach Which of the following values cannot be probabilities of events and why? Which of the following values cannot be probabilities of events and why? APPLICATIONS 4.21 Suppose a randomly selected passenger is about to go through the metal detector at the JFK New York airport. Consider the following two outcomes: The passenger sets off the metal detector, and the passenger does not set off the metal detector. Are these two outcomes equally likely? Explain why or why not. If you are to find the probability of these two outcomes, would you use the classical approach or the relative frequency approach? Explain why Thirty-two persons have applied for a security guard position with a company. Of them, 7 have previous experience in this area and 25 do not. Suppose one applicant is selected at random. Consider the following two events: This applicant has previous experience, and this applicant does not have previous experience. If you are to find the probabilities of these two events, would you use the classical approach or the relative frequency approach? Explain why.

14 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability 4.23 The president of a company has a hunch that there is a.80 probability that the company will be successful in marketing a new brand of ice cream. Is this a case of classical, relative frequency, or subjective probability? Explain why The coach of a college football team thinks there is a.75 probability that the team will win the national championship this year. Is this a case of classical, relative frequency, or subjective probability? Explain why A hat contains 40 marbles. Of them, 18 are red and 22 are green. If one marble is randomly selected out of this hat, what is the probability that this marble is a. red b. green? 4.26 A die is rolled once. What is the probability that a. a number less than 5 is obtained b. a number 3 to 6 is obtained? 4.27 A random sample of 2000 adults showed that 860 of them have shopped at least once on the Internet. What is the (approximate) probability that a randomly selected adult has shopped on the Internet? 4.28 In a statistics class of 42 students, 28 have volunteered for community service in the past. Find the probability that a randomly selected student from this class has volunteered for community service in the past In a group of 50 executives, 29 have a type A personality. If one executive is selected at random from this group, what is the probability that this executive has a type A personality? 4.30 Out of the 3000 families who live in an apartment complex in New York City, 600 paid no income tax last year. What is the probability that a randomly selected family from these 3000 families paid income tax last year? 4.31 A multiple-choice question on a test has five answers. If Dianne chooses one answer based on pure guess, what is the probability that her answer is a. correct? b. wrong? Do these two probabilities add up to 1.0? If yes, why? 4.32 A university has a total of 320 professors and 105 of them are women. What is the probability that a randomly selected professor from this university is a a. woman? b. man? Do these two probabilities add up to 1.0? If yes, why? 4.33 A company that plans to hire one new employee has prepared a final list of six candidates, all of whom are equally qualified. Four of these six candidates are women. If the company decides to select at random one person out of these six candidates, what is the probability that this person will be a woman? What is the probability that this person will be a man? Do these two probabilities add up to 1.0? If yes, why? 4.34 A sample of 500 large companies showed that 120 of them offer free psychiatric help to their employees who suffer from psychological problems. If one company is selected at random from this sample, what is the probability that this company offers free psychiatric help to its employees who suffer from psychological problems? What is the probability that this company does not offer free psychiatric help to its employees who suffer from psychological problems? Do these two probabilities add up to 1.0? If yes, why? 4.35 A sample of 400 large companies showed that 130 of them offer free health fitness centers to their employees on the company premises. If one company is selected at random from this sample, what is the probability that this company offers a free health fitness center to its employees on the company premises? What is the probability that this company does not offer a free health fitness center to its employees on the company premises? Do these two probabilities add up to 1.0? If yes, why? 4.36 In a large city, 15,000 workers lost their jobs last year. Of them, 7400 lost their jobs because their companies closed down or moved, 4600 lost their jobs due to insufficient work, and the remainder lost

15 0009T_c04_ qxd 06/03/03 19:53 Page Counting Rule 147 their jobs because their positions were abolished. If one of these 15,000 workers is selected at random, find the probability that this worker lost his or her job a. because the company closed down or moved b. due to insufficient work c. because the position was abolished Do these probabilities add up to 1.0? If so, why? 4.37 A sample of 820 adults showed that 80 of them had no credit cards, 116 had one card each, 94 had two cards each, 77 had three cards each, 43 had four cards each, and 410 had five or more cards each. Write the frequency distribution table for the number of credit cards an adult possesses. Calculate the relative frequencies for all categories. Suppose one adult is randomly selected from these 820 adults. Find the probability that this adult has a. three credit cards b. five or more credit cards 4.38 In a sample of 500 families, 90 have a yearly income of less than $30,000, 270 have a yearly income of $30,000 to $70,000, and the remaining families have a yearly income of more than $70,000. Write the frequency distribution table for this problem. Calculate the relative frequencies for all classes. Suppose one family is randomly selected from these 500 families. Find the probability that this family has a yearly income of a. less than $30,000 b. more than $70, Suppose you want to find the (approximate) probability that a randomly selected family from Los Angeles earns more than $75,000 a year. How would you find this probability? What procedure would you use? Explain briefly Suppose you have a loaded die and you want to find the (approximate) probabilities of different outcomes for this die. How would you find these probabilities? What procedure would you use? Explain briefly. 4.3 COUNTING RULE The experiments dealt with so far in this chapter have had only a few outcomes, which were easy to list. However, for experiments with a large number of outcomes, it may not be easy to list all outcomes. In such cases, we may use the counting rule to find the total number of outcomes. Counting Rule to Find Total Outcomes If an experiment consists of three steps and if the first step can result in m outcomes, the second step in n outcomes, and the third step in k outcomes, then Total outcomes for the experiment m n k The counting rule can easily be extended to apply to an experiment that has fewer or more than three steps. EXAMPLE 4 12 Suppose we toss a coin three times. This experiment has three steps: the first toss, the second toss, and the third toss. Each step has two outcomes: a head and a tail. Thus, Total outcomes for three tosses of a coin The eight outcomes for this experiment are HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. Applying the counting rule: 3 steps.

16 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability EXAMPLE 4 13 Applying the counting rule: 2 steps. A prospective car buyer can choose between a fixed and a variable interest rate and can also choose a payment period of 36 months, 48 months, or 60 months. How many total outcomes are possible? Solution This experiment is made up of two steps: choosing an interest rate and selecting a loan payment period. There are two outcomes (a fixed or a variable interest rate) for the first step and three outcomes (a payment period of 36 months, 48 months, or 60 months) for the second step. Hence, Total outcomes EXAMPLE 4 14 Applying the counting rule: 16 steps. A National Football League team will play 16 games during a regular season. Each game can result in one of three outcomes: a win, a loss, or a tie. The total possible outcomes for 16 games are calculated as follows: Total outcomes ,046,721 One of the 43,046,721 possible outcomes is all 16 wins. 4.4 MARGINAL AND CONDITIONAL PROBABILITIES Suppose all 100 employees of a company were asked whether they are in favor of or against paying high salaries to CEOs of U.S. companies. Table 4.3 gives a two-way classification of the responses of these 100 employees. Table 4.3 Two-Way Classification of Employee Responses In Favor Against Male Female 4 36 Table 4.3 shows the distribution of 100 employees based on two variables or characteristics: gender (male or female) and opinion (in favor or against). Such a table is called a contingency table. In Table 4.3, each box that contains a number is called a cell. Notice that there are four cells. Each cell gives the frequency for two characteristics. For example, 15 employees in this group possess two characteristics: male and in favor of paying high salaries to CEOs. We can interpret the numbers in other cells the same way.

17 0009T_c04_ qxd 06/03/03 19:53 Page Marginal and Conditional Probabilities 149 By adding the row totals and the column totals to Table 4.3, we write Table 4.4. Table 4.4 Two-Way Classification of Employee Responses with Totals In Favor Against Total Male Female Total Suppose one employee is selected at random from these 100 employees. This employee may be classified either on the basis of gender alone or on the basis of opinion. If only one characteristic is considered at a time, the employee selected can be a male, a female, in favor, or against. The probability of each of these four characteristics or events is called marginal probability or simple probability. These probabilities are called marginal probabilities because they are calculated by dividing the corresponding row margins (totals for the rows) or column margins (totals for the columns) by the grand total. Definition Marginal Probability Marginal probability is the probability of a single event without consideration of any other event. Marginal probability is also called simple probability. For Table 4.4, the four marginal probabilities are calculated as follows: P1male2 Number of males Total number of employees As we can observe, the probability that a male will be selected is obtained by dividing the total of the row labeled Male (60) by the grand total (100). Similarly, P1female P1in favor P1against These four marginal probabilities are shown along the right side and along the bottom of Table 4.5. Table 4.5 Listing the Marginal Probabilities In Favor Against (A) (B) Total Male (M ) Female (F ) Total P(M) P(F) P(A) P(B) Now suppose that one employee is selected at random from these 100 employees. Furthermore, assume it is known that this (selected) employee is a male. In other words, the

18 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability event that the employee selected is a male has already occurred. What is the probability that the employee selected is in favor of paying high salaries to CEOs? This probability is written as follows: The event whose probability is to be determined T P(in favor male) c c Read as given This event has already occurred This probability, P(in favor 0 male), is called the conditional probability of in favor. It is read as the probability that the employee selected is in favor given that this employee is a male. Definition Conditional Probability Conditional probability is the probability that an event will occur given that another event has already occurred. If A and B are two events, then the conditional probability of A given B is written as P1A 0 B2 and read as the probability of A given that B has already occurred. EXAMPLE 4 15 Calculating the conditional probability: two-way table. Compute the conditional probability P(in favor 0 male) for the data on 100 employees given in Table 4.4. Solution The probability P(in favor 0 male) is the conditional probability that a randomly selected employee is in favor given that this employee is a male. It is known that the event male has already occurred. Based on the information that the employee selected is a male, we can infer that the employee selected must be one of the 60 males and, hence, must belong to the first row of Table 4.4. Therefore, we are concerned only with the first row of that table. In Favor Against Total Male Males who are in favor The required conditional probability is calculated as follows: P 1in favor 0 male2 Number of males who are in favor Total number of males Total number of males As we can observe from this computation of conditional probability, the total number of males (the event that has already occurred) is written in the denominator and the number of males who are in favor (the event whose probability we are to find) is written in the numerator. Note that we are considering the row of the event that has already occurred. The tree diagram in Figure 4.6 illustrates this example.

19 0009T_c04_ qxd 06/03/03 19:53 Page Marginal and Conditional Probabilities 151 This event has already occurred Male 60/100 Favors Male 15/60 Against Male 45/60 We are to find the probability of this event Required probability Figure 4.6 Tree diagram. Female 40/100 Favors Female 4/40 Against Female 36/40 EXAMPLE 4 16 For the data of Table 4.4, calculate the conditional probability that a randomly selected employee is a female given that this employee is in favor of paying high salaries to CEOs. Calculating the conditional probability: two-way table. Solution We are to compute the probability, P(female 0 in favor). Because it is known that the employee selected is in favor of paying high salaries to CEOs, this employee must belong to the first column (the column labeled in favor ) and must be one of the 19 employees who are in favor. In Favor Hence, the required probability is P 1female 0 in favor Females who are in favor 19 Total number of employees who are in favor The tree diagram in Figure 4.7 illustrates this example. Number of females who are in favor Total number of employees who are in favor This event has already occurred Favors 19/100 Against 81/100 Make Favors 15/19 Female Favors 4/19 Male Against 45/81 Female Against We are to find the probability of this event Required probability Figure 4.7 Tree diagram. 36/81

20 0009T_c04_ qxd 06/03/03 19:53 Page 152 CASE STUDY 4 1 FACING A CROWD ISN T EASY USA TODAY Snapshots R Women 35% Facing a crowd isn't easy Professionals who fear public speaking: Men 35% Source: Sims Wyeth & Co. By Mary M. Kershaw and Bob Laird, USA TODAY The above chart shows the percentage of professional women and men who fear public speaking. These percentages can be written as conditional probabilities as follows. Suppose one professional is selected at random. Then, given that this person is a female, the probability is.35 that she has a public speaking fear. On the other hand, if this selected person is a male, this probability is only.11. These probabilities can be written as follows: P1has fear of public speaking 0 female2.35 Source: USA TODAY, May 20, Copyright 2002, USA TODAY. Chart reproduced with permission. P1has fear of public speaking 0 male2.11 Note that these are approximate probabilities because the data given in the chart are based on a sample survey Case Study 4 1 illustrates the conditional probabilities of professional women and men having fear of public speaking. 4.5 MUTUALLY EXCLUSIVE EVENTS Events that cannot occur together are called mutually exclusive events. Such events do not have any common outcomes. If two or more events are mutually exclusive, then at most one of them will occur every time we repeat the experiment. Thus the occurrence of one event excludes the occurrence of the other event or events. Definition Events that cannot occur together are said to be mutually exclu- Mutually Exclusive Events sive events. 152

21 0009T_c04_ qxd 06/03/03 19:53 Page Mutually Exclusive Events 153 For any experiment, the final outcomes are always mutually exclusive because one and only one of these outcomes is expected to occur in one repetition of the experiment. For example, consider tossing a coin twice. This experiment has four outcomes: HH, HT, TH, and TT. These outcomes are mutually exclusive because one and only one of them will occur when we toss this coin twice. EXAMPLE 4 17 Consider the following events for one roll of a die: A an even number is observed 52, 4, 66 B an odd number is observed 51, 3, 56 C a number less than 5 is observed 51, 2, 3, 46 Are events A and B mutually exclusive? Are events A and C mutually exclusive? Illustrating mutually exclusive and mutually nonexclusive events. Solution Figures 4.8 and 4.9 show the diagrams of events A and B and events A and C, respectively. As we can observe from the definitions of events A and B and from Figure 4.8, events A and B have no common element. For one roll of a die, only one of the two events, A and B, can happen. Hence, these are two mutually exclusive events. We can observe from the definitions of events A and C and from Figure 4.9 that events A and C have two common outcomes: 2-spot and 4-spot. Thus, if we roll a die and obtain either a 2-spot or a 4-spot, then A and C happen at the same time. Hence, events A and C are not mutually exclusive. S B A S 5 C A Figure 4.8 Mutually exclusive events A and B. Figure 4.9 Mutually nonexclusive events A and C. EXAMPLE 4 18 Consider the following two events for a randomly selected adult: Y this adult has shopped at least once on the Internet N this adult has never shopped on the Internet Are events Y and N mutually exclusive? Illustrating mutually exclusive events. Solution Note that event Y consists of all adults who have shopped at least once on the Internet, and event N includes all adults who have never shopped on the Internet. These two events are illustrated in the Venn diagram in Figure 4.10.

22 0009T_c04_ qxd 06/03/03 19:53 Page Chapter 4 Probability S Figure 4.10 Mutually exclusive events Y and N. Y N As we can observe from the definitions of events Y and N and from Figure 4.10, events Y and N have no common outcome. They represent two distinct sets of adults: the ones who have shopped at least once on the Internet and the ones who have never shopped on the Internet. Hence, these two events are mutually exclusive. 4.6 INDEPENDENT VERSUS DEPENDENT EVENTS In the case of two independent events, the occurrence of one event does not change the probability of the occurrence of the other event. Definition Independent Events Two events are said to be independent if the occurrence of one does not affect the probability of the occurrence of the other. In other words, A and B are independent events if either P1A 0 B2 P1A2 or P1B 0 A2 P1B2 It can be shown that if one of these two conditions is true, then the second will also be true, and if one is not true, then the second will also not be true. If the occurrence of one event affects the probability of the occurrence of the other event, then the two events are said to be dependent events. In probability notation, the two events are dependent if either P1A 0 B2 P1A2 or P1B 0 A2 P1B2. EXAMPLE 4 19 Illustrating two dependent events: two-way table. Refer to the information on 100 employees given in Table 4.4 in Section 4.4. Are events female (F) and in favor (A) independent? Solution Events F and A will be independent if P1F2 P1F 0 A2 Otherwise they will be dependent. Using the information given in Table 4.4, we compute the following two probabilities: P1F and P1F 0 A Because these two probabilities are not equal, the two events are dependent. Here, dependence of events means that the percentages of males who are in favor of and against paying high salaries to CEOs are different from the percentages of females who are in favor and against. In this example, the dependence of A and F can also be proved by showing that the probabilities P(A) and P1A 0 F2 are not equal.

23 0009T_c04_ qxd 06/03/03 19:53 Page Independent versus Dependent Events 155 EXAMPLE 4 20 A box contains a total of 100 CDs that were manufactured on two machines. Of them, 60 were manufactured on Machine I. Of the total CDs, 15 are defective. Of the 60 CDs that were manufactured on Machine I, 9 are defective. Let D be the event that a randomly selected CD is defective, and let A be the event that a randomly selected CD was manufactured on Machine I. Are events D and A independent? Illustrating two independent events. Solution Hence, From the given information, P1D and P1D 0 A P1D2 P1D 0 A2 Consequently, the two events, D and A, are independent. Independence, in this example, means that the probability of any CD being defective is the same,.15, irrespective of the machine on which it is manufactured. In other words, the two machines are producing the same percentage of defective CDs. For example, 9 of the 60 CDs manufactured on Machine I are defective and 6 of the 40 CDs manufactured on Machine II are defective. Thus, for each of the two machines, 15% of the CDs produced are defective. Actually, using the given information, we can prepare Table 4.6. The numbers in the shaded cells are given to us. The remaining numbers are calculated by doing some arithmetic manipulations. Table 4.6 Two-Way Classification Table Defective Good (D) (G) Total Machine I (A) Machine II (B) Total Using this table, we can find the following probabilities: P1D P1D 0 A Because these two probabilities are the same, the two events are independent. Two Important Observations We can make two important observations about mutually exclusive, independent, and dependent events. 1. Two events are either mutually exclusive or independent. 2 a. Mutually exclusive events are always dependent. b. Independent events are never mutually exclusive. 2. Dependent events may or may not be mutually exclusive. 2 The exception to this rule occurs when at least one of the two events has a zero probability.

Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

CONTINGENCY (CROSS- TABULATION) TABLES

CONTINGENCY (CROSS- TABULATION) TABLES CONTINGENCY (CROSS- TABULATION) TABLES Presents counts of two or more variables A 1 A 2 Total B 1 a b a+b B 2 c d c+d Total a+c b+d n = a+b+c+d 1 Joint, Marginal, and Conditional Probability We study methods

More information

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Chapter 3. Probability

Chapter 3. Probability Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

STA 371G: Statistics and Modeling

STA 371G: Statistics and Modeling STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g

More information

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd. Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015. Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

More information

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event? Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined

More information

Homework 3 Solution, due July 16

Homework 3 Solution, due July 16 Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions) Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand Problem Set 1 (with solutions) About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years,

More information

TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities

TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE Roulette is one of the most popular casino games. The name roulette is derived from the French word meaning small

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not 4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

Homework 8 Solutions

Homework 8 Solutions CSE 21 - Winter 2014 Homework Homework 8 Solutions 1 Of 330 male and 270 female employees at the Flagstaff Mall, 210 of the men and 180 of the women are on flex-time (flexible working hours). Given that

More information

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard. Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

Introduction to Probability

Introduction to Probability 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Formula for Theoretical Probability

Formula for Theoretical Probability Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.

Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur. Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how

More information

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Statistics 100A Homework 2 Solutions

Statistics 100A Homework 2 Solutions Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

More information

Mind on Statistics. Chapter 8

Mind on Statistics. Chapter 8 Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable

More information

Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Pattern matching probabilities and paradoxes A new variation on Penney s coin game Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability that the result

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white

More information

Probability and Expected Value

Probability and Expected Value Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

More information

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.042/18.062J Mathematics for Computer Science. Expected Value I 6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

More information

1) The table lists the smoking habits of a group of college students. Answer: 0.218

1) The table lists the smoking habits of a group of college students. Answer: 0.218 FINAL EXAM REVIEW Name ) The table lists the smoking habits of a group of college students. Sex Non-smoker Regular Smoker Heavy Smoker Total Man 5 52 5 92 Woman 8 2 2 220 Total 22 2 If a student is chosen

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Homework Assignment #2: Answer Key

Homework Assignment #2: Answer Key Homework Assignment #2: Answer Key Chapter 4: #3 Assuming that the current interest rate is 3 percent, compute the value of a five-year, 5 percent coupon bond with a face value of $,000. What happens if

More information

Chapter 4 - Practice Problems 2

Chapter 4 - Practice Problems 2 Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

calculating probabilities

calculating probabilities 4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to non-precious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen

More information

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to

More information

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3

More information

The study of probability has increased in popularity over the years because of its wide range of practical applications.

The study of probability has increased in popularity over the years because of its wide range of practical applications. 6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

More information

Simple Random Sampling

Simple Random Sampling Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Probability and Probability Distributions 1. Introduction 2. Probability 3. Basic rules of probability 4. Complementary events 5. Addition Law for

More information

Statistics and Probability

Statistics and Probability Statistics and Probability TABLE OF CONTENTS 1 Posing Questions and Gathering Data. 2 2 Representing Data. 7 3 Interpreting and Evaluating Data 13 4 Exploring Probability..17 5 Games of Chance 20 6 Ideas

More information

Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams UNCORRECTED PAGE PROOFS Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

More information

STATISTICS 230 COURSE NOTES. Chris Springer, revised by Jerry Lawless and Don McLeish

STATISTICS 230 COURSE NOTES. Chris Springer, revised by Jerry Lawless and Don McLeish STATISTICS 230 COURSE NOTES Chris Springer, revised by Jerry Lawless and Don McLeish JANUARY 2006 Contents 1. Introduction to Probability 1 2. Mathematical Probability Models 5 2.1 SampleSpacesandProbability...

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

MAT 155. Key Concept. February 03, 2011. 155S4.1 2_3 Review & Preview; Basic Concepts of Probability. Review. Chapter 4 Probability

MAT 155. Key Concept. February 03, 2011. 155S4.1 2_3 Review & Preview; Basic Concepts of Probability. Review. Chapter 4 Probability MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 4 Probability 4 1 Review and Preview 4 2 Basic Concepts of Probability 4 3 Addition Rule 4 4 Multiplication Rule: Basics 4 7 Counting To find

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Statistics and Data Analysis B01.1305

Statistics and Data Analysis B01.1305 Statistics and Data Analysis B01.1305 Professor William Greene Phone: 212.998.0876 Office: KMC 7-78 Home page: www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/statistics/outline.htm

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

More information

Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions. 374 Chapter 8 The Mathematics of Likelihood 8.3 Expected Value Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

More information

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

More information

Assessment For The California Mathematics Standards Grade 6

Assessment For The California Mathematics Standards Grade 6 Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Additional Probability Problems

Additional Probability Problems Additional Probability Problems 1. A survey has shown that 52% of the women in a certain community work outside the home. Of these women, 64% are married, while 86% of the women who do not work outside

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 1

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 1 Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 1 About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years, grouped

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

Review #2. Statistics

Review #2. Statistics Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

More information

What Is Probability?

What Is Probability? 1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher

More information

COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

More information

Probability and statistical hypothesis testing. Holger Diessel holger.diessel@uni-jena.de

Probability and statistical hypothesis testing. Holger Diessel holger.diessel@uni-jena.de Probability and statistical hypothesis testing Holger Diessel holger.diessel@uni-jena.de Probability Two reasons why probability is important for the analysis of linguistic data: Joint and conditional

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science Adam J. Lee adamlee@cs.pitt.edu 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141 Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall

More information

Responsible Gambling Education Unit: Mathematics A & B

Responsible Gambling Education Unit: Mathematics A & B The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:

More information

Statistics in Geophysics: Introduction and Probability Theory

Statistics in Geophysics: Introduction and Probability Theory Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the

More information