Probability and Compound Events Examples
|
|
|
- Kelley Freeman
- 9 years ago
- Views:
Transcription
1 Probability and Compound Events Examples 1. A compound event consists of two or more simple events. ossing a die is a simple event. ossing two dice is a compound event. he probability of a compound event can be calculated if its outcomes are equally likely. 2. Example If three coins are tossed, what is the probability of getting exactly two heads? o calculate the probability, you need to know how many outcomes are possible. his may be done by using a tree diagram. 1st Coin 2nd Coin 3rd Coin Outcomes here are eight possible outcomes and three of them have exactly two heads. herefore, the probability of getting exactly two heads in one toss of three coins is 8 3 or You may wish to explain that these events are independent. he occurrence of heads or tails on one coin does not affect the occurrence of heads or tails on the other two coins. Probability and 2001, Rev Compound Events 1
2 3. Example Jody has four bottles of soft drink one bottle of cola, one of root beer, one of ginger ale, and one of orange. She chooses three of these bottles to take to a party. If she chooses the ginger ale, what is the probability she also chooses root beer? o calculate the probability, you need to know how many outcomes are possible. his may be done by using a tree diagram. 1st Choice 2nd Choice 3rd Choice Outcomes Cola Root beer Orange CR CO inger Ale Root beer Cola Orange RC RO Orange Cola Root beer OC OR here are six ways to choose the other two bottles. here are four ways to choose the root beer. 2 he probability that Jody also chooses the root beer is = = Example hree coins are tossed once. Draw a tree diagram to show all of the possible outcomes. 1st Coin 2nd Coin 3rd Coin Outcomes Probability and 2001, Rev Compound Events 2
3 5. Example A coin is tossed three times. Draw a tree diagram to show all of the possible outcomes. 1st oss 2nd oss 3rd oss Outcomes 6. hought Provoker Explain why the tree diagrams are the same for the two experiments above. When three coins are tossed, the occurrence of heads or tails on one of the coins does not affect the occurrence of heads or tails on the other coins. When one coin is tossed three times, the occurrence of heads or tails on one toss will not affect the occurrence of heads or tails on another toss. herefore, tossing three coins at the same time produces the same outcomes as tossing one coin three times. 7. Example If three coins are tossed, what is the probability of getting at most two heads? 1st Coin 2nd Coin 3rd Coin Outcomes 7 = Probability and 2001, Rev Compound Events 3
4 Name: Date: Class: Probability and Compound Events Worksheet An automobile dealer has cars available with the combinations of colors, engines, and transmissions indicated in the following tree diagram. A selection is made at random. Color Red Engine -cylinder 6-cylinder ransmission lue -cylinder 6-cylinder 1. What is the probability of selecting a car with manual transmission? 2. What is the probability of selecting a blue car with manual transmission? 3. What is the probability of selecting a car with a -cylinder engine and a manual transmission?. What is the probability of selecting a blue car with a 6-cylinder engine and an automatic transmission? Draw a tree diagram for questions 5 and 6. Use the results to answer each question. Probability and 2001, Rev Compound Events
5 5. Find the probability of getting exactly three tails when four coins are tossed. 6. Find the probability that a family with four children has exactly four girls. Assume that the probability a girl is born is the same as the probability a boy is born. 7. In Exercise 6, what is the probability that the family has two boys and two girls in any order? 8. Compare and contrast the tree diagrams for Exercise 5 and 6. For each shrimp, lobster, or chicken dinner in a restaurant, you have a choice of soup or salad. With shrimp you may have hash browns or a baked potato. With lobster you may have rice or hash browns. With chicken you may have rice, hash browns, or a baked potato. If all combinations are equally likely to be ordered, find each probability of an order containing each of the following. Draw a tree diagram to answer each question. 9. Shrimp 10. Rice 11. Shrimp and rice 12. Soup and hash browns 13. Chicken, salad, and rice Probability and 2001, Rev Compound Events 5
6 ill, Raul, and Joe are in a bicycle race. If each boy has an equal chance of winning, find each probability. Draw a tree diagram to answer each question. 1. Joe wins the race. 15. Raul finishes last. 16. Joe, Raul, and ill finish first, second, and third, respectively. Adam s class set up a lottery with two-digit numbers. he first digit is a number from 1 to. he second digit is a number from 3 to 8. Draw a tree diagram to answer each question. 17. What is the probability that was the winning number? 18. What is the probability that a number with a 2 in it wins? Probability and 2001, Rev Compound Events 6
7 Probability and Compound Events Worksheet Key An automobile dealer has cars available with the combinations of colors, engines, and transmissions indicated in the following tree diagram. A selection is made at random. Color Red Engine -cylinder 6-cylinder ransmission lue -cylinder 6-cylinder 1. What is the probability of selecting a car with manual transmission? 1 or What is the probability of selecting a blue car with manual transmission? 1 or What is the probability of selecting a car with a -cylinder engine and a manual transmission? 1 or What is the probability of selecting a blue car with a 6-cylinder engine and an automatic transmission? 1 or Probability and 2001, Rev Compound Events 7
8 Draw a tree diagram for questions 5 and 6. Use the results to answer each question. 1st oss 2nd oss 3rd oss th oss Outcomes 5. Find the probability of getting exactly three tails when four coins are tossed. 1 or 0.25 Probability and 2001, Rev Compound Events 8
9 Outcomes 6. Find the probability that a family with four children has exactly four girls. 1 or In Exercise 6, what is the probability that the family has two boys and two girls in any order? 3 or Compare and contrast the tree diagrams for Exercise 5 and 6. Answers may vary. A typical answer is that the tree diagrams are the same. Probability and 2001, Rev Compound Events 9
10 For each shrimp, lobster, or chicken dinner in a restaurant, you have a choice of soup or salad. With shrimp you may have hash browns or a baked potato. With lobster you may have rice or hash browns. With chicken you may have rice, hash browns, or a baked potato. If all combinations are equally likely to be ordered, find each probability of an order containing each of the following. Draw a tree diagram to answer each question. Outcomes Shrimp Lobster Chicken Soup Salad Soup Salad Soup Salad Shrimp soup hash browns Shrimp soup baked beans Shrimp salad hash browns Shrimp salad baked beans Lobster soup rice Lobster soup hash browns Lobster salad rice Lobster salad hash browns Chicken soup rice Chicken soup hash browns Chicken soup baked beans Chicken salad rice Chicken salad hash browns Chicken salad baked beans 9. Shrimp 2 or Rice 2 or Shrimp and rice Soup and hash browns 3 or Chicken, salad, and rice 1 or Probability and 2001, Rev Compound Events 10
11 ill, Raul, and Joe are in a bicycle race. If each boy has an equal chance of winning, find each probability. Draw a tree diagram to answer each question. Results ill Raul Joe Joe Raul ill Raul Joe ill Joe Raul Raul Joe ill Joe ill Raul Joe ill Raul ill Raul ill Joe Raul Joe ill Joe ill Raul Joe Raul ill 1. Joe wins the race. 1 or Raul finishes last. 1 or Joe, Raul, and ill finish first, second, and third, respectively. 1 or Probability and 2001, Rev Compound Events 11
12 Adam s class set up a lottery with two-digit numbers. he first digit is a number from 1 to. he second digit is a number from 3 to 8. Draw a tree diagram to answer each question. Results What is the probability that was the winning number? 1 or What is the probability that a number with a 2 in it wins? 1 or 0.25 Probability and 2001, Rev Compound Events 12
13 Student Name: Date: Probability and Compound Events Checklist 1. On questions 1 through, did the student write the probability correctly based on the tree diagram? a. All four (20 points) b. hree of the four (15 points) c. wo of the four (10 points) d. One of the four (5 points) 2. On questions 5 and 6, did the student draw the tree diagram correctly? a. oth (10 points) b. One of the two (5 points) 3. On questions 5 through 7, did the student find the probability correctly? a. All three (15 points) b. wo of the three (10 points) c. One of the three (5 points). On question 8, did the student contrast Exercise 5 and 6 correctly? a. Yes (10 points) b. Presented some key parts, but others were off base (5 points) 5. On questions 9 through 13, did the student draw the tree diagram correctly? a. Yes (10 points) b. Majority of the tree was correct (5 points) 6. On questions 9 through 13, did the student find the probability correctly? a. All five (25 points) b. Four of the five (20 points). c. hree of the five (15 points). d. wo of the five (10 points). e. One of the five (5 points). 7. On questions 1 through 16, did the student draw the tree diagram correctly? a. Yes (10 points) b. Majority of the tree was correct (5 points) Probability and 2001, Rev Compound Events 13
14 8. On questions 1 through 16, did the student find the probability correctly? a. All three (15 points) b. wo of the three (10 points) c. One of the three (5 points) 9. On questions 17 and 18, did the student draw the tree diagram correctly? a. Yes (10 points) b. Majority of the tree was correct (5 points) 10. On questions 17 and 18, did the student find the probability correctly? a. oth (10 points) b. One of the two (5 points) otal Number of Points A C D F 121 points and above 108 points and above 9 points and above 81 points and above 80 points and below Any score below C needs remediation! Probability and 2001, Rev Compound Events 1
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
Mathematical goals. Starting points. Materials required. Time needed
Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about
2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
Chapter 4 - Practice Problems 2
Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the
1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
Probability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating
Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
Homework 20: Compound Probability
Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting
ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES
ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).
The Procedures of Monte Carlo Simulation (and Resampling)
154 Resampling: The New Statistics CHAPTER 10 The Procedures of Monte Carlo Simulation (and Resampling) A Definition and General Procedure for Monte Carlo Simulation Summary Until now, the steps to follow
Just Married. PART 1 - Meet Neil and Julia. PART 2 - A tour around the kitchen
Just Married Level: 1º E.S.O. Grammar: Demonstratives: this, that, these, those. Use of the definite and indefinite article "a", "the". Some and any, countable uncountable nouns. Irregular plurals Functions:
Chapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Chapter 4 - Practice Problems 1
Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula
Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
CAHSEE Algebra Cluster #4: Statistics, Data Analysis, an Probability Name: Cluster #4 Review
CAHSEE Algebra Cluster #4: Statistics, Data Analysis, an Probability Name: Cluster #4 Review 1. The number of classic book Nanette sells in her 2. Which scatterplot shows a positive correlation? bookshop
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12
That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
Mental Questions. Day 1. 1. What number is five cubed? 2. A circle has radius r. What is the formula for the area of the circle?
Mental Questions 1. What number is five cubed? KS3 MATHEMATICS 10 4 10 Level 8 Questions Day 1 2. A circle has radius r. What is the formula for the area of the circle? 3. Jenny and Mark share some money
PERMUTATIONS AND COMBINATIONS
PERMUTATIONS AND COMBINATIONS Mathematics for Elementary Teachers: A Conceptual Approach New Material for the Eighth Edition Albert B. Bennett, Jr., Laurie J. Burton and L. Ted Nelson Math 212 Extra Credit
Assessment For The California Mathematics Standards Grade 6
Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Topic : Probability of a Complement of an Event- Worksheet 1. Do the following:
Topic : Probability of a Complement of an Event- Worksheet 1 1. You roll a die. What is the probability that 2 will not appear 2. Two 6-sided dice are rolled. What is the 3. Ray and Shan are playing football.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.
Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal
Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:
Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625
STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
Mental Computation Activities
Show Your Thinking Mental Computation Activities Tens rods and unit cubes from sets of base-ten blocks (or use other concrete models for tenths, such as fraction strips and fraction circles) Initially,
Number, Operation, and Quantitative Reasoning
Number, Operation, and Quantitative Reasoning Activity: TEKS: Problem Solving with Fractions (6.2) Number, operation, and quantitative reasoning. The student adds, subtracts, multiplies, and divides to
Probability, Statistics, & Data Analysis (PSD) Numbers: Concepts & Properties (NCP) 400 600
Name ACT Prep PSD/NCP Probability, Statistics, & Data Analysis (PSD) Numbers: Concepts & Properties (NCP) 400 600 Table of Contents: PSD 40: Calculate the missing data value, given the average and all
Math Common Core Sampler Test
Math Common Core Sampler Test This sample test reviews the top 20 questions we have seen on the 37 assessment directly written for the Common Core Curriculum. This test will be updated as we see new questions
Commutative Property Grade One
Ohio Standards Connection Patterns, Functions and Algebra Benchmark E Solve open sentences and explain strategies. Indicator 4 Solve open sentences by representing an expression in more than one way using
Tree Diagrams and the Fundamental Counting Principle
Tree Diagrams and the Fundamental Counting Principle The purpose of this task is to help students discover the Fundamental Counting Principle through the use of tree diagrams. Additionally, the tree diagrams
AP Statistics 7!3! 6!
Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
EDEXCEL FUNCTIONAL SKILLS PILOT
EEXEL FUNTIONAL SKILLS PILOT Maths Level hapter 7 Working with probability SETION K Measuring probability 9 Remember what you have learned 3 raft for Pilot Functional Maths Level hapter 7 Pearson Education
PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.
PROBABILITY SIMPLE PROBABILITY SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and. There are two categories of simple probabilities. THEORETICAL
Get ready to test your knowledge Nutrition Jeopardy!
Week 3 Nutrition Get ready to test your knowledge Nutrition Jeopardy! You are going to be playing Jeopardy with your classmates. Your teacher is going to put you into groups of 4 or 5. Write your team
Fundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
Solving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
BANQUET & CATERING MENU
BANQUET & CATERING MENU Shamrock Heights N5525 Old Hwy 45 New London, WI 54961 (920) 982-9993 www.shamrockheightsgolf.com Banquet and Catering Menu New London, WI (920) 982-9993 All menu items are only
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
Work Breakdown Structures And Linear Responsibility Charts
Work Breakdown Structures And Linear Responsibility Charts (Session 2 in the Project Planning And Management Module) Russ Pimmel Electrical and Computer Engineering University of Alabama October, 2001
Calories quiz. Level A. 1. A doughnut has more calories than a portion of chips. A) True B) False
Level A 1. A doughnut has more calories than a portion of chips. 2. A glass of orange juice has more calories than a glass of milk. 3. A serving of pasta has more calories than a baked potato. 4. Pasta
Homework Activities for Kindergarten
Homework Activities for Kindergarten Listed below are several learning activities for your child to complete at home to reinforce skills being taught in school. The sight words are on the last page. Reading
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
Probability and Statistics is one of the strands tested on the California Standards Test.
Grades 3-4 Probability and Statistics is one of the strands tested on the California Standards Test. Probability is introduced in 3 rd grade. Many students do not work on probability concepts in 5 th grade.
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a
Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.
Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus
Directions: T. Trimpe 2005 http://sciencespot.net/
Candy Compounds Teacher Information I use this activity after we have discussed ionic and covalent bonds to give my students a chance to practice bonding. I walk around the classroom as students work on
Curriculum Design for Mathematic Lesson Probability
Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.
7.S.8 Interpret data to provide the basis for predictions and to establish
7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
Lecture 13. Understanding Probability and Long-Term Expectations
Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
Using Permutations and Combinations to Compute Probabilities
Using Permutations and Combinations to Compute Probabilities Student Outcomes Students distinguish between situations involving combinations and situations involving permutations. Students use permutations
TCM040 MSOM NEW:TCM040 MSOM 01/07/2009 12:13 Page 1. A book of games to play with children
TCM040 MSOM NEW:TCM040 MSOM 01/07/2009 12:13 Page 1 A book of games to play with children TCM040 MSOM NEW:TCM040 MSOM 01/07/2009 12:13 Page 2 Contents About this book 3 Find the hidden money 4 Money box
Normal Probability Distribution
Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use
Algebra 2 C Chapter 12 Probability and Statistics
Algebra 2 C Chapter 12 Probability and Statistics Section 3 Probability fraction Probability is the ratio that measures the chances of the event occurring For example a coin toss only has 2 equally likely
Fraction Five ~ Third Grade. Laying the Foundation for a Conceptual Understanding of Fractions. Third Grade CCSS 3.NF
Fraction Five ~ Third Grade Laying the Foundation for a Conceptual Understanding of Fractions Third Grade FRACTION FIVE RATIONAL Fractions present a considerable challenge to most kids. The lack of developmental
Chapter 6: Probability
Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,
6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
Review for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Statistics, Data Analysis, and Probability
. onald priced six personal ompact isc () players. The prices are shown below. $., $., $., $9., $., $. hat is the median price? $. $. $7. $. M96 7. The box below shows the number of kilowatt-hours of electricity
Bar Graphs with Intervals Grade Three
Bar Graphs with Intervals Grade Three Ohio Standards Connection Data Analysis and Probability Benchmark D Read, interpret and construct graphs in which icons represent more than a single unit or intervals
Session 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM
WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed.
MEN'S FITNESS FAT TO FIT CHALLENGE - 1800 CALORIE MEAL PLAN WEEK 1
Day 1 Tomato & Basil Omelet* (see recipe) 1 large egg 73.5 0.4 6.3 5 2 large egg whites 34.3 0.5 7.2 0.1 1/4 cup chopped tomato 8.1 1.8 0.4 0.1 2 Tbs grated parmesan cheese 43.1 0.4 3.9 2.9 2 Tbs chopped
GEARING UP EXAMPLES. 4 to 3 4:3
GEARING UP EXAMPLES B 2 Teeth A 8 Teeth DEFINITION - RATIO As gear A revolves times, it will cause gear B to revolve times. Hence, we say that gear ratio of A to B is to. In mathematics, a ratio is a comparison
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
Genetics with a Smile
Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
California Treasures High-Frequency Words Scope and Sequence K-3
California Treasures High-Frequency Words Scope and Sequence K-3 Words were selected using the following established frequency lists: (1) Dolch 220 (2) Fry 100 (3) American Heritage Top 150 Words in English
PROBABILITY SECOND EDITION
PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
Chapter 3. Probability
Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Measures of Central Tendency: Mean, Median, and Mode Examples
Measures of Central Tendency: Mean, Median, and Mode Examples 1. Lesson Initiator What is the purpose of finding an average? Answers will vary. A sample answer would be that an average is a value representative
Chapter 13 & 14 - Probability PART
Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
Probability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
Probability and Venn diagrams UNCORRECTED PAGE PROOFS
Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve
NIT 5: Food I like. Debbie: Do you want some chocolate, Leo?
NIT 5: Food I like UNIT L e s s o n 1 1.vv vvlisten and read Debbie: Do you want some chocolate, Leo? Leo: No, thank you. I love chocolate but I can t eat it. I want to be a football player and sport men
How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels:
How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels: LUCKY MONEY numbers are drawn from two sets of numbers. Four numbers are drawn from one set of 47 numbered white balls
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
Methods Used for Counting
COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely tried
Section 5-3 Binomial Probability Distributions
Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
Math Games For Skills and Concepts
Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,
A booklet for Parents
By the end of Year 2, most children should be able to Count up to 100 objects by grouping them and counting in tens, fives or twos; explain what each digit in a two-digit number represents, including numbers
Activity Networks And Gantt Charts
Activity Networks And Gantt Charts (Session 3 in the Project Planning And Management Module) Russ Pimmel Electrical and Computer Engineering University of Alabama October, 2001 The development of this
