LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM
|
|
|
- Grace Robinson
- 9 years ago
- Views:
Transcription
1 LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM
2 Learning objective To introduce features of queuing system
3 9.1 Queue or Waiting lines Customers waiting to get service from server are represented by queue and also called waiting line. Unsatisfied customer due to long waiting time can be a potential loss to any service organization. Managing waiting lines is one of the foremost objective for service operations manager as prompt service delivery is one of the parameter to achieve competitive advantage. Various queuing models can be used to analyze waiting line but first let s understand the queuing system. Queue: A line of waiting customers who require service from servers. There can be two types of queues; Stereotypical and virtual described in Table 9.1. TABLE 9.1: TYPES OF QUEUES Stereotypical queues Virtual queues People waiting in a formal physical line Queue is not a physical line but virtually for service customers wait to get service Example: Passengers check-in for their Example: A customer placed on hold by boarding pass at check- in counter at a call center employee airport Servers: Individual workstations where customer receive service Queue is formed when Demand for service exceeds the capacity to serve Varying arrival times of customer Varying service time at server Consequences of excessive waiting time affecting service provider Loss of potential customer and hence sales Opportunity lost to a competitor Spread of bad word of mouth Examples of Queues
4 A customer waiting in a bank queue to get service from a bank teller in a bank A customer trying to book a ticket online A customer kept on hold over phone to talk to a call center executive A customer in a supermarket waiting in a queue to pay a bill of groceries bought Costs associated with waiting lines Major challenge for any service organization is to determine the optimal number of servers which can reduce their operational cost of handling servers and waiting time of customer simultaneously. Following are the costs associated with waiting lines realized by service organization and customers. An employee in the service organization waiting for a customer can be A cost component in the form of unproductive wages Underutilization of capacity due to idle time at server A customer waiting for a server to get the service done incurs Opportunity cost of waiting in a queue Forgone alternative use of waiting time Service organizations cannot avoid waiting completely due to varying arrival and service time. If service organization installs less number of servers or low service capacity it can lead to long waiting time for the customer, which results in low service level. Whereas, the large number of servers may result in underutilization of service capacity if demand turns out to be less than the service capacity. So, the main objective of any service organization is to balance the cost of waiting in queue and cost of providing capacity. The trade-off between cost of providing capacity and cost of waiting time can be seen in Figure 9.1
5 FIGURE 9.1: BALANCING COST OF WAITING VERSUS PROVIDING CAPACITY To achieve optimal service level, the service organizations minimize the expected total cost of waiting time and cost of providing capacity Strategies to change the perception of waiting Due to the random arrival and service time, it is difficult to eliminate waiting completely. The service organizations can always manage waiting time in a productive manner by adopting some strategies as given below. Conceal the queue from arriving customer Example: Visitors at golden beach can see the queue only after entering the main gate Snake the waiting line Example: At airport the security check there is snake like queue to hide the true length of queue. Consider waiting customer as a resource in the service process Example: Waiting patient can be asked to fill the medical history record, which saves valuable physician time also Propose a component of self service Introduce a component of entertainment while waiting like animations, attractions
6 9.2 Features of Queuing Systems Any Queuing system is governed by certain features like arrival pattern of customers, customers decision to wait in the queue, type of queues, queue discipline and service process. These features are presented in Figure 9.2 and discussed below. FIGURE 9.2: FEATURES OF QUEUING SYSTEM Calling population Calling populations deals with how service organizations obtain customers. It can be Homogenous or heterogeneous Finite number of people to be served or infinite number Balk and renege Balk: After entering into service organization but without joining queue, realizing the queue to be long or slow moving the customer balk and get service elsewhere. Renege: After joining the queue, a customer may consider the delay to be intolerable and the customer leaves the queue before service is rendered Arrival Process with Inter Arrival Time Arrival rate is the rate at which customers arrive in service system
7 Generally represented by exponential distribution The exponential distribution has a continuous probability density function(pdf) as given below F(t) λe -λt t 0 where λ= Average arrival rate within a given interval of time T= time between arrivals e= base of natural logarithms Mean of exponential distance is = 1 / λ Variance of exponential distance is = 1 / λ 2 The cumulative distribution function(cdf) for exponential distribution is F(t) = 1- e λt t 0 CDF gives the probability that the time between arrivals will be t or less Arrival process with number of arrivals Arrival process can be represented by number of arrivals during some time intervals Poisson distribution is used to get the probability of n arrivals during the time interval t Poisson distribution is a discrete probability function which is represented as F(n) = (λt) n e λt n=0,1,2. Where λ = Average arrival rate within a given interval of time t= Number of time periods of interest n= No of arrivals(0,1,2,..) Mean of poisson distribution is = λt Variance of poisson distribution is = λt
8 Poisson and Exponential Equivalence FIGURE 9.3: EQUIVALENCE OF POISSON AND EXPONENTIAL DISTRIBUTION Queue Configuration Queue configuration can be defined with the following parameters. Number of queues in a service system Different arrangement of queues Position or turn of a customer waiting in a queue Effects of queue on customer behavior Different types of configurations can be seen in Table 9.2 TABLE 9.2: TYPES OF QUEUE CONFIGURATION Multiple Queues Single Queue Take a Number - Customer has option to decide which queue to join - Customer can switch to other queues (Jockeying) - Differentiated service - Customers join single sinnons (snake like) queue - Ensures First-come First-Served FCFS rule - Reneging is difficult - On arrival customer takes a number to indicate his or her place in line - No need for a formal line, customer are free to wander about till
9 - Division of labor is possible - Example: In banks or movie theaters there are multiple queues in front of different counters - Example: At airports Immigration check is done in a single queue his or her number is called - Example: Most of the fast food and now a days many banks give a token according to the order or as per the type of query and call when the turn comes Queue discipline Policy of selecting the next customer from the queue for service 1. FCFS (First Come First Served): Fair policy where all customers are treated alike 2. Shortest processing time: Give priority to the customer require short processing time to minimize the average time a customer spends in the system 3. Priority: preemptive priority rule for emergency services where current service is interrupted to serve a newly arrived customer with higher priority 4. Round robin: Start partial service for customers who are waiting in queue. Customers face waiting time & get service alternatively. Give drinks to the waiting customers in a restaurant or share menu with them Service Process The service process and the distribution of service time depends on the following factors. Number of servers: Large number of servers provides more capacity and hence can handle more customers to reduce waiting time. In such case server may handle variety of requests and can give more time to each customer, which impacts the service time distribution.
10 Time taken at service counter or at server: It varies with different requirements of customers, capability of the employee at server and standardized versus customized service rendered. The service time is constant for standardized services. Whereas, the service time becomes random for customized service. Arrangement of servers: The arrangement of servers either in parallel or in series impact the service time. An assembly like structure may make the customer visit more than one server to complete the service. In such arrangement the server is specialized only for his/her task. In parallel arrangement of servers, all servers can be capable of performing all tasks and the customer can complete whole procedure at one server only. Server behavior: An employee may behave depending on the length of queue. If an employee has a long queue, he/she may speed up the service process and may compromise on the quality of service.
QUEUING THEORY. 1. Introduction
QUEUING THEORY RYAN BERRY Abstract. This paper defines the building blocks of and derives basic queuing systems. It begins with a review of some probability theory and then defines processes used to analyze
Queuing Theory II 2006 Samuel L. Baker
QUEUING THEORY II 1 More complex queues: Multiple Server Single Stage Queue Queuing Theory II 2006 Samuel L. Baker Assignment 8 is on page 7. Assignment 8A is on page 10. -- meaning that we have one line
UNIT 6 WAITING LINES/ QUEUING THEORY. Characteristics of waiting line systems Measuring the Queue s performance Suggestions for Managing Queues
OUTLINE SESSION 6.1: SESSION 6.2: SESSION 6.3: SESSION 6.4: SESSION 6.5: UNIT 6 WAITING LINES/ QUEUING THEORY Introduction Poisson Distribution Characteristics of waiting line systems Measuring the Queue
Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)
Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five
Cumulative Diagrams: An Example
Cumulative Diagrams: An Example Consider Figure 1 in which the functions (t) and (t) denote, respectively, the demand rate and the service rate (or capacity ) over time at the runway system of an airport
Simple Queuing Theory Tools You Can Use in Healthcare
Simple Queuing Theory Tools You Can Use in Healthcare Jeff Johnson Management Engineering Project Director North Colorado Medical Center Abstract Much has been written about queuing theory and its powerful
Chapter 13 Waiting Lines and Queuing Theory Models - Dr. Samir Safi
Chapter 13 Waiting Lines and Queuing Theory Models - Dr. Samir Safi TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A goal of many waiting line problems is to help
ANALYSIS OF THE QUALITY OF SERVICES FOR CHECKOUT OPERATION IN ICA SUPERMARKET USING QUEUING THEORY. Azmat Nafees Liwen Liang. M. Sc.
ANALYSIS OF THE QUALITY OF SERVICES FOR CHECKOUT OPERATION IN ICA SUPERMARKET USING QUEUING THEORY by Azmat Nafees Liwen Liang A C level essay in Statistics submitted in partial fulfillment of the requirements
Deployment of express checkout lines at supermarkets
Deployment of express checkout lines at supermarkets Maarten Schimmel Research paper Business Analytics April, 213 Supervisor: René Bekker Faculty of Sciences VU University Amsterdam De Boelelaan 181 181
Waiting Lines and Queuing Theory Models
1 5 Waiting Lines and Queuing Theory Models 5.1 Introduction Queuing theory is the study of waiting lines. It is one of the oldest and most widely used quantitative analysis techniques. Waiting lines are
Tenth Problem Assignment
EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious
LECTURE 1 SERVICE INVENTORY MANAGEMENT
LECTURE 1 SERVICE INVENTORY MANAGEMENT Learning objective To discuss the role of service inventory and types of inventories in service sector 10.1 Service Inventory A Service product can be viewed as a
CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION
31 CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 3.1 INTRODUCTION In this chapter, construction of queuing model with non-exponential service time distribution, performance
Waiting Times Chapter 7
Waiting Times Chapter 7 1 Learning Objectives Interarrival and Service Times and their variability Obtaining the average time spent in the queue Pooling of server capacities Priority rules Where are the
Queuing Analysis. Chapter Outline. Learning Objectives SUPPLEMENTARY CHAPTER B
Chapter Outline Analyzing Queues Using Analytical Models Arrival Distribution Service-Time Distribution Queue Discipline Queuing Behavior Single-Server Queuing Model Multiple-Server Queuing Model The Economics
Chapter 5 Process Scheduling
Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling
CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS
CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
How To Manage A Call Center
THE ROLE OF SIMULATION IN CALL CENTER MANAGEMENT Roger Klungle AAA Michigan Introduction With recent advances in technology and the changing nature of business, call center management has become a rapidly
VIAMILANO SERVICE CONDITIONS. Baggage handling service regulation
VIAMILANO SERVICE CONDITIONS The free ViaMilano service, offered by SEA Aeroporti di Milano, provides use of facilities during a stopover at Milan Malpensa Airport. In particular, with ViaMilano it is
Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum
Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
Load Balancing and Switch Scheduling
EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: [email protected] Abstract Load
Minimize Wait Time and Improve the Waiting Experience
Improving the Customer Experience Minimize Wait Time and Improve the Waiting Experience www.lavi.com (888) 285-8605 Overview Waiting lines easily become the source of tension between customers and businesses
SMS-Based Alert Notification for Credit Applications Queuing Systems
International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 9 No. 3 Nov. 2014, pp. 1291-1302 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ SMS-Based
HSR HOCHSCHULE FÜR TECHNIK RA PPERSW I L
1 An Introduction into Modelling and Simulation Prof. Dr.-Ing. Andreas Rinkel af&e [email protected] Tel.: +41 (0) 55 2224928 Mobil: +41 (0) 79 3320562 Goal After the whole lecture you: will have an
Queuing theory is a mathematical approach to the analysis of waiting lines.
Y CHAPTER FOURTEEN QUEUING MODELS AND CAPACITY PLANNING Queuing theory is a mathematical approach to the analysis of waiting lines. Waiting lines in health care organizations can be found wherever either
A MODEL OF OPERATIONS CAPACITY PLANNING AND MANAGEMENT FOR ADMINISTRATIVE SERVICE CENTERS
A MODEL OF OPERATIONS CAPACITY PLANNING AND MANAGEMENT FOR ADMINISTRATIVE SERVICE CENTERS МОДЕЛ ЗА ПЛАНИРАНЕ И УПРАВЛЕНИЕ НА КАПАЦИТЕТА НА ОПЕРАЦИИТЕ В ЦЕНТЪР ЗА АДМИНИСТРАТИВНО ОБСЛУЖВАНЕ Yulia Yorgova,
IST 301. Class Exercise: Simulating Business Processes
IST 301 Class Exercise: Simulating Business Processes Learning Objectives: To use simulation to analyze and design business processes. To implement scenario and sensitivity analysis As-Is Process The As-Is
LECTURE 1 SERVICE CAPACITY MANAGEMENT
LECTURE 1 SERVICE CAPACITY MANAGEMENT Learning objective To discuss various strategies to manage capacity in services 8.1 Service Capacity Ability of a service system to deliver the intended service and
The problem with waiting time
The problem with waiting time Why the only way to real optimization of any process requires discrete event simulation Bill Nordgren, MS CIM, FlexSim Software Products Over the years there have been many
Routing in packet-switching networks
Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call
UNIT 2 QUEUING THEORY
UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the
AS-D2 THE ROLE OF SIMULATION IN CALL CENTER MANAGEMENT. Dr. Roger Klungle Manager, Business Operations Analysis
AS-D2 THE ROLE OF SIMULATION IN CALL CENTER MANAGEMENT Dr. Roger Klungle Manager, Business Operations Analysis AAA Michigan 1 Auto Club Drive Dearborn, MI 48126 U.S.A. Phone: (313) 336-9946 Fax: (313)
Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results
Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results Wouter Minnebo, Benny Van Houdt Dept. Mathematics and Computer Science University of Antwerp - iminds Antwerp, Belgium Wouter
CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.
CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices
Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies
Chapter 7 Process Scheduling Process Scheduler Why do we even need to a process scheduler? In simplest form, CPU must be shared by > OS > Application In reality, [multiprogramming] > OS : many separate
7. Service Systems [3] -- Demand/Capacity Management Models
1 of 35 7. Service Systems [3] -- Demand/Capacity Management Models INFO 210-19 September 2007 Bob Glushko 2 of 35 Plan for Today's Lecture Capacity Management Scheduling Influencing and Managing Demand
Simulation of a Claims Call Center: A Success and a Failure
Proceedings of the 1999 Winter Simulation Conference P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. SIMULATION OF A CLAIMS CALL CENTER: A SUCCESS AND A FAILURE Roger Klungle AAA
4 The M/M/1 queue. 4.1 Time-dependent behaviour
4 The M/M/1 queue In this chapter we will analyze the model with exponential interarrival times with mean 1/λ, exponential service times with mean 1/µ and a single server. Customers are served in order
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
Web Server Software Architectures
Web Server Software Architectures Author: Daniel A. Menascé Presenter: Noshaba Bakht Web Site performance and scalability 1.workload characteristics. 2.security mechanisms. 3. Web cluster architectures.
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.
16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.
An Introduction to Queueing Theory
An Introduction to Queueing Theory Rein Nobel Department of Econometrics, Vrije Universiteit, Amsterdam Open Middag november 20 Overview. Basic results for queueing models in continuous time: (a) delay
Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations
56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE
Before studying this supplement you should know or, if necessary, review
Waiting Line Models SUPPLEMENT C Before studying this supplement you should know or, if necessary, review 1. Competitive advantages, Chapter 2. 2. Priority rules, Chapter 16. LEARNING OBJECTIVES After
Queuing Theory. Long Term Averages. Assumptions. Interesting Values. Queuing Model
Queuing Theory Queuing Theory Queuing theory is the mathematics of waiting lines. It is extremely useful in predicting and evaluating system performance. Queuing theory has been used for operations research.
Discrete-Event Simulation
Discrete-Event Simulation Prateek Sharma Abstract: Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the
LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process
LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The
LECTURE 1 NEW SERVICE DESIGN & DEVELOPMENT
LECTURE 1 NEW SERVICE DESIGN & DEVELOPMENT Learning Objectives 1. To discuss the new service development process and service design using service blueprint to align service concept with service delivery
Supplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
MODELING OF SYN FLOODING ATTACKS Simona Ramanauskaitė Šiauliai University Tel. +370 61437184, e-mail: [email protected]
MODELING OF SYN FLOODING ATTACKS Simona Ramanauskaitė Šiauliai University Tel. +370 61437184, e-mail: [email protected] A great proportion of essential services are moving into internet space making the
Basic Queuing Relationships
Queueing Theory Basic Queuing Relationships Resident items Waiting items Residence time Single server Utilisation System Utilisation Little s formulae are the most important equation in queuing theory
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Windows Server Performance Monitoring
Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Effective Utilization of Mobile Call Center Using Queuing Models
Effective Utilization of Mobile Call Center Using Queuing Models Osahenvemwen O. A. and Odiase O. F. Abstract This study presents effective utilization of mobile call center using queuing models. Aim at
Waiting-Line Models. Quantitative Module. Module Outline LEARNING OBJECTIVES. When you complete this module you should be able to
Quantitative Module D Waiting-Line Models Module Outline CHARACTERISTICS OF A WAITING-LINE SYSTEM Arrival Characteristics Waiting-Line Characteristics Service Characteristics Measuring the Queue s erformance
Analysis and Comparison of CPU Scheduling Algorithms
Analysis and Comparison of CPU Scheduling Algorithms Pushpraj Singh 1, Vinod Singh 2, Anjani Pandey 3 1,2,3 Assistant Professor, VITS Engineering College Satna (MP), India Abstract Scheduling is a fundamental
Performance Comparison of RTOS
Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile
Automatic Queuing Model for Banking Applications
(IJASA) International Journal of Advanced omputer Science Applications, Vol., No., Automatic Queuing Model for Banking Applications Dr. Ahmed S. A. AL-Jumaily Department of Multimedia IT ollege, Ahlia
The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com
THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering
Simulation Software 1
Simulation Software 1 Introduction The features that should be programmed in simulation are: Generating random numbers from the uniform distribution Generating random variates from any distribution Advancing
PSTAT 120B Probability and Statistics
- Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: [email protected] Slides will
Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling
Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms Chapter 5: Process Scheduling To discuss evaluation criteria for selecting the CPUscheduling algorithm for a particular
HSR HOCHSCHULE FÜR TECHNIK RA PPERSW I L
1 An Introduction into Modelling and Simulation 4. A Series of Labs to Learn Simio af&e Prof. Dr.-Ing. Andreas Rinkel [email protected] Tel.: +41 (0) 55 2224928 Mobil: +41 (0) 79 3320562 Lab 1 Lab
A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster
, pp.11-20 http://dx.doi.org/10.14257/ ijgdc.2014.7.2.02 A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster Kehe Wu 1, Long Chen 2, Shichao Ye 2 and Yi Li 2 1 Beijing
Roulette Wheel Selection Model based on Virtual Machine Weight for Load Balancing in Cloud Computing
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 5, Ver. VII (Sep Oct. 2014), PP 65-70 Roulette Wheel Selection Model based on Virtual Machine Weight
ADMINISTRATOR GUIDE Call Queuing Administrator Guide V 2.0. 8x8 Call Queuing. Administrator Guide. Version 2.0 February 2011
8x8 Call Queuing Administrator Guide Version 2.0 February 2011 Table of Contents Introduction...3 How an 8x8 Call Queue Works...4 Example: Primary and Secondary Queue Extension Group...4 Getting Started...5
Efficient Parallel Processing on Public Cloud Servers Using Load Balancing
Efficient Parallel Processing on Public Cloud Servers Using Load Balancing Valluripalli Srinath 1, Sudheer Shetty 2 1 M.Tech IV Sem CSE, Sahyadri College of Engineering & Management, Mangalore. 2 Asso.
M/M/1 and M/M/m Queueing Systems
M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential
LABORATORY. 14 Disk Scheduling OBJECTIVE REFERENCES. Watch how the operating system schedules the reading or writing of disk tracks.
Dmitriy Shironosov/ShutterStock, Inc. LABORATORY 14 Disk Scheduling OBJECTIVE Watch how the operating system schedules the reading or writing of disk tracks. REFERENCES Software needed: 1) Disk Scheduling
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Simple Markovian Queueing Systems
Chapter 4 Simple Markovian Queueing Systems Poisson arrivals and exponential service make queueing models Markovian that are easy to analyze and get usable results. Historically, these are also the models
Queue Management There is no magic in managing theme parks!
Taken from: http://multimotions.websystems.nl/eng/index.html Queue Management There is no magic in managing theme parks! By Peter van Lith - 29-May-2002 Introduction Many theme parks are suffering from
ISyE 2030 Test 2 Solutions
1 NAME ISyE 2030 Test 2 Solutions Fall 2004 This test is open notes, open books. Do precisely 5 of the following problems your choice. You have exactly 55 minutes. 1. Suppose that we are simulating the
Rule-based Traffic Management for Inbound Call Centers
Vrije Universiteit Amsterdam Research Paper Business Analytics Rule-based Traffic Management for Inbound Call Centers Auteur: Tim Steinkuhler Supervisor: Prof. Dr. Ger Koole October 7, 2014 Contents Preface
Confidence Intervals for Exponential Reliability
Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion
technical note technical note six WAITING LINE MANAGEMENT T ECHNICAL N OTE S IX Queues defined
cha06369_tn06.qxd 9/3/03 2:11 PM Page 242 T ECHNICAL N OTE S IX technical note six WAITING LINE MANAGEMENT 243 Economics of the Waiting Line Problem Cost-effectiveness balance The practical view of waiting
Comparison of Request Admission Based Performance Isolation Approaches in Multi-tenant SaaS Applications
Comparison of Request Admission Based Performance Isolation Approaches in Multi-tenant SaaS Applications Rouven Kreb 1 and Manuel Loesch 2 1 SAP AG, Walldorf, Germany 2 FZI Research Center for Information
Scheduling Algorithms in MapReduce Distributed Mind
Scheduling Algorithms in MapReduce Distributed Mind Karthik Kotian, Jason A Smith, Ye Zhang Schedule Overview of topic (review) Hypothesis Research paper 1 Research paper 2 Research paper 3 Project software
How the People Counter Works. Enhanced Building Security and Improved Marketing Intelligence. 3D MLI Sensor Technology
People Counter A high-accuracy people counting solution that: is based on 3D MLI Sensor technology runs on embedded software performs bi-directional counting offers an accuracy of > 99% has configurable
Exponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
Military Reliability Modeling William P. Fox, Steven B. Horton
Military Reliability Modeling William P. Fox, Steven B. Horton Introduction You are an infantry rifle platoon leader. Your platoon is occupying a battle position and has been ordered to establish an observation
This section incorporates the IRS guidelines that are currently in effect.
Guidelines on How to Determine the Classification of Independent Contractors versus Employees Overview The University classifies and pays individuals who provide services as employees, unless the nature
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay. Lecture - 13 Consumer Behaviour (Contd )
(Refer Slide Time: 00:28) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 13 Consumer Behaviour (Contd ) We will continue our discussion
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Load Balancing in cloud computing
Load Balancing in cloud computing 1 Foram F Kherani, 2 Prof.Jignesh Vania Department of computer engineering, Lok Jagruti Kendra Institute of Technology, India 1 [email protected], 2 [email protected]
Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading
Announcements Reading Chapter 5 Chapter 7 (Monday or Wednesday) Basic Concepts CPU I/O burst cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution What are the
Abstract. 1. Introduction
A REVIEW-LOAD BALANCING OF WEB SERVER SYSTEM USING SERVICE QUEUE LENGTH Brajendra Kumar, M.Tech (Scholor) LNCT,Bhopal 1; Dr. Vineet Richhariya, HOD(CSE)LNCT Bhopal 2 Abstract In this paper, we describe
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters Abhijit A. Rajguru, S.S. Apte Abstract - A distributed system can be viewed as a collection
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
