PSTAT 120B Probability and Statistics
|
|
|
- Georgia Young
- 9 years ago
- Views:
Transcription
1 - Week University of California, Santa Barbara April 10, 013
2 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA [email protected] Slides will be available at each section Feel free to interrupt me if anything during section puzzles you. Office hour will be determined after I have more information on the regular due date for your weekly assignment.
3 Topic for review Transformation Using the cumulative distribution function approach Using the formula on probability density function Exercise 6.3 (page 307). Exercise 6.5 (page 308). Exercise 6.11 (page 308).
4 The method of transformation Available methods to do transformation: 1. Cumulative distribution function approach. Formula on probability density function (will be introduced next time) Note: the obtained results by using above two methods are identical. In some problem, using one approach is easier to compute than the other.
5 Transformation- cumulative distribution function approach (Review from lecture) Let U be a function of the random variables Y 1,..., Y n. 1. Find the region U u in the (Y 1,..., Y n ) space.. Find the cdf U, F U (u) = P(U u) by integrating the joint pdf of {Y 1,..., Y n } over the region U u. 3. Find the pdf of U as f U (u) = df U(u) du. Note: The cumulative distribution function approach can only be applied on continuous cases.
6 Exercise A supplier of kerosene has a weekly demand Y possessing a probability density function given by y 0 y 1 f (y) = 1 1 < y elsewhere with measurements in hundreds of gallons. (This problem was introduced in Exercise 4.13.) The supplier s profit is given by U = 10Y 4.
7 Exercise 6.3(a) 6.3(a) Find the probability density function for U. Solution: (a)the cumulative distribution function for Y should be written as y 0 y 1 F Y (y) = y 1 1 < y elsewhere (why?) 1. F U (u) = P(U u) = P(10Y 4 u) = p(y u+4 10 ). compute the range of u using given formula U = 10Y 4
8 Exercise 6.3(a) 6.3(a) Find the probability density function for U. Solution: (a)the cumulative distribution function for U can be obtained as ( u+4 10 ) = (u+4) 00 4 u 6 F U (u) = u = u < u 11 1 elsewhere The probability density function for U is followed as u+4 f U (u) = F U (u) = u < u 11 0 elsewhere
9 Exercise 6.3(b),(c) 6.3 (b)use the answer to part (a) to find E(U). (c)find E(U) by the methods of Chapter 4. Solution (b) (c) E(U) = 6 4 (Find E(Y ) on your own!) u u du u 1 10 du = 5.583(check this on your own!) E(U) = E(10Y 4) = 10E(Y ) 4 = 10( 3 4 ) 4 = 5.583
10 Exercise The waiting time Y until delivery of a component for an industrial operation is uniformly distributed over the interval from 1 to 5 days. The cost of this delay is given by U = Y + 3. Find the probability density function for U. Solution: Y Uniform(1, 5) i.e. f Y (y) = 1 4 for 1 < y < 5 cumulative distribution function for Y : F Y (y) = y 4 for 1 < y < 5
11 Exercise 6.5 Solution: F U (u) = P(U u) = P(Y + 3 u) u 3 = P(Y ) u 3 = F Y ( ) u 3 = 1 4 Probability density distribution for U: f U (u) = F U (u) = 1 16 ( u 3 ) 1, for 5 u 53(why?).
12 Exercise Suppose that two electronic components in the guidance system for a missile operate independently and that each has a length of life governed by the exponential distribution with mean 1 (with measurements in hundreds of hours). Find the (a)probability density function for the average length of life of the two components. (b)mean and variance of this average, using the answer in part(a). Check your answer by computing the mean and variance, using Theorem 5.1.
13 Exercise 6.11(a) 6.11(a) (a)probability density function for the average length of life of the two components. Solution: Known: 1. length Y i exp(1) for i = 1,. i.e. f Yi (y i ) = e y i. denote mean as U = Y1+Y Way to approach: 1. F U (u) = P(U u) = P( Y1+Y u 0 u) = P(Y 1 u Y ) = u y e y1 y dy 0 1 dy = 1 e u ue u (check this on your own!). f U (u) = F U (u) = 4ue u, u 0 3. recognize f U (u) is in form of gamma density with parameter (, 1 )
14 Exercise (b) (b)mean and variance of this average, using the answer in part(a). Check your answer by computing the mean and variance, using Theorem 5.1. Solution: Known: U Γ(, 1 ) Way to approach: using formula E(U) = αβ and Var(U) = αβ Obtained answer: E(U) = 1 1 and Var(U) =
15 Exercise (b) (b)mean and variance of this average, using the answer in part(a). Check your answer by computing the mean and variance, using Theorem 5.1. Solution: If you couldn t recognize U has a gamma distribution, use the definition to find mean and variance for U. i.e. E(U) = uf U (u)du, E(U ) = u f U (u)du and Var(U) = E(U ) E(U) Use Theorem 5.1 to check: E(U) = E( Y 1+Y ) = 1+1 and Var(U) = Var( Y 1+Y ) = 1 4 (1 + 1) = 1 (why?) Note Y 1 and Y are independent, this implies Cov(Y 1, Y ) = 0
Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
Probability Distribution
Lecture 4 Probability Distribution Continuous Case Definition: A random variable that can take on any value in an interval is called continuous. Definition: Let Y be any r.v. The distribution function
Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)
Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five
Lecture Notes 1. Brief Review of Basic Probability
Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very
), 35% use extra unleaded gas ( A
. At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22
Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability
Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
Math 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
Statistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
Stat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Lecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0
Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
ECE302 Spring 2006 HW5 Solutions February 21, 2006 1
ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.
Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric
( ) is proportional to ( 10 + x)!2. Calculate the
PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers
Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte
1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
Exponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
Introduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
Pr(X = x) = f(x) = λe λx
Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions
Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
Manual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
A.II. Kernel Estimation of Densities
A.II. Kernel Estimation of Densities Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Introduction 2 Issues with Empirical Averages 3 Kernel Estimator 4 Optimal Bandwidth 5 Bivariate
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
MATH2740: Environmental Statistics
MATH2740: Environmental Statistics Lecture 6: Distance Methods I February 10, 2016 Table of contents 1 Introduction Problem with quadrat data Distance methods 2 Point-object distances Poisson process case
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
MAS108 Probability I
1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper
( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: [email protected] Posted September 21,
Chapter 5: Normal Probability Distributions - Solutions
Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
Beta Distribution. Paul Johnson <[email protected]> and Matt Beverlin <[email protected]> June 10, 2013
Beta Distribution Paul Johnson and Matt Beverlin June 10, 2013 1 Description How likely is it that the Communist Party will win the net elections in Russia? In my view,
Probability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Sampling Distributions
Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
Statistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half
3.4 The Normal Distribution
3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)
Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course
Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution
Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability
CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces
Continuous Random Variables
Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous
ST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
Problem sets for BUEC 333 Part 1: Probability and Statistics
Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Lesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
Part 2: One-parameter models
Part 2: One-parameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes
Variance Reduction Methods I
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Variance Reduction Methods I 1 Simulation Efficiency Suppose as usual that we wish to estimate θ := E[h(X)]. Then the standard simulation
2. Linear regression with multiple regressors
2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
TEST 2 STUDY GUIDE. 1. Consider the data shown below.
2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM
LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM Learning objective To introduce features of queuing system 9.1 Queue or Waiting lines Customers waiting to get service from server are represented by queue and
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Recursive Estimation
Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x
e.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density
Applied Reliability Page 1 APPLIED RELIABILITY. Techniques for Reliability Analysis
Applied Reliability Page 1 APPLIED RELIABILITY Techniques for Reliability Analysis with Applied Reliability Tools (ART) (an EXCEL Add-In) and JMP Software AM216 Class 1 Notes Santa Clara University Copyright
Conductance, the Normalized Laplacian, and Cheeger s Inequality
Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
Review of Random Variables
Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
Section 6.1 Joint Distribution Functions
Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
Monte Carlo Simulation
1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: [email protected] web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging
1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,
1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly
Non Parametric Inference
Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable
STAT 830 Convergence in Distribution
STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
Estimation and Confidence Intervals
Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e
Important Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.
