Modelling and Big Data. Leslie Smith ITNPBD4, October Updated 9 October 2015
|
|
|
- Britton Ashley Patterson
- 9 years ago
- Views:
Transcription
1 Modelling and Big Data Leslie Smith ITNPBD4, October Updated 9 October 2015
2 Big data and Models: content What is a model in this context (and why the context matters) Explicit models Mathematical models Statistical models Implicit models Neural networks Data Models Models and parameters Constraining models Creating models Directly from the data, or using explicit knowledge? Using Neural Networks ITNPD4: Applications of Big Data 2
3 Models A word that means many different things in different scientific contexts. And has even more meanings in Computing (never mind elsewhere) In Biology: model organism Also in Biology: a simplified version of a complex system That can be used to make predictions In Physics: a set of equations (etc.) that explains (up to a point) the behaviour of a system Again often for making predictions In data analysis: a set of equations, or a set of computer code, that describes a complex set of data + different meanings in a Computing/data processing context One of the most used words in science with many confusingly different meanings. ITNPD4: Applications of Big Data 3
4 Different types of model in experimental/empirical science Explicit model A model that can be described precisely For example a set of coupled differential equations describing how different aspects of a dataset interact with each other Implicit model A model that is described in a set of computer code Generally created from a set of data Implicit in the sense that, although an explicit description may be possible, the model is generally used to make predictions directly from a set of data, rather than directly. Note that models may or may not be deterministic. ITNPD4: Applications of Big Data 4
5 Models in Computing In Computing: a data model, A data model organizes data elements and standardizes how the data elements relate to one another. Since data elements document real life people, places and things and the events between them, the data model represents reality, for example a house has many windows or a cat has two eyes (Wikipedia) (Note: even though this is a Computing Science Department, Computing is generally not an experimental or empirical subject) ITNPD4: Applications of Big Data 5
6 Data models See Big Databases and NoSQL course, ITNPD3 Data models provide a framework for storing data At one end, one has an SQL database Structured data At the other end one has completely unstructured data (actually, even unstructured data usually has some structure: without structural metadata, data is not usable at all) In fact Data Modelling has many forms Try the Wikipedia page on data models! ITNPD4: Applications of Big Data 6
7 Data driven business models (DDBM) DDBM is a model of how the business uses data, what the business uses data for Useful for an overview of the whole Big Data system in an organisation ITNPD4: Applications of Big Data 7
8 Explicit and implicit models We saw that we needed models to allow us to understand causation Without a model we can only have correlations: causation implies mechanism We use models to make sense of data Such models can take many forms Simple linear models With a and b constants: a model connecting y and x. Like most models it has parameters: a and b And we can use existing data to set these. This is clearly an explicit model y = ax + b ITNPD4: Applications of Big Data 8
9 More explicit mathematical models Or a polynomial model of degree n y = a n x n + a n 1 x n a 0 which has n+1 parameters. Explicit models are often expressed in differential equation terms: dy dx = 1 y + s(t) ITNPD4: Applications of Big Data 9
10 Using explicit models We often want to make predictions from models For explicit models this means constraining the parameters of the model: giving them values The quality of the prediction depends on The appropriateness of the model The accuracy of the parameters One can argue that the model selection is itself a parameter selection problem Which functions to use, how many to use, etc. In general, one uses a mixture of the actual data available, and knowledge about the system to choose the model, The parameters are then set using the data. Sometimes initialised to ballpark correct values first using domain knowledge. ITNPD4: Applications of Big Data 10
11 Simple linear interpolation ITNPD4: Applications of Big Data 11
12 Implicit models Implicit models (generally) learn from the data Idea is that the model learns directly And is unbiased by the designer of the model Neural networks are the best known type of implicit model. These generally need to be used in conjunction with some kind of possibly informal model of the system Idea: use existing data to train the network Then use the trained network to make predictions ITNPD4: Applications of Big Data 12
13 Neural network Input layer Hidden layer Output layer Input #1 Input #2 Input #3 Output Input #4 ITNPD4: Applications of Big Data 13
14 Training a neural network 1. Initialise network architecture 2. Initialise weights 3. For each training input:output pair, adjust the weights 4. If the overall error exceeds some delta Go to step 3 5. Test on validation set If result is not good enough, go to step 1 6. Finished (i.e. use trained neural network) ITNPD4: Applications of Big Data 14
15 Neural networks for prediction What are the dangers here? However, there are specific aspects of appraisal work which pose specific problems for the utilization of MRA in these types of contexts. In this regard, small sample size as well as the difficulty in obtaining sales information due to Texas being a non-disclosure state where tax payers are not required by law to reveal what they paid for their property are major obstacles to the typical larger samples needed for MRA. I have heard that ANN (artificial neural networks) are not encumbered by these factors. Quote is from an I received asking for my advice. ITNPD4: Applications of Big Data 15
16 Prediction and NNs Neural networks will always make a prediction And the prediction may look quite sensible But: Is it the right answer? Has the NN been appropriately trained? Is it the right NN? Is it the right type of NN? Generally, one breaks up the training data into three disjoint sets A training set A cross-validation set A test set One trains up the system repetitively, and checks each network with the cross-validation set Then one tests all the networks with the test set ITNPD4: Applications of Big Data 16
17 Big Data and Models Data sets are used to constrain models For explicit mathematics models, this means adjusting parameters so that the data conforms to the models This will never be exact So some form of approximation or error minimisation Is required. E.g. minimising the sum of the squares of the error For other types of model, there may be specific techniques Error correction in neural networks is a good example of this ITNPD4: Applications of Big Data 17
18 In Conclusion Be careful when using the word model Because it has many meanings Data models describe the structure of data in general And in Big Data applications this can be quite complex Implicit and explicit models describe systems And can be constrained (adapted, trained) by data Getting the model right (or at least not too wrong) can make a big difference to predictions from data ITNPD4: Applications of Big Data 18
Artificial Neural Network and Non-Linear Regression: A Comparative Study
International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Artificial Neural Network and Non-Linear Regression: A Comparative Study Shraddha Srivastava 1, *, K.C.
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Designing a neural network for forecasting financial time series
Designing a neural network for forecasting financial time series 29 février 2008 What a Neural Network is? Each neurone k is characterized by a transfer function f k : output k = f k ( i w ik x k ) From
What is Modeling and Simulation and Software Engineering?
What is Modeling and Simulation and Software Engineering? V. Sundararajan Scientific and Engineering Computing Group Centre for Development of Advanced Computing Pune 411 007 [email protected] Definitions
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation
Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic
1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
DRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS
COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS Iris Ginzburg and David Horn School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Science Tel-Aviv University Tel-A viv 96678,
RELEVANT TO ACCA QUALIFICATION PAPER P3. Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam
RELEVANT TO ACCA QUALIFICATION PAPER P3 Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam Business forecasting and strategic planning Quantitative data has always been supplied
South Carolina College- and Career-Ready (SCCCR) Algebra 1
South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering
= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.
ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated
Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model
Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model Iman Attarzadeh and Siew Hock Ow Department of Software Engineering Faculty of Computer Science &
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
ISA HELP BOOKLET AQA SCIENCE NAME: Class:
ISA HELP BOOKLET AQA SCIENCE NAME: Class: Controlled Assessments: The ISA This assessment is worth 34 marks in total and consists of three parts: A practical investigation and 2 written test papers. It
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Towards running complex models on big data
Towards running complex models on big data Working with all the genomes in the world without changing the model (too much) Daniel Lawson Heilbronn Institute, University of Bristol 2013 1 / 17 Motivation
Natural cubic splines
Natural cubic splines Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology October 21 2008 Motivation We are given a large dataset, i.e. a function sampled
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
1. Classification problems
Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification
Summary of important mathematical operations and formulas (from first tutorial):
EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a
EdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
Business Intelligence and Decision Support Systems
Chapter 12 Business Intelligence and Decision Support Systems Information Technology For Management 7 th Edition Turban & Volonino Based on lecture slides by L. Beaubien, Providence College John Wiley
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
To give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
Appendix B Data Quality Dimensions
Appendix B Data Quality Dimensions Purpose Dimensions of data quality are fundamental to understanding how to improve data. This appendix summarizes, in chronological order of publication, three foundational
Mathematical goals. Starting points. Materials required. Time needed
Level A0 of challenge: D A0 Mathematical goals Starting points Materials required Time needed Connecting perpendicular lines To help learners to: identify perpendicular gradients; identify, from their
Event driven trading new studies on innovative way. of trading in Forex market. Michał Osmoła INIME live 23 February 2016
Event driven trading new studies on innovative way of trading in Forex market Michał Osmoła INIME live 23 February 2016 Forex market From Wikipedia: The foreign exchange market (Forex, FX, or currency
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
Find the Square Root
verview Math Concepts Materials Students who understand the basic concept of square roots learn how to evaluate expressions and equations that have expressions and equations TI-30XS MultiView rational
International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013
A Short-Term Traffic Prediction On A Distributed Network Using Multiple Regression Equation Ms.Sharmi.S 1 Research Scholar, MS University,Thirunelvelli Dr.M.Punithavalli Director, SREC,Coimbatore. Abstract:
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05
Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification
A New Approach For Estimating Software Effort Using RBFN Network
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,
THE PREDICTIVE MODELLING PROCESS
THE PREDICTIVE MODELLING PROCESS Models are used extensively in business and have an important role to play in sound decision making. This paper is intended for people who need to understand the process
Efficient Curve Fitting Techniques
15/11/11 Life Conference and Exhibition 11 Stuart Carroll, Christopher Hursey Efficient Curve Fitting Techniques - November 1 The Actuarial Profession www.actuaries.org.uk Agenda Background Outline of
Gouvernement du Québec Ministère de l Éducation, 2004 04-00813 ISBN 2-550-43545-1
Gouvernement du Québec Ministère de l Éducation, 004 04-00813 ISBN -550-43545-1 Legal deposit Bibliothèque nationale du Québec, 004 1. INTRODUCTION This Definition of the Domain for Summative Evaluation
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
is identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
The investigation is an individual project undertaken by you with support from your teacher/lecturer to show that you can:
Biology (revised) Advanced Higher Biology Investigation Candidate Guidance (for use from Session 2012 2013) Introduction The investigation is an individual project undertaken by you with support from your
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
The Logistic Function
MATH 120 Elementary Functions The Logistic Function Examples & Exercises In the past weeks, we have considered the use of linear, exponential, power and polynomial functions as mathematical models in many
E10: Controlled Experiments
E10: Controlled Experiments Quantitative, empirical method Used to identify the cause of a situation or set of events X is responsible for Y Directly manipulate and control variables Correlation does not
Issues in Information Systems Volume 16, Issue IV, pp. 30-36, 2015
DATA MINING ANALYSIS AND PREDICTIONS OF REAL ESTATE PRICES Victor Gan, Seattle University, [email protected] Vaishali Agarwal, Seattle University, [email protected] Ben Kim, Seattle University, [email protected]
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
USB 3.0 Jitter Budgeting White Paper Revision 0.5
USB 3. Jitter Budgeting White Paper Revision.5 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT,
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Copyright. Network and Protocol Simulation. What is simulation? What is simulation? What is simulation? What is simulation?
Copyright Network and Protocol Simulation Michela Meo Maurizio M. Munafò [email protected] [email protected] Quest opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per
Measurement and Metrics Fundamentals. SE 350 Software Process & Product Quality
Measurement and Metrics Fundamentals Lecture Objectives Provide some basic concepts of metrics Quality attribute metrics and measurements Reliability, validity, error Correlation and causation Discuss
Data Flow Organising action on Research Methods and Data Management
Data Flow Organising action on Research Methods and Data Management Research Methods Support for Collaborative Crop Research Program (CCRP) Projects Funded by the McKnight Foundation Data Flow Organising
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory
Why High-Order Polynomials Should Not be Used in Regression Discontinuity Designs
Why High-Order Polynomials Should Not be Used in Regression Discontinuity Designs Andrew Gelman Guido Imbens 2 Aug 2014 Abstract It is common in regression discontinuity analysis to control for high order
Neural Network Applications in Stock Market Predictions - A Methodology Analysis
Neural Network Applications in Stock Market Predictions - A Methodology Analysis Marijana Zekic, MS University of Josip Juraj Strossmayer in Osijek Faculty of Economics Osijek Gajev trg 7, 31000 Osijek
The Cobb-Douglas Production Function
171 10 The Cobb-Douglas Production Function This chapter describes in detail the most famous of all production functions used to represent production processes both in and out of agriculture. First used
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
Three types of messages: A, B, C. Assume A is the oldest type, and C is the most recent type.
Chronological Sampling for Email Filtering Ching-Lung Fu 2, Daniel Silver 1, and James Blustein 2 1 Acadia University, Wolfville, Nova Scotia, Canada 2 Dalhousie University, Halifax, Nova Scotia, Canada
PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING
PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING Ton van den Bogert October 3, 996 Summary: This guide presents an overview of filtering methods and the software which is available in the HPL.. What is
Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),
Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables
Basics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
(Refer Slide Time: 2:03)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were
SR2000 FREQUENCY MONITOR
SR2000 FREQUENCY MONITOR THE FFT SEARCH FUNCTION IN DETAILS FFT Search is a signal search using FFT (Fast Fourier Transform) technology. The FFT search function first appeared with the SR2000 Frequency
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.
Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Data mining and official statistics
Quinta Conferenza Nazionale di Statistica Data mining and official statistics Gilbert Saporta président de la Société française de statistique 5@ S Roma 15, 16, 17 novembre 2000 Palazzo dei Congressi Piazzale
Manufacturing View. User View. Product View. User View Models. Product View Models
Why SQA Activities Pay Off? Software Quality & Metrics Sources: 1. Roger S. Pressman, Software Engineering A Practitioner s Approach, 5 th Edition, ISBN 0-07- 365578-3, McGraw-Hill, 2001 (Chapters 8 &
Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers
Correlation Greg C Elvers What Is Correlation? Correlation is a descriptive statistic that tells you if two variables are related to each other E.g. Is your related to how much you study? When two variables
Combining GLM and datamining techniques for modelling accident compensation data. Peter Mulquiney
Combining GLM and datamining techniques for modelling accident compensation data Peter Mulquiney Introduction Accident compensation data exhibit features which complicate loss reserving and premium rate
Econometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
A Multi-level Artificial Neural Network for Residential and Commercial Energy Demand Forecast: Iran Case Study
211 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (211) (211) IACSIT Press, Singapore A Multi-level Artificial Neural Network for Residential and Commercial Energy
NEURAL NETWORKS IN DATA MINING
NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,
!"#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun
Society of Petroleum Engineers SPE 2001 2002 Distinguished Lecturer Program 4 July 2002 Reservoir Fluid Properties State of the Art and Outlook for Future Development Dr. Muhammad Al-Marhoun King Fahd
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
Bank Customers (Credit) Rating System Based On Expert System and ANN
Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University
MATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Summary of feedback on Big data and data protection and ICO response
Summary of feedback on Big data and data protection and ICO response Contents Introduction... 2 Question 1... 3 Impacts and benefits; privacy impact assessments (PIAs)... 3 New approaches to data protection...
Tennessee Department of Education
Tennessee Department of Education Task: Pool Patio Problem Algebra I A hotel is remodeling their grounds and plans to improve the area around a 20 foot by 40 foot rectangular pool. The owner wants to use
DRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
Car Insurance. Havránek, Pokorný, Tomášek
Car Insurance Havránek, Pokorný, Tomášek Outline Data overview Horizontal approach + Decision tree/forests Vertical (column) approach + Neural networks SVM Data overview Customers Viewed policies Bought
