Bayesian Analysis for the Social Sciences
|
|
|
- Neil Parker
- 9 years ago
- Views:
Transcription
1 Bayesian Analysis for the Social Sciences Simon Jackman Stanford University November 9, 2012 Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
2 Introduction to Bayesian Inference Bayesian inference relies exclusively on Bayes Theorem: p(h data) p(h) p(data h) h is a usually a parameter (but could also be a data point, a model, a hypothesis) p are probability densities (or probability mass functions in the case of discrete h and/or discrete data) p(h) a prior density; p(data h) the likelihood or conditional density of the data given h p(h data) is the posterior density for h given the data. Gives rise to the Bayesian mantra: a posterior density is proportional to the prior times the likelihood Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
3 Probability Densities as Representations of Beliefs Definition (Probability Density Function (informal)) Let h be a unknown quantity, h H R. A function p(h) is a proper probability density function if 1 p(h) 0 h. 2 p(h)dh = 1. H N(0,1) N(0,2) θ θ Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
4 Probability Densities as Representations of Beliefs Definition (Probability Density Function (informal)) Let h be a unknown quantity, h H R. A function p(h) is a proper probability density function if 1 p(h) 0 h. 2 p(h)dh = 1. H Unif(0,1) Beta(2,3) p(θ) 1.0 p(θ) θ θ Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
5 Probability Mass Function Definition (Probability Mass Function) If h is a discrete random variable, taking values in a countable space H R, then a function p : H [0, 1] is a probability mass function if 1 p(h) = 0 h R \ H 2 h H p(h) = trinomial 1.0 Binomial(2/3,5) 1.0 Poisson(4) red green blue θ θ θ Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
6 Introduction to Bayesian Inference p(h data) p(h) p(data h) Bayesian inference involves computing, summarizing and communicating summaries of the posterior density p(h data). How to do this is what this class is about. Depending on the problem, doing all this is easy or hard; we solve hard with computing power. We re working with densities (or sometimes, mass functions). Bayesian point estimates are a single number summary of a posterior density Uncertainty assessed/communicated in various ways: e.g., the standard deviation of the posterior, width of interval spanning 2.5th to 97.5th percentiles of the posterior, etc. Sometimes, can just draw a picture; details, examples coming. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
7 Introduction to Bayesian Inference p(h data) p(h) p(data h) Bayes Theorem tells us how to update beliefs about h in light of evidence ( data ) a general method for induction or for learning from data : prior - data - posterior Bayes Theorem is itself uncontroversial: follows from widely accepted axioms of probability theory (e.g., Kolmogorov) and the definition of conditional probability Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
8 Why Be Bayesian? conceptual simplicity: say what you mean and mean what you say (subjective probability) a foundation for inference that does not rest on the thought experiment of repeated sampling uniformity of application: no special tweeks for this or that data analysis. Apply Bayes Rule. modern computing makes Bayesian inference easy and nearly universally applicable Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
9 Conceptual Simplicity p(h data) p(h) p(data h) the posterior density (or mass function) p(h data) is a complete characterization of beliefs after looking at data as such it contains everything we need for making inferences Examples: the posterior probability that a regression coefficient is positive, negative or lies in a particular interval; the posterior probability that a subject belongs to a particular latent class; the posterior probability that a hypothesis is true; or, the posterior probabilities that a particular statistical model is true model among a family of statistical models. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
10 Contrast Frequentist Inference Model for data: y f (h). Estimate h: e.g., least squares, MLE, etc, to yield h h(y) null hypothesis e.g., H 0 : h H0 = 0 Inference via the sampling distribution of h conditional on H 0 : e.g., assuming H 0, over repeated applications of the sampling process, how frequently would we observe a result at least as extreme as the one we obtained? At least as extreme? Assessed via a test statistic, e.g., t(y) = (h H0 - h)/ var(h h = h H0 ) how frequently? The p-value, relative frequency with which we see t > t(y) in repeated applications of the sampling process. Often t(y) d N(0, 1). Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
11 Contrast Frequentist Inference null hypothesis e.g., H 0 : h H0 = 0 test-statistic: Often t(y) d N(0, 1). t(y) = (h H0 - h)/ var(h h = h H0 ) p-value is a statement about the plausibility of the statistic h relative to what we might have observed in random sampling assuming H 0 : h H0 = 0 one more step need to reject/fail-to-reject H 0. Is p sufficiently small? frequentist p-value is a summary of the distribution of h under H 0 Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
12 Contrast Frequentist Inference n.b., frequentist inference treats h as a random variable h is a fixed but unknown feature of the population from which data is being (randomly) sampled Bayesian inference: h is fixed, a function of the data available for analysis Bayesian inference: h is a random variable, subject to (subjective) uncertainty Bayesian Frequentist h random fixed but unknown h fixed random random-ness subjective sampling distribution of interest posterior sampling distribution p(h y) p(h(y) h = h H0 ) Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
13 Subjective Uncertainty how do we do statistical inference in situations where repeated sampling is infeasible? inference when we have the entire population and hence no uncertainty due to sampling: e.g., parts of comparative political economy. Bayesians rely on a notion of subjective uncertainty e.g., h is a random variable because we don t know its value Bayes Theorem tells us how to manage that uncertainty, how to update beliefs about h in light of data Contrast objectivist notion of probability: probability as a property of the object under study (e.g., coins, decks of cards, roulette wheels, people, groups, societies). Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
14 Subjective Uncertainty Many Bayesians regard objectivist probability as metaphysical nonsense. de Finetti: PROBABILITY DOES NOT EXIST The abandonment of superstitious beliefs about...fairies and Witches was an essential step along the road to scientific thinking. Probability, too, if regarded as something endowed with some kind of objective existence, is not less a misleading misconception, an illusory attempt to exteriorize or materialize our true probabilistic beliefs. In investigating the reasonableness of our own modes of thought and behaviour under uncertainty, all we require, and all that we are reasonably entitled to, is consistency among these beliefs, and their reasonable relation to any kind of relevant objective data ( relevant in as much as subjectively deemed to be so). This is Probability Theory. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
15 Subjective Uncertainty Bayesian probability statements are thus about states of mind over states of the world, and not about states of the world per sé. Borel: one can guess the outcome of a coin toss while the coin is still in the air and its movement is perfectly determined, or even after the coin has landed but before one reviews the result. i.e., subjective uncertainty obtains irrespective of objective uncertainty (however conceived) not just any subjective uncertainty: beliefs must conform to the rules of probability: e.g., p(h) should be proper: i.e., H p(h)dh = 1, p(h) 0 h H. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
16 Bayes Theorem Conditional probability: Let A and B be events with P(B) > 0. Then the conditional probability of A given B is P(A B) = P(A B) P(B) = P(A, B) P(B). Multiplication rule: P(A B) = P(A, B) = P(A B)P(B) = P(B A)P(A) Law of Total Probability: P(B) = P(A B) + P( A B) = P(B A)P(A) + P(B A)P( A) Bayes Theorem: If A and B are events with P(B) > 0, then P(A B) = P(B A)P(A) P(B) Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
17 Bayes Theorem, Example case, drug-testing work suggests that about 3% of the subject pool (elite athletes) uses a particular prohibited drug. H U : test subject uses the prohibited substance. p(h U ) =.03. E (evidence) is a positive test result. Test has a false negative rate of.05; i.e., P( E H U ) =.05 P(E H U ) =.95. Test has a false positive rate of.10: i.e., P(E H U ) =.10. Bayes Theorem: P(H U E) = P(H U )P(E H U ) i {U, U} P(H i)p(e H i ) =.03~.95 (.03~.95) + (.97~.10) = =.23 Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
18 Bayes Theorem, Continuous Parameter Bayes Theorem: p(h y) = p(y h)p(h) p(y h)p(h)dh Proof: by the definition of conditional probability p(h, y) = p(h y)p(y) = p(y h)p(h), (1) where all these densities are assumed to exist and have the properties p(z) > 0 and p(z)dz = 1 (i.e., are proper probability densities. The result follows by re-arranging the quantities in equation equation 1 and noting that p(y) = p(y, h)dh = p(y h)p(h)dh. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
19 and Densities, Continuous Parameter Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
20 , and s: less standard cases θ θ θ θ θ θ Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
21 Cromwell s Rule: the dangers of dogmatism p(h data) p(h) p(data h) p(h data) = 0 hs.t.p(h) = 0. Cromwell s Rule: After the English deposed, tried and executed Charles I in 1649, the Scots invited Charles son, Charles II, to become king. The English regarded this as a hostile act, and Oliver Cromwell led an army north. to the outbreak of hostilities, Cromwell wrote to the synod of the Church of Scotland, I beseech you, in the bowels of Christ, consider it possible that you are mistaken. a dogmatic prior that assigns zero probability to a hypothesis can never be revised likewise, a hypothesis with prior weight of 1.0 can never be refuted. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
22 Cromwell s Rule Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
23 Bayesian Point Estimates Bayes estimates: single number summary of a posterior density but which one?: e.g., mode, median, mean, some quantile(s)? different loss functions rationalize different point estimate Loss: Let H be a set of possible states of nature h, and let a A be actions availble to the researcher. Then define l(h, a) as the loss to the researcher from taking action a when the state of nature is h. expected loss: Given a posterior distribution for h, p(h y), the posterior expected loss of an action a is m(p(h y), a) = H l(h, a)p(h y)dh. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
24 Mean as Bayes Estimator Under Quadratic Loss quadratic loss: If h H is a parameter of interest, and ~ h is an estimate of h, then l(h, ~ h) = (h - ~ h) 2 is the quadratic loss arising from the use of the estimate ~ h instead of h. Mean as Bayes Estimate Under Quadratic Loss: E(h y) = ~ h = H h p(h y)dh. Proof: Quadratic loss implies that the posterior expected loss is m(h, ~ h) = (h - ~ h) 2 p(h y)dh. Expanding the quadratic yields H m(h, ~ h) = H h2 p(h y)dh + ~ h 2-2 ~ he(h y). Differentiate with respect to ~ h, noting that the first term does not involve ~ h. Solve the 1st order condition for ~ h and the result follows. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
25 Bayes Estimates Quadratic Loss: mean of the posterior density, E(h y) = h p(h y)dh Symmetric Linear Loss: median of the posterior density, n.b., only well-defined for h H R, in which case ~ h is defined such that.5 All-or-nothing Loss: mode of the posterior density H = ~ h = argmax p(h y) h H Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
26 Credible Region; HPD region Definition (Credible Region) A region C X such that p(h)dh = 1 - α, 0 α 1 is a 100(1 - α)% C credible region for h. For single-parameter problems (i.e., X R), if C is not a set of disjoint intervals, then C is a credible interval. If p(h) is a (prior/posterior) density, then C is a (prior/posterior) credible region. Definition (Highest Probability Density Region) A region C X is a 100(1 - α)% highest probability density region for h under p(h) if 1 P(h C) = 1 - α 2 P(h 1 ) P(h 2 ), h 1 C, h 2 C Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
27 HPD intervals A 100(1 - α)% HPD region for a symmetric, unimodal density is unique and symmetric around the mode; e.g., a normal density. Cf skewed distributions; a HPD differs from simply reading off the quantiles. N(0,1) χ 2 4 df 25% 75% Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
28 HPD intervals HPDs can be a series of disjoint intervals, e.g., a bimodal density these are uncommon; but in such a circumstance, presenting a picture of the density might be the reasonable thing to do. See Example 1.7, p28: y i N(0, R), subject to extreme missingness. The posterior density of q(r) = r 12 / r 11 r 22 : Correlation Coefficient Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
29 Bayesian Consistency for anything other than a dogmatic/degenerate prior (see the earlier discussion of Cromwell s Rule), more and more data will overwhelm the prior. Bayesian asymptotics: with an arbitrarily large amount of sample information relative to prior information, the posterior density tends to the likelihood (normalized to be a density over h). central limit arguments: since likelihoods are usually approximately normal in large samples, then so too are posterior densities. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
30 Bayesian Consistency The prior remains fixed across the sequence, as sample size increases and h * is held constant. In this example, n = 6, 30, 90, 450 across the four columns. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
31 Bayesian Consistency The prior remains fixed across the sequence, as sample size increases and h * is held constant. In this example, n = 6, 30, 150, 1500 across the four columns. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
32 Other topics from Chapter One 1.8. Bayesian hypothesis testing Exchangeability. de Finetti s Representation Theorem. Simon Jackman (Stanford) Bayesian Analysis for the Social Sciences November 9, / 32
Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1
Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
People have thought about, and defined, probability in different ways. important to note the consequences of the definition:
PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models
Bayesian Statistics in One Hour. Patrick Lam
Bayesian Statistics in One Hour Patrick Lam Outline Introduction Bayesian Models Applications Missing Data Hierarchical Models Outline Introduction Bayesian Models Applications Missing Data Hierarchical
Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the p-value and a posterior
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Part 2: One-parameter models
Part 2: One-parameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
The result of the bayesian analysis is the probability distribution of every possible hypothesis H, given one real data set D. This prestatistical approach to our problem was the standard approach of Laplace
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Inference of Probability Distributions for Trust and Security applications
Inference of Probability Distributions for Trust and Security applications Vladimiro Sassone Based on joint work with Mogens Nielsen & Catuscia Palamidessi Outline 2 Outline Motivations 2 Outline Motivations
Elements of statistics (MATH0487-1)
Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -
Lecture 9: Bayesian hypothesis testing
Lecture 9: Bayesian hypothesis testing 5 November 27 In this lecture we ll learn about Bayesian hypothesis testing. 1 Introduction to Bayesian hypothesis testing Before we go into the details of Bayesian
Description. Textbook. Grading. Objective
EC151.02 Statistics for Business and Economics (MWF 8:00-8:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 2-6093 Email: [email protected] Office Hours: by appointment Description This course
Statistics in Geophysics: Introduction and Probability Theory
Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
STA 371G: Statistics and Modeling
STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics
Slide 1 An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Dr. Christian Asseburg Centre for Health Economics Part 1 Slide 2 Talk overview Foundations of Bayesian statistics
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
A Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
3. Data Analysis, Statistics, and Probability
3. Data Analysis, Statistics, and Probability Data and probability sense provides students with tools to understand information and uncertainty. Students ask questions and gather and use data to answer
Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics
Some Essential Statistics The Lure of Statistics
Some Essential Statistics The Lure of Statistics Data Mining Techniques, by M.J.A. Berry and G.S Linoff, 2004 Statistics vs. Data Mining..lie, damn lie, and statistics mining data to support preconceived
Persuasion by Cheap Talk - Online Appendix
Persuasion by Cheap Talk - Online Appendix By ARCHISHMAN CHAKRABORTY AND RICK HARBAUGH Online appendix to Persuasion by Cheap Talk, American Economic Review Our results in the main text concern the case
MAS2317/3317. Introduction to Bayesian Statistics. More revision material
MAS2317/3317 Introduction to Bayesian Statistics More revision material Dr. Lee Fawcett, 2014 2015 1 Section A style questions 1. Describe briefly the frequency, classical and Bayesian interpretations
Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
2. Information Economics
2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many
What is the purpose of this document? What is in the document? How do I send Feedback?
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics
Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni
1 Web-based Supplementary Materials for Bayesian Effect Estimation Accounting for Adjustment Uncertainty by Chi Wang, Giovanni Parmigiani, and Francesca Dominici In Web Appendix A, we provide detailed
For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
DECISION MAKING UNDER UNCERTAINTY:
DECISION MAKING UNDER UNCERTAINTY: Models and Choices Charles A. Holloway Stanford University TECHNISCHE HOCHSCHULE DARMSTADT Fachbereich 1 Gesamtbibliothek Betrtebswirtscrtaftslehre tnventar-nr. :...2>2&,...S'.?S7.
Tutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls [email protected] MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
More details on the inputs, functionality, and output can be found below.
Overview: The SMEEACT (Software for More Efficient, Ethical, and Affordable Clinical Trials) web interface (http://research.mdacc.tmc.edu/smeeactweb) implements a single analysis of a two-armed trial comparing
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
Basic Bayesian Methods
6 Basic Bayesian Methods Mark E. Glickman and David A. van Dyk Summary In this chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a Bayesian analysis are the likelihood
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 005 by the Society of Actuaries and the Casualty Actuarial Society
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
COMMON CORE STATE STANDARDS FOR
COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
Elements of probability theory
2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted
There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 [email protected] Genomics A genome is an organism s
The Variability of P-Values. Summary
The Variability of P-Values Dennis D. Boos Department of Statistics North Carolina State University Raleigh, NC 27695-8203 [email protected] August 15, 2009 NC State Statistics Departement Tech Report
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Important Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.
Statistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
ELEMENTARY STATISTICS
ELEMENTARY STATISTICS Study Guide Dr. Shinemin Lin Table of Contents 1. Introduction to Statistics. Descriptive Statistics 3. Probabilities and Standard Normal Distribution 4. Estimates and Sample Sizes
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Likelihood Approaches for Trial Designs in Early Phase Oncology
Likelihood Approaches for Trial Designs in Early Phase Oncology Clinical Trials Elizabeth Garrett-Mayer, PhD Cody Chiuzan, PhD Hollings Cancer Center Department of Public Health Sciences Medical University
MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson
MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson Statistics is concerned with making inferences about the way the world is, based upon
Statistics 104: Section 6!
Page 1 Statistics 104: Section 6! TF: Deirdre (say: Dear-dra) Bloome Email: [email protected] Section Times Thursday 2pm-3pm in SC 109, Thursday 5pm-6pm in SC 705 Office Hours: Thursday 6pm-7pm SC
STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
Statistics 151 Practice Midterm 1 Mike Kowalski
Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
