Statically determinate structures
|
|
|
- Maximilian Lynch
- 9 years ago
- Views:
Transcription
1 Statically determinate structures A statically determinate structure is the one in which reactions and internal forces can be determined solely from free-body diagrams and equations of equilibrium. These equations are: Σ H = 0, Σ V = 0 and Σ M = 0. It should be noted that the results of analysis are independent of the material from which the structure has been fabricated. Support and Connection Types Structural systems transfer their loading through a combination of elements. This is accomplished by joining the elements at their intersections, which would form the connections. Each connection is designed so that it can transfer, or support, a certain type of load. To perform the structural analysis, it is necessary to be aware of the types of forces that can be resisted, and transferred, at each support throughout the structure. The support conditions have a great impact on the behavior of the elements which make up each structural system. The most common types of connections are: roller; pinned; and fixed. The supports can be located anywhere along a structural element. They can be formed at the ends, at midpoints, or at any other intermediate points. The type of support connection determines the type of load that the support can resist. The diagrams shown in Table 1, illustrates the various representations of each type of support. 1
2 Table 1 Principle of Superposition For the principle of superposition to apply two requirements must be satisfied: 1. The material must behave in a linear-elastic manner, so that Hook s law is valid, and therefore the load is proportional to displacement. 2. The geometry of the structure must not undergo significant change due to load application, i.e., small displacement theory applies. 2
3 Equations of Equilibrium For a structure in equilibrium, the following must be satisfied at any point P: F 0 and M P = = 0 Using the xyz coordinate system, the equations can be represented in the following forms: Determinacy and Stability A stable structure remains stable for any imaginable system of loads. Therefore, the types of loads, their number and their points of application are not considered 3
4 when deciding the stability or determinacy of the structure. A given structure considered externally determinate if the total number of reaction components is equal to the equations of equilibrium available. In other words: Determinacy: Stability: 4
5 Example 1: Classify if each of the following beams is determinate or indeterminate. If statically indeterminate, what is the number of degree of indeterminacy? 5
6 Example 2: Classify if each of the following frames is determinate or indeterminate. If statically indeterminate, what is the number of degree of indeterminacy? 6
7 Truss Structures A truss can be defined as a structure that is composed of links or bars, assumed to be connected by frictionless pins at the joints, and arranged so that the area enclosed within the boundaries of the structure is subdivided by the bars into geometrical figures which are normally triangles. Internal determinacy is a type of indeterminacy that is associated to trusses. The basic form of the truss is a triangle. To make the truss, add two members and one joint, and repeat. Assume: j=total number of joints, i=total number of links, r= minimum number of reaction required for external determinacy/stability. i + r = 2j Total number of unknown = total number of equations available (at joints) If i + r = 2j stable and internally determinate If i + r > 2j stable and internally indeterminate If i + r < 2j unstable It should be noted that the structure is said to have determinacy and indeterminacy ONLY if the structure is stable. 7
8 Problem Examples 1: Assume r = 3 For the truss shown, determine if the truss is A-I ONLY B-II ONLY C-I and III D-I and II i = 11, r = 3, j = 7, i + r = 11+3 = 14, 2j = 2x7 = 14. I-Stable II-Indeterminate III- Determinate The truss is stable and internally determinate. Answer is C 8
9 Problem Examples 2: Assume r=3 For the truss shown, determine if the truss is I-Stable II-Indeterminate III- Determinate A-I ONLY B-II ONLY C-I and III D-I and II Solution i = 15, r = 3, j = 9, i + r = 15+3 = 18, 2j = 2x9 = 18. The truss is stable and internally determinate. Answer is C 9
10 Problem Examples 3: For the truss shown, determine if the truss is I-Stable II-Indeterminate III- Determinate A-I ONLY B-II ONLY C-I and III D-I and II Solution i = 18, r = 3, j = 10, i + r = 18+3 = 21, 2j = 2x10 = 20. The truss is stable and internally indeterminate. The answer is D 10
Statics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
Statically Indeterminate Structure. : More unknowns than equations: Statically Indeterminate
Statically Indeterminate Structure : More unknowns than equations: Statically Indeterminate 1 Plane Truss :: Determinacy No. of unknown reactions = 3 No. of equilibrium equations = 3 : Statically Determinate
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
Deflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
Approximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
Method of Joints. Method of Joints. Method of Joints. Method of Joints. Method of Joints. Method of Joints. CIVL 3121 Trusses - Method of Joints 1/5
IVL 3121 Trusses - 1/5 If a truss is in equilibrium, then each of its joints must be in equilibrium. The method of joints consists of satisfying the equilibrium equations for forces acting on each joint.
The elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
Analyze and Evaluate a Truss
#3 Learning Activity #3: Analyze and Evaluate a Truss Overview of the Activity In this learning activity, we will analyze and evaluate one of the main trusses from the Grant Road Bridge. We will create
CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS
1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the
4.2 Free Body Diagrams
CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
Analysis of Statically Determinate Trusses
Analysis of Statically Determinate Trusses THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Common Types of Trusses A truss is one of the major types of engineering structures which provides a practical
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
ENGINEERING MECHANICS STATIC
EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Free-body diagram of the pin at B X = 0 500- BC sin
A Dynamic Analysis of Price Determination Under Joint Profit Maximization in Bilateral Monopoly
A Dynamic Analysis of Price Determination Under Joint Profit Maximization in Bilateral Monopoly by Stephen Devadoss Department of Agricultural Economics University of Idaho Moscow, Idaho 83844-2334 Phone:
Java Applets for Analysis of Trusses, Beams and Frames
Java Applets for Analysis of Trusses, Beams and Frames by Robert Schottler Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the degree of
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
1. When we deform a material and it recovers its original shape, we say that it is a) Rigid
UNIT 05 TEST TECHNOLOGY 1º ESO GROUP: A DATE: / / 1. When we deform a material and it recovers its original shape, we say that it is 2. When we try to deform a material and it doesn t change its shape,
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
MECHANICS OF MATERIALS
T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading
PLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
Chapter 5: Indeterminate Structures Slope-Deflection Method
Chapter 5: Indeterminate Structures Slope-Deflection Method 1. Introduction Slope-deflection method is the second of the two classical methods presented in this course. This method considers the deflection
Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections. Fall '15.
Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections Fall 2015 All course materials are available on the RPI Learning Management System (LMS) website.
Mechanics of Materials. Chapter 4 Shear and Moment In Beams
Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.
SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
INTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
W02D2-2 Table Problem Newton s Laws of Motion: Solution
ASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 W0D- Table Problem Newton s Laws of otion: Solution Consider two blocks that are resting one on top of the other. The lower block
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
Solved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
Rigid and Braced Frames
Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
HØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/1-10
Løsningsforslag for kontinuasjonseksamen i 4/1-10 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html
Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is
Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics
Chapter 1: Statics 1. The subject of mechanics deals with what happens to a body when is / are applied to it. A) magnetic field B) heat C ) forces D) neutrons E) lasers 2. still remains the basis of most
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
CE 201 (STATICS) DR. SHAMSHAD AHMAD CIVIL ENGINEERING ENGINEERING MECHANICS-STATICS
COURSE: CE 201 (STATICS) LECTURE NO.: 28 to 30 FACULTY: DR. SHAMSHAD AHMAD DEPARTMENT: CIVIL ENGINEERING UNIVERSITY: KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN, SAUDI ARABIA TEXT BOOK: ENGINEERING
STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable
NPTEL STRUCTURAL RELIABILITY
NPTEL Course On STRUCTURAL RELIABILITY Module # 0 Lecture Course Format: eb Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati . Lecture 0: System
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
DISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
Awell-known lecture demonstration1
Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; [email protected] Awell-known lecture demonstration consists of pulling a spool by the free end
1st Grade Math Standard I Rubric. Number Sense. Score 4 Students show proficiency with numbers beyond 100.
1st Grade Math Standard I Rubric Number Sense Students show proficiency with numbers beyond 100. Students will demonstrate an understanding of number sense by: --counting, reading, and writing whole numbers
Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams
CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing
Chapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
CLASSICAL STRUCTURAL ANALYSIS
Table of Contents CASSCA STRUCTURA ANAYSS... Conjugate beam method... External work and internal work... 3 Method of virtual force (unit load method)... 5 Castigliano s second theorem... Method of consistent
CHAPTER 4 EARTHWORK. Section I. PLANNING OF EARTHWORK OPERATIONS
CHAPTER 4 EARTHWORK Section I. PLANNING OF EARTHWORK OPERATIONS IMPORTANCE In road, railroad, and airfield construction, the movement of large volumes of earth (earthwork) is one of the most important
CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80
CIV 7/87 Chapter 3a - Development of Truss Equations /8 Development of Truss Equations Having set forth the foundation on which the direct stiffness method is based, we will now derive the stiffness matri
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)
Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
Review D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...
Design and Build a Model Truss Bridge
#5 Learning Activity #5: Design and Build a Model Truss Bridge Overview of the Activity In this learning activity, we will design, build, and test a model truss bridge. We will analyze the Owner s needs,
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Analyzing Piecewise Functions
Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including
Topology optimization based on graph theory of crash loaded flight passenger seats
7. LS-DYNA Anwenderforum, Bamberg 2008 Optimierung III Topology optimization based on graph theory of crash loaded flight passenger seats Axel Schumacher, Christian Olschinka, Bastian Hoffmann Hamburg
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY Dr. Amilcar Rincon-Charris, MSME Mechanical Engineering Department MECN 3005 - STATICS Objective : Students will: a) Understand the concepts of
BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Hydraulics Laboratory Experiment Report
Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
SOLUTION 6 6. Determine the force in each member of the truss, and state if the members are in tension or compression.
6 6. etermine the force in each member of the truss, and state if the members are in tension or compression. 600 N 4 m Method of Joints: We will begin by analyzing the equilibrium of joint, and then proceed
Section 16: Neutral Axis and Parallel Axis Theorem 16-1
Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts
Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver
System of Forces and Moments Introduction The moment vector of a force vector,, with respect to a point has a magnitude equal to the product of the force magnitude, F, and the perpendicular distance from
Objective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
Modeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines
IL 32 Influence Lines - Muller-reslau Principle /5 In 886, Heinrich Müller-reslau develop a method for rapidly constructing the shape of an influence line. Heinrich Franz ernhard Müller was born in Wroclaw
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
Goal Seeking in Solid Edge
Goal Seeking in Solid Edge White Paper Goal Seeking in Solid Edge software offers a fast built-in method for solving complex engineering problems. By drawing and dimensioning 2D free-body diagrams, Goal
THEORETICAL MECHANICS
PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents
Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of -6 Grade-Level Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Chapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
Method Statement for Static Load Testing (Compression) for Micropiles
Method Statement for Static Load Testing (Compression) for Micropiles 1. INTRODUCTION This vertical compression pile maintained load test is usually carried out to ensure the structural and geotechnical
MATERIALS AND MECHANICS OF BENDING
HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL
Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
Chapter 8. Flexural Analysis of T-Beams
Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either
MAJOR LEARNING OUTCOMES ARCHITECTURE AND URBAN PLANNING 1ST CYCLE PROGRAMS GENERAL ACADEMIC PROFILE
MAJOR LEARNING OUTCOMES Faculty: Major: Course level: ARCHITECTURE ARCHITECTURE AND URBAN PLANNING 1ST CYCLE PROGRAMS GENERAL ACADEMIC PROFILE Positioning of major in the study area The major in Architecture
Everyday Mathematics GOALS
Copyright Wright Group/McGraw-Hill GOALS The following tables list the Grade-Level Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units)
APPENDIX A Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) Objectives: Create a geometric representation of a cantilever beam. Use the geometry model to define an MSC.Nastran
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
Course in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
