|
|
|
- Dorothy Rice
- 9 years ago
- Views:
Transcription
1 InclusionConstraintsover MartinMuller1,JoachimNiehren1andAndreasPodelski2 Non-emptySetsofTrees? UniversitatdesSaarlandes,66041Saarbrucken,Germany ImStadtwald,66123Saarbrucken,Germany 2Max-Planck-InstitutfurInformatik, 1ProgrammingSystemLab, Abstract.WepresentanewconstraintsystemcalledINES.Itsconstraintsareconjunctionsofinclusionst1t2betweenrst-orderterms (withoutsetoperators)whichareinterpretedovernon-emptysetsof trees.theexistingsystemsofsetconstraintscanexpressinesconstraintsonlyiftheyincludenegation.theirsatisabilityproblemis NEXPTIME-complete.Wepresentanincrementalalgorithmthatsolves programminglanguage. toapplyinesconstraintsfortypeanalysisforaconcurrentconstraint thesatisabilityproblemofinesconstraintsincubictime.weintend Sets)andpresentanincrementalalgorithmtodecidethesatisabilityofINES 1Introduction WeproposeanewconstraintsystemcalledINES(InclusionsoverNon-Empty constraintsintimeo(n3).inesconstraintsareconjunctionsofinclusionst1t2 betweenrst-orderterms(withoutsetoperators)whichareinterpretedoverthe t16;^t1t2issatisableoverarbitrarysets.notethattheconstraintt6; AnINES-constraintt1t2issatisableovernon-emptysetsifandonlyif innitetrees.allgivenresultscanbeeasilyadaptedtonitetrees. domainofnon-emptysetsoftrees.inthispaperwefocusonsetsofpossibly cannotbeexpressedbypositivesetconstraintsonly[16].theexpressivenessof INESconstraintsissubsumedbythatofsetconstraintswithnegation[9,16].In thecaseofnitetrees,thesatisabilityproblemofsetconstraintswithnegation isknowntobedecidable[1,13];itiscompletefornondeterministicexponential time[9,10].thisresultimpliesthatthesatisabilityproblemofinesconstraints WecharacterizethesatisabilityofINESconstraintsbyasetofaxiomssuchthat aninesconstraintissatisableovernon-emptysetsifandonlyifitissatisable hasnotbeenconsideredbefore. oversetsofnitetreesisdecidable.thecorrespondingproblemforinnitetrees?asummaryhasappearedin:maxdauchet,ed.,proc.ofcaap'97aspartof TAPSOFT'97,TheoryandPracticeofSoftwareDevelopment.April1997,Lille,France.
2 closesagiveninputconstraintunderitsconsequenceswithrespecttotheaxioms. insomemodeloftheseaxioms.theseaxiomsdeneaxpointalgorithmthat Weprovethataconstraint'issatisableifandonlyifthealgorithmwith formulaeinterpretedovertreesandovernon-emptysetsoftreesareclosely SetsversusTrees.Thesatisabilityproblemsofseveralclassesofrst-order willbediscussedlaterinthisintroduction. input'doesnotderive?asaconsequenceof'.allaxioms(forinnitetrees) related.thefollowingtwoinstancesofthisobservationhaveinspiredourchoice ofaxiomsorunderlyourproofs. Equalityconstraintsareconjunctionsofequationst1=t2betweenrst-order oftherst-ordertheoryofequalityconstraintsovertrees[18,19,12]sinceits non-emptysetsoftreescoincide.thisfollowsfromthecompleteaxiomatization ordertheoriesofequalityconstraintsovertreesandofequalityconstraintsover symmetryofsetinclusion(t1=t2$t1t2^t2t1).actually,eventherst- terms.oversets,theycanbeexpressedbyinclusionconstraintsduetoanti- axiomsalsoholdovernon-emptysetsoftrees(butdon'toverpossiblyempty sets). ThereexistsanaturalinterpretationofINES-constraintovertreelikestructures thatwecalltreeprexes.inadierentcontext[6]treeprexesarecalledbohm trees(without-binders).treeprexescomewithanaturalorderingrelation overtreeprexes(wheretheinclusionsymbolisinterpretedastheinverseofthe wheretheemptytreeprexisthegreatestelement.weprovethatanines constraintissatisableovernon-emptysetsoftreesifandonlyifitissatisable formulatedforabinaryfunctionsymbolf). oftheinclusionrelation.wealsoassumethefollowingdecompositionaxiom(here Axioms.Thersttwoaxiomsweneedpostulatethereexivityandtransitivity prexorderingontreeprexes). Thisaxiomholdsovernon-emptysetsoftreesbutnotoverpossiblyemptysets, sinceeveryvariableassignmentwith(x)=;or(y)=;isasolutionof f(x;y)f(x0;y0)!xx0^yy0 f(x;y)f(x0;y0)butnotnecessarilyofxx0^yy0.ananalogousstatement holdsforthefollowingclashaxiom. Forinstance,theunsatisabilityoftheconstraint'givenbyxg(x)^xg(y)^ yz^zaisnotderivablewiththeseaxiomsalone.weneedfurtheraxioms TheseaxiomsdonotsucetocharacterizethesatisabilityofINESconstraints. f(x;y)g(x0;y0)!? forf6=g thatusenon-disjointnessconstraintst16jt2denedast1\t26;.forthenondisjointnessrelationwerequirereexivityandsymmetryandadecompositionaxiomasfortheinclusionrelation. f(y;z)6jf(y0;z0)!y6jy0^z6jz0 2
3 Finally,weassumeaclashaxiomsimilartotheoneforinclusionandrequire nondisjointnesstobecompatiblewithinclusioninthefollowingsense. Nowreconsidertheconstraint'givenaboveandobservethatwecanderive x6jz^xy!y6jz x6jxbyreexivity,thenx6jybydecomposition,andx6jzbycompatibility.this AlgorithmandComplexity.Theaboveaxiomsyieldanalgorithmthatadds yieldsaclashwithxg(x)^za. constraintsoftheformxy,x6jytoagiveninputconstraint'until'isclosed underallaxiomsorimplies?.theinesconstraintxt1^:::^xtnexpresses x1\:::\xk6;(whichcanbeexpressedbytheformula9y(yx1^:::^yxk)) thensetsdenotedbythetermst1;:::;tnhaveanon-emptyintersection.fortunately,itisnotnecessarytoaddk-arynon-disjointnessconstraintsoftheform ofwhichthereareexponentiallymany.instead,ouralgorithmaddsatmost O(n2)constraintstotheinputconstraint',wherenisthenumberofvariables timeo(n).thisyieldsanimplementationofouralgorithmwithtimecomplexity in'.theadditionofasingleconstraintcanbeimplementedsuchthatitcosts TypeAnalysis.OneapplicationforINESconstraintswhichweareinvestigatingin[23]istypeanalysisforconcurrentconstraintprogramming[17,27],in O(n3).Thisimplementationcanbeorganizedincrementally. anerrorifthesetofpossiblerun-timevaluesisemptyforsomevariable.this INESallowsaninterpretationoversetsofpossiblyinnitetrees.Itisconsidered programvariables.sincevaluesinozincludeinnitetrees,itisimportantthat There,INESconstraintsareusedtoapproximatethesetofrun-timevaluesfor particularoz[28].asformalfoundationsweintendtousethecalculiin[24,25]. factwasourinitialmotivationforthechoiceofnon-emptysetsoftreesasthe PlanofthePaper.InSection2,wediscussrelatework.InSection3,we denethesyntaxandsemanticsofinesconstraintsandinsection4,wepresent interpretationdomainforinesconstraints. theaxiomsandthealgorithm.insection5,weprovethecompletenessofour thedetailsoftheproofsintheconferenceversionofthepaper. algorithm.insection6,wecomparetheinterpretationsofinesconstraintsover treeprexesandovernon-emptysetsoftrees.duetospacelimitations,weomit AppendixAgivesanexampleillustratingprogramanalysisforOzwithINES constraints.appendixbcontainstheomittedproofs.appendixcdetailshow ofatomicsetconstraints(standardsetconstraintswithoutsetoperatorsand toimplementthealgorithmwithincrementalo(n3)complexity.inappendixd, negation)isinvariantwithrespecttothechoiceofniteorinnitetrees. withexplicitnon-emptinessconstraintsx6;.wealsoprovethatsatisability ofstandardsetconstraints(interpretedoverpossiblyemptysetsofnitetrees) weadaptthealgorithmtothenite-treecase,andinappendixetoasubclass 3
4 2RelatedWork StandardSetConstraints.Setconstraintsasin[2,5,10,15]areinclusions Ouralgorithmcanbeadaptedsuchthatitsolvesasubclassofsetconstraints betweenrst-ordertermswithsetoperatorsinterpretedoversetsofnitetrees. withoutsetoperatorsincubictime(seeappendixe).thegeneralcaseisnondeterministicallyexponentialtimecompleteasprovedin[1,13].thesubclass thatwecansolveincubictimesyntacticallyextendstheinesconstraintswith explicitnon-emptinessconstraintx6;(seeappendixe).notethatthesatisabilityofthesesetconstraintsdependsonthechoiceofniteorinnitetrees (considerxf(x)^x6;),whichisincontrasttostandardsetconstraintswithout negation.ouralgorithmaccountsfornitenessthroughtheoccurcheck. AtomicSetConstraints.HeintzeandJaarconsiderso-calledatomicset constraints[15]whichsyntacticallycoincidewithinesconstraintsbutareinterpretedoverpossiblyemptysetsofnitetrees.thesatisabilityproblemfor SetConstraintsforTypeAnalysis.Aikenetal.[3,4]useconstraints resultsof[14]and[15].anexplicitproofisgiveninappendixeofthispaper. overspecicsetsoftreescalled\types"forthetypeanalysisoffl.thereisa atomicsetconstraintsisalsoo(n3).thisresultisimplicitinthecombined minimaltype0which{intermsofconstraintsolving{behavesjustlikethe emptysetinstandardsetconstraints(althoughitisnotanemptysetfromthe typespointofviewbutcontainsavaluedenotingnon-termination).incontrast followingconstraintsimplicationrulebydroppingthedisjunctsinbrackets[4]. intersection.oneoftheoptimizationsusedbyaikenetal.istostrengthenthe totheconstraintsofthispaper,theirsetconstraintsprovideforunionand Asstatedin[4],thisoptimizationdoesnotpreservesoundness(f(a;0)f(b;0) holdsbutab^00doesnot).itmightbepossibletojustifyitbyusingnonemptysetsasinterpretationdomain.thisislefttofurtherresearch. Podelski[11]giveanalgorithmwhichdecidestheentailmentproblembetween INESconstraintswheninterpretedoversetsofnitetrees.Theyalsodecidethe EntailmentandIndependenceforInesConstraints.Charatonikand in[11]donotincludeanyoftheresultspresentedheresincetheyuseasan satisabilityofinesconstraintswithnegationinthenitetreecase.theresults explicitprerequisitethefactthatsatisabilityofinesconstraintsisdecidable. f(x;y)f(x0;y0)!xx0^yy0[_x0_y0] thetwosatisabilityproblemsareratherdierentproblemssincetarskianset TarskianSetConstraints.MacAllesterandGivan[21]giveacubicalgorithm whichdecidessatisabilityforaclassoftarskiansetconstraints[22],andwhich alsocontainsanon-disjointnessconstraint.apartfromthissyntacticsimilarity, constraintsarenotinterpretedoverthedomainoftrees(thisisalsoobserved in[22]).arelatedopenquestioniswhetherouraxiomsdenealocaltheory[20, 8],whichwouldalsoproofthecubiccomplexityboundofouralgorithm. 4
5 asetoffunctionsymbolsf;gandtheirrespectivearityn0.constants(i.e. Weassumeasetofvariablesrangedoverbyx;y;zandasignaturethatdenes 3SyntaxandSemanticsofInesConstraints functionsymbolsofarity0)aredenotedwithaandb. Trees.Webasethedenitionoftreesonthenotionofpathssincewewishto includeinnitetrees.pathswillturnoutcentralforourproofsinsection5.a pathpisasequenceofpositiveintegersrangedoverbyi;j;n;m.theemptypath isdenotedby".wewritethefree-monoidconcatenationofpathspandqaspq; wehave"p=p"=p.givenpathspandq,qiscalledaprexofpifp=qp0for somepathp0. Letbeasetofpairs(p;f)ofpathspandfunctionsymbolsf.Wesaythat isprexclosed,if(p;f)2andqisaprexofpimpliesthatthereisagsuch that(q;g)2.itispathconsistent,if(p;f)2and(p;g)2impliesf=g. Wecallarityconsistent,if(p;f)2,(pi;g)2impliesthati2f1;:::;ng providedthearityoffisn.finally,iscalledaritycomplete,if(p;f)2, wherethearityoffisn,impliesforalli2f1;:::;ngtheexistenceofagwith (pi;g)2. A(possiblyinnite)treeisasetofpairs(p;f)thatisnon-empty,prexclosed, aritycomplete,pathconsistent,andarityconsistent.thesetofall(possibly InesConstraints.AnINESconstraintt1t01^:::^tnt0nisaconjunctionof treesbyp+(tree). innite)treesoverisdenotedbytreeandthesetofallnon-emptysetsof inclusionsbetweenrst-ordertermstdenedbythefollowingabstractsyntax. implicitlythatthelengthoftcoincideswiththearityoff.weinterpretines Hereandthroughoutthepaper,tstandsforasequenceoftermsandweassume constraintsoverthestructurep+(tree)ofnon-emptysetsoftrees.inthisstructure,afunctionsymbolfofisinterpretedaselementwisetreeconstructor andtherelationsymbolassubsetrelation.wecallarst-orderformulaover INESconstraintsatisableifitissatisableinthestructureP+(Tree).TworstorderformulaeoverINESconstraintsarecalledequivalentiftheyareequivalently interpretedinp+(tree). t::=xjf(t) inclusionsxf(y)andf(y)x(thisisamatteroftaste).andthird,weneed insteadofpossiblydeeptermst.second,weuseequalitiesx=f(y)ratherthan binarynon-disjointnessconstraintsx6jy.theirsemanticsisgivenbytheequivalencetotheformulax\y6;oversetsoftrees.overnon-emptysetsoftrees,x6jstraintsyntaxinthesequel.first,werestrictourselvestoattermsf(x)andx FlatInesConstraints.Foralgorithmicreasons,weuseanalternativecon- 5
6 isequivalentto9z(zx^zy).crucially,however,nondisjointnessconstraints x6jyavoidexplicitexistentialquanticationinouralgorithm. junction,i.e.,weconsider'asamultisetofinclusionsxy,equalitiesx=f(y), WeidentifyatINESconstraints'uptoassociativityandcommutativityofcon- ThesethreestepsleadustoatINESconstraints'denedasfollows. andnon-disjointnessconstraintsx6jy. '::='1^'2jxyjx=f(y)jx6jy Fromnowon,wewillconsideronlyatINESconstraintsandcallthemconstraintsforshort.ThisisjustiedbythefollowingProposition.Letthesize ofaconstraint'bethenumberoffunctionsymboloccurrencesplusvariable Proposition1.ThesatisabilityproblemsofINESconstraintsandofatINES occurrencesin'. 4AxiomsandAlgorithm constraintshavethesametimecomplexityuptoalineartransformation. WepresentasetofaxiomsvalidforINES-constraintsinterpretedovernon-empty solvesthesatisabilityproblemofinesconstraints.thecorrectnessandthe setsoftrees.inasecondstep,weinterprettheseaxiomsasanalgorithmthat A1.xxandxy^yz!xz complexityofthisalgorithmwillbeprovedinsection5. A2.x=f(y)^xx0^x0=f(z)!yz A5.x=f(y)^x6jx0^x0=f(z)!y6jz A3.xy!x6jyandxy^x6jz!y6jzandx6jy!y6jx A4.x=f(y)^x6jx0^x0=g(z)!?forf6=g Table1containsverulesA1-A5representingsetsofaxioms.1Theunionof Table1.AxiomsofINESconstraintsovernon-emptysetsofinnitetrees thesesetsisdenotedbya.forinstance,arulexxrepresentstheinniteset 1Notethattheseaxiomsdierfromtheonesgivenintheintroduction.Theconstraints usedtherearenotatandthevariable-variablecasexyandx6jyareomitted. Indeed,theaxiomsintheintroductionaresemanticallycomplete,althoughthisis non-trivialtoseeanddependsonthecorrectnessofthealgorithmpresentedhere. 6
7 ofaxiomsthatisobtainedbyinstantiationofthemetavariablexwithconcrete Proposition2.ThestructureP+(Tree)isamodeloftheaxiomsinA. constraints'! variables.notethatanaxiomiseitheraconstraint',animplicationbetween,oranimplication'!?. Proof.Byaroutinecheck.Wenotethatthenon-emptinessassumptionof P+(Tree)isessentialforaxiomsA2andA3:1. TheAlgorithm.ThesetofaxiomsAcanbeconsideredasa(nave)xed pointalgorithmathat,givenaninputconstraint',iterativelyaddslogical 2 consequencesofa[f'gto'.moreprecisely,ineverystepainputsaconstraint' possibleif?takesplaceifthereexists andeitherterminateswith?oroutputsaconstraint'^ 02'suchthat 0!?2A.Outputof'^.Terminationwith Example1.Arsttypeofinconsistencydependsonthetransitivityofsetinclusion.Hereisatypicalexample: 2Aorthereexists 0in'with 0! with?bya4. AlgorithmAmayaddxzbyA1:2,thenx6jzwithA3:1,andthenterminate x=a^xy^yz^z=b!? fora6=b disjointnessrequirements.forillustration,weconsider: Example2.Asecondtypeofinconsistencycomeswithimplicitorexplicitnon- AlgorithmAmayaddz6jxbyA3:1,thenx6jzviaA3:3,thenx6jywithA3:2,and nallyterminatewith?viaa4. x=a^zx^zy^y=b!?for fora6=b reasoningwitha2.consider: Example3.Inconsistenciesoftheabovetwotypesmaybedetectedbystructural AlgorithmAmayaddxxbyA1:1,thenxzwithA2,thenx6jzbyA3:1,and nallyterminatewith?witha4. x=f(x)^x=f(z)^z=a!? Example4.WeneedanotherstructuralargumentbasedonA5forderivingthe unsatisabilityofthefollowingconstraint. AlgorithmAmayaddx6jyafterseveralstepsasshowninExample2.Thenit mayproceedwithx6jx0viaa5andterminatewith?viaa4. x=f(x)^zx^zy^y=f(x0)^x0=a!? 7
8 Termination. straintsx6jyandxyto'whicharenotcontainedin'.wealsorestrictre- addingasimplecontrol.givenaninputconstraint',weaddonlysuchcon- exivityofinclusionxxtosuchvariablesxoccurringin'.givenasubsets ofa,aconstraint'iscalleda0-closed,ifalgorithmaunderthegivencontrol AlgorithmAcanbeorganizedinaterminatingmannerby notcontain?bydenition.)thisdenesthenotionofa-closednessbutalsoof andrestrictedtotheaxiomsina0cannotproceed.(notethatconstraintsdo A1-closedness,A2-closedness,etc.,whichwillbeneededlateron. Example5.Ourcontroltakescareofterminationinpresenceofcycleslike x=f(x).forinstance,thefollowingconstraintisa-closed. Inparticular,A2andA5donotloopthroughthecyclex=f(x)innitelyoften. Proposition3.If'isaconstraintwithmvariablesthenalgorithmAwith x=f(x)^xy^y=f(x)^xx^yy^x6jx^y6jy^x6jy^y6jx Proof.SinceAdoesnotintroducenewvariables,itmayaddatmostm2nondisjointnessconstraintsx6jyandm2inclusionsxy. 2 TheproofofthisstatementisthesubjectofSection5.There,weconstructthe Proposition4.EveryA-closedconstraint'issatisableoverP+(Tree). input'terminatesundertheabovecontrolinatmost2m2steps. (oineandonline)wherenistheconstraintsize. generaldonothaveasmallestsolution(considerxf(xy)). Theorem5.ThesatisabilityofINESconstraintscanbedecidedintimeO(n3) greatestsolutionforasatisableconstraint(lemma9).notethatconstraintsin control(proposition3),thisyieldsaeectivedecisionprocedure.thecomplexitystatementisprovedinproposition14.themainideaisthateverystepof implementationofalgorithma.itexploitsthatalgorithmaleavestheorder unspeciedinwhichaxiomsinaareapplied. algorithmacanbeimplementedintimeo(n)andthatthereareo(n2)steps (Proposition3).2IntheproofofProposition14,wepresentanincremental ThereisaclassofconstraintsonwhichalgorithmAindeedtakescubictime, namelytheinclusionscyclesx1x2^:::^xn?1xn^xnx1wheren1.the closureunderaisthefulltransitiveclosurevfxixjji;j2f1:::nggplusthe 2 with?.proposition4provesthat'issatisableifastartedwith'terminates Proof.Proposition2showsthat'isunsatisableifAstartedwith'terminates withaconstraint.sinceaterminatesforallinputconstraintsundertheabove correspondingnon-disjointnessconstraints. 2EverystepofalgorithmAcoststimeO(n)onlywithrespecttoanamortizedtime analysis,whichwedonotmakeexplicitinourcomplexityproof. 8
9 inproposition4.wehavetoconstructasolutionforeverya-closedconstraint. 5Completeness ThegoalofthisSectionistoprovethecompletenessofouralgorithmasstated TheideaistoconstructsolutioninasubstructureofP+(Tree)thestructureof treeprexes. TreePrexes.Atreeprexisasetofpairs(p;f)thatisprexclosed,path overtreeprexessuchthatprexbecomesastructure.functionsymbolsf2 alltreeprexesisdenotedbyprex.wecannaturallyinterpretinesconstraints consistent,andarityconsistent.notethateverytreeisatreeprex.thesetof areinterpretedastreeprexconstructors(generalizingtreeconstructors).the inclusionsymbolisinterpretedastheinvertedsubsetrelationontreeprexes thatwedenotewith(i.e.,12i12).therelation16j2holdsover Prexi1[2ispathconsistent(andhenceatreeprex). dingtrees:prex!p+(tree)givenby: Proposition6.PrexisasubstructureofP+(Tree)withrespecttotheembed- Proof.ThemappingTreesisahomomorphismwithrespecttofunctionsymbolsf2andtherelationsymbolsand6j. Trees()=f0j0isatreesuchthat0g Corollary7.IfaconstraintissatisableoverPrexthenitissatisableover P+(Tree). 2 Aconjunctionofsuchconstraintsissatisableifallconjunctsaresatisable.2 PathReachability. Proof.Forconstraintsxy,x=f(y),andx6jy,thisfollowsfromProposition6. constraint',wedeneabinaryrelation';p,wherex';pyreadsas\yis thenotionofpathconsistencywithrespecttoconstraints.forallpathspand reachablefromxoverpathpin'": Weintroducethepathreachabilityrelations';pand x';"yifxyin' Wedenerelationsx';pfmeaning\fcanbereachedfromxviapathpin'": x';iyiifx=f(y1:::yi:::yn)in'; x';pqyifx';puandu';qy: Forexample,if'istheconstraintxy^y=f(u;z)^z=g(x)thenthefollowing reachabilityfromxrelationshipshold:x';"y,x';2z,x';21x,x';21y,etc., aswellasx';"f,x';2g,x';21f,etc. x';pfifx';pyandy=f(u)in'; 9
10 Denition8PathConsistency.Wecallaconstraint'pathconsistentifthe followingtwoconditionsholdforallx,y,p,f,andg. Lemma9.EveryA1-A2-closedandpathconsistentconstraintissatisableover 1.Ifx';pg,xx,andx';pfthenf=g. Prex. 2.Ifx';pg,x6jy,andy';pfthenf=g. ProofofProposition4.WehavetoshowthateveryA-closedconstraint'is andhencesatisableinp+(tree)bycorollary7. satisable.'ispathconsistentbylemma10,satisableinprexbylemma9, Lemma10.EveryA3-A5-closedconstraintispathconsistent. 6Non-EmptySetsversusTrees 2 Theorem11.GivenanINESconstraints',thefollowingthreestatementsare interpretationovertrees. emptysetsoftrees.forthefragmentofequalityconstraintswealsoconsideran WediscussinterpretationsofINESconstraintsovertreeprexesandovernon- equivalent: 1.'issatisable(overP+(Tree)). Proof.1)to3).If'issatisableoverP+(Tree),thenitissatisableinsome 3.'issatisableinsomemodeloftheaxiomsinA. 2.'issatisableoverPrex. 3)to2).Let'besatisableinsomemodelofA.AlgorithmAterminateswhen modelofa,sincep+(tree)isamodelofabyproposition2. 2)to1).If'issatisableoverPrexthenitissatisablebyCorollary7. startedwith'byproposition3.itoutputsaconstraint isequivalentto'inallmodelsofa. PrexbyLemmata9and10. isa-closedandhencesatisableover (andnot?)that ingisantisymmetric(x=y$xy^yx). P+(Tree),equalitiescanbeexpressedbyinclusionssincetheinclusionorder- Anequalityconstraintisaconjunctionofequalitiesx=yandx=f(y).Over 2 Theorem12.Thethreerst-ordertheoriesofequalityconstraintsovernonemptysetsoftrees,overtreeprexes,andovertreescoincide(i.e.,ofthestructuresP+(Tree),PrexandTree).3 3Independently,A.ColmerauerobservedthisforP+(Tree)andTree(pers.comm.). 10
11 equality. isimmediatesincetheyarealreadycontainedinawithinclusionreplacedfor Proof.Thisfollowsfromthefactthatallaxiomsofthecompleteaxiomatization oftrees[18,19,12]arevalidfornon-emptysetsoftrees.thisholdsfortheaxioms oftheform8y9!x(x1=f1(xy)^:::^xn=fn(xy)).validityoftheotheraxioms structuresp+(tree)andprex.aformulathatholdsoverprexbutnotover Incontrast,rst-orderformulaeoverinclusionconstraintscandistinguishthe P+(Tree)isgivenby 2 partialordersin[6]). wherea6=b.anotherformuladistinguishingbothstructurescomeswitha constraint-basedreformulationofthecoherenceproperty(denedforcomplete 8x(ax^bx!8y(yx)) Wesaythatanorderingrelationsatisesthecoherencepropertyifitsatisesthe thegivenordering).vi;j2i9z(zxi^zxj)!9z(vi2izxi) followingformulaeforallnitesetsi(whereinclusionsymbolisinterpretedas propertydoesnothold.thereitstatesthenon-emptinessofann-intersection Thisformulastatesthatforallvariableassignmenttheelementsfromthe (xi);(xj)have(i;j;2f1;:::;ng).forinclusionovernon-emptysetsthis nitesetf(xi)ji2ighaveacommonlowerboundifeverytwoofitselements t1\:::\tnifallpairwiseintersectionsti\tjarenon-empty(i;j2f1:::ng), whichisrefutedbytheexamplei=f1;2;3gand(x1)=fa;bg,(x2)=fa;cg, (x3)=fb;cgfordistinctconstantsa;b;c. Proposition13.Thetreeprexorderingsatisesthecoherenceproperty. solutionof9z(vi2izxi). Proof.ForsomeniteindexsetJIandvariableassignmentintoPrex, pathconsistentsuchthattheunionsi2i(xi)ispathconsistent.henceisa isasolutionofall9z(zxi^zxj)thenallpairwiseunions(xi)[(xj)are notethatisasolutionof9z(vi2jzxi)isi2j(xi)ispathconsistent.if Acknowledgements.WewouldliketothankDavidBasin,DenysDuchier,Witold astheanonymousrefereesforvaluablecommentsondraftsofthispaper.theresearch Charatonik,HaraldGanzinger,GertSmolka,RalfTreinenandUweWaldmann,aswell 2 reportedinthispaperhasbeensupportedbythetheespritworkinggroupcclii (EP22457)andtheDeutscheForschungsgemeinschaftthroughtheGraduiertenkolleg KognitionswissenschaftandtheSFB378attheUniversitatdesSaarlandes. References 1.A.Aiken,D.Kozen,andE.Wimmers.DecidabilityofSystemsofSetConstraints withnegativeconstraints.informationandcomputation,
12 2.A.AikenandE.Wimmers.SolvingSystemsofSetConstraints.InProc.7thLICS, pp.329{340.ieee, A.AikenandE.Wimmers.TypeInclusionConstraintsandTypeInference.In Proc.6thFPCA,pp.31{ A.Aiken,E.Wimmers,andT.Lakshman.SoftTypingwithConditionalTypes. InProc.21stPOPL.ACM, L.Bachmair,H.Ganzinger,andU.Waldmann.SetConstraintsaretheMonadic Class.InProc.8thLICS,pp.75{83.IEEE, H.P.Barendregt.TheTypeFreeLambdaCalculus.InBarwise[7], J.Barwise,ed.HandbookofMathematicalLogic.Number90inStudiesinLogic. North{Holland, D.BasinandH.Ganzinger.AutomatedComplexityAnalysisBasedonOrdered Resolution.In11thLICS.IEEE, W.CharatonikandL.Pacholski.Negativesetconstraintswithequality.In Proc.9thLICS,pp.128{ W.CharatonikandL.Pacholski.SetconstraintswithprojectionsareinNEXP- TIME.InProc.35thFOCS,pp.642{ W.CharatonikandA.Podelski.TheIndependencePropertyofaClassofSet Constraints.InProc.2ndCP.LNCS1118,Springer, H.ComonandP.Lescanne.Equationalproblemsanddisunication.Journalof SymbolicComputation,7:371{ R.Gilleron,S.Tison,andM.Tommasi.SolvingSystemsofSetConstraintswith NegatedSubsetRelationships.InProc.34ndFOCS,pp.372{ N.Heintze.SetBasedAnalysisofMLPrograms.TechnicalReportCMU{CS{93{ 193,SchoolofComputerScience,CarnegieMellonUniversity.July N.HeintzeandJ.Jaar.ADecisionProcedureforaClassofSetConstraints (ExtendedAbstract).InProc.5thLICS,pp.42{51.IEEE, D.Kozen.Logicalaspectsofsetconstraints.InProc.CSL,pp.175{ M.J.Maher.Logicsemanticsforaclassofcommitted-choiceprograms.InJ.-L. Lassez,ed.,Proc.4thICLP,pp.858{876.TheMITPress, M.J.Maher.CompleteAxiomatizationsoftheAlgebrasofFinite,Rationaland InniteTrees.InProc.3rdLICS,pp.348{457.IEEE, A.I.Malc'ev.AxiomatizableClassesofLocallyFreeAlgebrasofVariousType. InTheMetamathematicsofAlgebraicSystens:CollectedPapers ,ch.23, pp.262{281.north{holland, D.McAllester.AutomaticRecognitionofTractabilityinInferenceRelations. JournaloftheACM,40(2),Apr D.McAllesterandR.Givan.TaxonomicSyntaxforFirst-OrderInference.Journal oftheacm,40(2),apr D.McAllester,R.Givan,D.Kozen,andC.Witty.TarskianSetConstraints.In Proc.11thLICS.IEEE, M.Muller.TypeAnalysisforaHigher-OrderConcurrentConstraintLanguage. DoctoralDissertation.UniversitatdesSaarlandes,TechnischeFakultat,66041 Saarbrucken,Germany.Inpreparation. 24.J.Niehren.FunctionalComputationasConcurrentComputation.In23rdPOPL, pp.333{343.acm, J.NiehrenandM.Muller.ConstraintsforFreeinConcurrentComputation.In Proc.1stASIAN,LNCS1023,pp.171{186.Springer, TheOzProgrammingSystem.ProgrammingSystemsLab,UniversitatdesSaarlandes.Availableathttp:// 12
13 27.V.A.Saraswat.ConcurrentConstraintProgramming.TheMITPress, G.Smolka.TheOzProgrammingModel.InJ.vanLeeuwen,ed.,ComputerScienceToday,LNCS1000,pp.324{343.Springer,1995. AInes-ConstraintsforProgramAnalysis constraintprogramminglanguages[17,27]suchasoz[28](see[24,25]forformalfoundationsofoz).duringtheexecutionofprogramsintheselanguages, WeareinvestigatingtheapplicationofINESconstraintsforprogramanalysis. Morespecically,weintendtoconstructatypeanalysissystemforconcurrent thesetofpossiblevaluesisemptyforsomeprogramvariable. thepossiblevaluesofprogramvariablesareapproximatedbyconstraints.for analysisaddedincomments(usingthespecialfunctionsymbolproc).4 Forillustration,considerthefollowingOzprogramwithitsconstraint-based programswithoutsearch(backtracking),itisconsideredaprogrammingerrorif proc{px}x=aend proc{qy}y=bend {PZ}{QZ} %9x(p=proc(x)^x=a)^ %9y(q=proc(y)^y=b)^ argumentsxandy,respectively,aswellastwoprocedureapplicationswiththe TheprogramcontainsthedenitionoftwoproceduresPandQwithformal %proc(z)p^proc(z)q andz=bwillbeemittedwhichareinconsistentwitheachother. TheprogramvariablesP,Q,X,Y,andZaremappedtoconstraintvariablesp, sameactualargumentz.onexecutionoftheseapplications,theconstraintsz=a indicatedinthecomments.theconjunctionoftheseconstraintsischeckedfor q,x,y,andz,andtheprogramsubexpressionsaremappedtoconstraintsas AprogramanalysisintermsofINES-constraintscandetectthiserrorasfollows. satisabilityandtheprogramisrejectedifthistestfails.theaboveprogramis rejectedsinceitsanalysisimpliesza^zbwhichisunsatisable. useitexperimentallyforozprograms.thefulldescriptionofthetypeanalysis systemisoutofthescopeofthispaperandwillbereportedin[23]. WehaveimplementedatypeanalysissystembasedonINES-constraintsand constraintshavethethesametimecomplexityuptoalineartransformation. BOmittedProofs Proposition1.ThesatisabilityproblemsofINESconstraintsandofatINES 4Thisexamplealsoappearedinthefollow-uppaper[11]withtheexplicitstatement thatitisborrowedfromhere. 13
14 equivalenttoarst-orderformulaoverinesconstraints. Proof.WithrespecttothestructureP+(Tree),everyatINESconstraintis INESconstraints. Conversely,everyINESconstraintisequivalenttoarst-orderformulaoverat x=f(y)$xf(y)^f(y)x x6jy$9z(zx^zy): straintsintoatinesconstraintsandviceversa.hence,foreveryinesconstraint TheseequivalencescanbeinterpretedasconstrainttransformersfromINEScon- f(t)x$9y9z(tz^f(z)=y^yx) xf(t)$9y9z(xy^y=f(z)^zt) tt0$9x(tx^xt0) thereexistsasatisfactionequivalentconstraintandviceversa.itiseasytoorganizethetransformationssuchthattheypreservethesizeofconstraintsuptoa Prex. Lemma9.EveryA1-A2-closedandpathconsistentconstraintissatisableover factorof2.hence,thecomplexityofthesatisabilityproblemsispreserved.ut Proof.Let'beA1-A2-closedandpathconsistent.Wedeneavariableassignmentprex'intoPrexasfollows: Thepathconsistencyof'(condition1)impliesthepathconsistencyof p).wenowverifythatprex'isasolutionof'. prex'(x).thusprex'(x)isatreeprex(onecanshowthisbyinductionover prex'(x)=f(p;f)jx';pfg {Considerx=f(y1:::yn)in'.Ifi2f1:::ngandyi';pgthenx';ipg. {Letxyin'.Ify';pgthenx';pgbythedenitionofpathreachability. Thus,prex'(y)prex'(x). Thus,f(prex'(y1):::prex'(yn))prex'(x).Fortheconverseinclusion, werstshowthat'satisesthefollowingtwopropertiesforallgandi: ForprovingP1weassumex';"g.Sincex=f(u)in'wehavexxin'by P2 P1 ifi2f1:::ngandx';ipgthenyi';pg. ifx';"gthenf=g. A1:1-closedness.Thusx';"fwhichimpliesf=gsince'ispathconsistent (condition1)anda1:1-closed,i.e.p1holds. ForprovingP2,weassumei2f1:::ngandx';ipg.Bydenitionofpath reachabilitythereexistsx0,f0,andvsuchthat x';"x0; x0=f0(y01:::y0i:::y0n); 14 y0i';pg:
15 TheA1:2-closednessof'andx';"x0implyxx0in'.Thepathconsistency Wenallyshowprex'(x)f(prex'(y1):::prex'(yn)).Given(p;g)2 closednessensuresyiy0iin'suchthatyi';pgholds.thisprovesp2. of'(condition1)andthea1:1-closednessof'impliesf=f0.hence,a2- {Letx6jyin'.Wehavetoshowthatthesetprex'(x)[prex'(y)ispath f=gandhence(";g)2f(prex'(y1):::prex'(yn)).ifp=iqthenx';iqg prex'(x),wedistinguishtwocases.ifp=",thenx';"gsuchthatp1implies suchthatp2yieldsyi';qgandhence(p;g)2f(prex'(y1):::prex'(yn)). Lemma10.EveryA3-A5-closedconstraintispathconsistent. consistent.if(p;g)2prex'(x)and(p;f)2prex'(y)thenx';pgand y';pf.thepathconsistencyof'(condition2)impliesf=g. 2 2ofDenition8andA3:1-closedness.Theproofofcondition2inDenition8is Proof.Let'beA3?A5-closed.Condition1ofDenition8followsfromcondition byinductiononpathsp.weassumex,y,f,andgsuchthatx';pf,x6jyin', andx';pg. Ifp=",thenthereexistn;m0,x1;:::;xn,y1;:::ym,u,andvsuchthat: A3-closednessimpliesthatxn6jymin'(A3:2yieldsx6jy1in',:::,x6jymin'. Thusym6jxin'byA3:3-closednesssuchthatA3:2-closednessyields yy1^:::^ym?1ym^ym=g(y0)in': xx1^:::^xn?1xn^xn=f(x0)in'; ym6jx1in',:::,ym6jxnin').hence,a4-closednessimpliesf=g.ifp=iq, thenthereexistf0,g0,x0,y0,u,vwith: Sincex6jx0in',wehavex06jy0in'byA3-closedness(thishasbeenprovedfor y';"y0;y0=g0(y01:::y0i:::y0n)in';y0i';pg: x';"x0;x0=f0(x01:::x0i:::x0n)in';x0i';pf; thecasep=").thus,a4-closednessyieldsf0=g0suchthata5-closedness impliesx0i6jy0iin',andhencef=gholdsbyinductionassumption. CComplexity 2 WeelaboratetheproofofthecomplexityandincrementalitystatementinTheorem5bypresentinganimplementationofalgorithmA. itterminatesintimeo(n3)wherenisthesizeoftheinputconstraint. Proposition14.AlgorithmAcanbeimplemented(onlineandoine)suchthat 15
16 oremptymultisetsrepresentedby>.initially,thepool'istheinputconstraint called'0(whichmaybeinputedincrementallyintheonlinecase)andthestore where'iscalledpooland Proof.WeorganizealgorithmAasareductionrelationonpairs('; isempty. store.thestoreandthepoolareeitherconstraints )or?, of apair('; Reductionpreservestheinvariantthat'^ ('0; withrespecttoalgorithma(andrestrictedtovariablesoccuringin'0).if )reducesto?then'^ isequivalentto?.if('; containsallone-stepconsequences nalstoreisa-closedandequivalenttotheinitialconstraint'0. orwithanemptypool.inthelattercase,theaboveinvariantsensurethatthe 0)then'^ isequivalentto'0^ 0.Reductioneitherterminateswith? )reducesto implementedbyrecursivelyexecutingthefollowingsequenceofinstructions: Letabasicconstraintbeoftheformxy,x6jy,orx=f(y).Reductioncanbe 1.Selectabasicconstraint'0fromthepool.If'0iscontainedinthestore 2.Else,forallaxiomsinAoftheform'0^ deleteiffromthepoolandnish. '00tothepool.Ifthereexistsanaxiomoftheform'0^ 0!'00with 0inthepooladd 3.Add'0tothestoreanddeleteitfromthepool. isnotcontainedinthestorethenaddittothestore. 0inthepoolthenreduceto?.If'0containsavariablexsuchthatxx 0!?inAwith arestrictedcase.inasecondstepweshowthattheserestrictionscanbeomitted. Werstdiscussthenecessarydatastructuresforimplementingthereductionin R3'0containsatmostoneequalitypervariable. R2Thearityofconstructorsin'0isboundedbyaconstant,sayk. R1Thealgorithmisoine,i.e.theinputconstraint'0isstaticallyknown. Letmbethenumberofvariablesin'0.Thepoolcanbeimplementedsuchthat itprovidesforthefollowingoperations(forinstanceasaqueue). {selectanddeleteabasicconstraintfromthepoolino(1). mostonepervariable)andatableofsize2m2fortheconstraintsxyandx6jy Thestorecanbeimplementedasanarrayofsizemfortheequalitiesx=f(y)(at foralloccuringvariables.thestorecansupportthethefollowingoperations: {addabasicconstrainttothepoolino(1). {testthepresenceofanequalityforxino(1). {givenavariablexwithx=f(y)2',retrievethefunctionsymbolfandthe {testthemembershipxy2 sequenceyintimeo(1). andx6jy2 intimeo(1). 16
17 {givenavariablex,retrievethesetofallysuchthatxy2'intimeo(m) {addabasicconstraintintimeo(1). Asshowninthenextparagraph,thereductionrelationcanbeimplementedsuch thatalloperationsonthestoreandthepoolareinvokedadmosto(m2)times. (analogouslyforx6jy). SinceeveryoperationcostsatmostO(m)timeandmn,thisyieldsanO(n3) ThereareatmostO(m2)distinctbasicconstraintsthatmaybeaddedtothe implementation. storeandeverybasicconstraintmaybeaddedatmostonce.hencethereareat mosto(m2)addoperationsonthestore.constraintsareaddedtothepoolonly ifsomebasicconstraintisaddedtothestore.inthiscase,atmosto(k)basic constraintsareaddedtothepoolbyr2.hence,thereareatmosto(km2)add operationsonthepool. Wenallydiscusshowtogetridoftheaboverestrictions. R2IfthearityofconstructorsisunboundedthenwestillknowthateveryoperationcostatmostO(n)wherenisthesizeof'0.Theonlyproblemis thatthenumberofbasicconstraintsthatmaybeaddedtothepoolisno tothepoolatmostonce,i.e.byrememberingthoseconstraintsthathave beenaddedtopool(andpossiblydeleted)before.thiscanbedonewitha quadratictableasforthestore. moreboundedbyo(n2).thiscanbecircumventedbyaddingconstraints R1Foranonlinealgorithm,wecanaddtheinputconstraint'0incrementally R3Ifwereplaceallequalitiesx=f(y)in'0byxx0^x0x^x0=f(y)wherex0 isafreshvariablerespectivelythentheresultingconstraintdoesnotcontain twoequationsforthesamevariable. tothepool.theproblemisthatthenumberofvariablesin'0isnotknown statically.wehavetoreplaceourstatictablesandarraysbydynamichash DFiniteTrees tablessuchthatnewvariablescanbeinserted. 2 niteorinnitetrees. Example6.Forinstance,theconstraintxf(x)issatisableoversetsofinnite ThesatisabilityofINESconstraintsdependsontheinterpretationoversetsof treesbyx7!ff(f(f(:::)))g,butnon-satisableoversetsofnitetrees. TheresultsofSectionCcarryovertothenitetreecasewhenweaddthe \occurs-check"axioma6fromtable2toaxiomseta.inparticular,lemma9 andtheorem5canbeadapted.calltreenthesetofnitetrees. 17
18 A6.'!?ifx';pxforsomepathp6=" Lemma15.Apathconsistentconstraint'closedunderA1-A3andA6issatisableinP+(Treen). Table2.Theoccurscheckaxiom ableinp+(tree)wehavedenedtheprexprex'(x)=f(p;f)jx';pfg.since Proof.ToshowaA1-A3andA6-closedandpathconsistentconstraint'satis- mustbeaniteprexforallx.hence,'issatisableinp+(treen). 'isniteandtheassumptionaboutaxioma6excludescyclicpaths,prex'(x) Theorem16.ThesatisabilityofINESconstraintsovernon-emptysetsofnite treescanbedecided(oineoronline)intimeo(n3). 2 everystep.thisisconstantiftheclosureofthereachabilityrelationbetween variablesis(justlike)implementedbyatableofsizequadraticinthenumber termination.thisislinearinthesizeofthenalconstraintandcubicinthesize ofthestartconstraint.theonlineversionmustscheduletheoccurs-checkafter Proof.Theoineversionofouralgorithmmayperformtheoccurs-checkupon EStandardSetConstraints ofvariables. 2 emptinessconstraintsx6;(\xdenotesanon-emptyset").weshowthatthe cubicalgorithmforinesconstraintscanbeadaptedtothisfragmentofstandard INESconstraintsoverpossiblyemptysetsoftreesandallowingforexplicitnon- Inthissection,wetakeaalternativeapproachtoachievetheexpressivenessof setconstraintsatthecostofadditionalaxioms. INESconstraints.Weconsideraclassofstandardsetconstraintsbyinterpreting WeinterpretetheseconstrainteitherinthestructureofsetsoftreesP(Tree) lows. Weextendourconstraintsyntaxwithexplicitnon-emptinessconstraintsasfol- satisabilityofsetconstraintsdiersdependingonthechoiceofniteorinnite orinthestructureofsetsofnitetreesp(treen).duetotheconstraintx6;, '::='1^'2jx=f(y)jxyjx6jyjx6; (1) trees.thisisnotthecasewithoutx6;aswewillshowbelow(corollary20). Example6adaptsasfollows. Example7.Theconstraintx6;^xf(x)issatisableoversetsofinnitetrees bythevariableassignmentx7!ff(f(f(:::)))g,butnon-satisableoversetsof nitetrees. 18
19 A1.xxandxy^yz!xz A3'.x6;^xy!x6jyandxy^x6jz!y6jzandx6jy!y6jx A4.f(y)x^x6jx0^x0g(z)!?forf6=g A2'.x6;^x=f(y)^xx0^x0=f(z)!yz A6'.x6;^'!?ifx';pxforsomepathp6=" A5.x=f(y)^x6jx0^x0=f(z)!y6jz B8.x6jy!y6; B7.x6;^x=f(y)!y6;andy6;^x=f(y)!x6; InTable3,wepresentthesetofaxiomsB,whichadaptsthesetAforthenew Table3.Axiomsforinclusionconstraintsover(possiblyempty)setsofnitetrees emptinesspremisesexplicit,andb7andb8havebeenadded.b7propagatesnon- emptinessthroughterms.foreveryconstantsymbola2,b7:2postulatesthat musthaveanon-emptydenotationthemselves.itiseasilycheckedthatallthese constraints.theaxiomsetsa20,a30,anda60arechangedtomakeimplicitnon- P(Tree). axiomsarevalidinp(treen)andthatallaxiomsapartfroma6arevalidin x=a!x6;.b8statesthatvariablesinvolvedinanon-disjointnessconstraint Proposition17.EveryB-closedconstraintissatisableoverP(Treen).Every constraintthatisb-closedapartfromtheoccurs-checkaxioma6'issatisable overp(tree). Proof.GivenaB-closedconstraint',wedenethesetofvariablesin'which areconstrainedtobenon-empty. Thepart of'containingonlyvariablesvar' 6;def =fxjx6;in'g Forthenitetreecase,assume'tobeB-closed.ByProposition15thereexists straintsisaclosedinesconstraint. avariableassignmentintop+(treen)whichsatises 6;andnonon-emptinesscon- Denethevariableassignmentby(x)=;forx62Var' elsewhere.weshowthatsatises'.letx62var' in'containingx. 6;.Weconsidertheinclusions inp(treen). 6;and(x)=(x) 19
20 {Ify=f(:::x:::)in',theny6;cannotbein'duetoB7:2.Hence(y)= {Constraintsxyaretriviallysatisedby. {Ifx=f(y1:::yn)in',thenyi6;cannotbein'forsomeyiduetoB7:1. {Ifyxin',theny6;cannotbein'duetoA30andB8.Hence(y)= ;(f(:::x:::)). ;(x). Hence(x)=;=(f(:::yi:::)). Fortheinnitetreecaseassume'tobeB-closedwiththeexceptionofA6'.Then bylemma9,thereexistsasatisfyingvariableassignmentintop+(tree).apart fromthat,theaboveargumentisunchanged. Theorem18.Thesatisabilityofconjunctionsofinclusionconstraintsand non-emptinessconstraintsoversetsofnitetreescanbetestedino(n3). 2 AtomicSetConstraints.INESconstraintsinterpretedoverallsetsofnite Proof.TheaxiomsinTable3againinduceaxedpointalgorithmforthesatisabilitytest.Bycarryingoverthetechniquesforthecomplexityresultsfrom treesp(treen)arealsocalledatomicsetconstraints[15].theorem18implies SectionC,weobtainthesamecomplexitybound. timecomplexityo(n3)fortheirsatisabilityproblem.furthermore,weshow 2 thattheoccurscheckaxioma60isnotneededtodecidesatisabilityofatomic setconstraints. Proof.Ifx';pxforsomep6=",thenalsox';pnxforeverypathpn=pp:::p (n-foldconcatenation).thus,foreveryprexqofsuchapathpn,thereexistsa doesnotimply?accordingtoaxioma60. Lemma19.Lettheconstraint'beB-closedwiththeexceptionofA60.Then' Butthenthereexistn1andaprexqofpnleadingtoaleafint.Thus, non-constantfunctionsymbolf2andatermf(y)suchthatx';qf(y). (q;a)2tforsomeconstantsymbola2.ifx';qf(y),wecanshowby Ifx6;2'then'containsaconjunctionexpressingthattxforsome groundtermt. (2) inductionoverqthatthereexistz;z0suchthatz=a,zz0,andz0=f(y)in'. FromLemma19andTheorem18wehavethefollowingCorollary[.Notethat thisisincontrasttoexamples6and7. whichcontradictstheassumption. FromB7:2,andA30weobtainz6jz0andhence,?isaconsequenceofAxiomA4 2 Corollary20.Thesatisabilityofatomicsetconstraintsisinvariantwithrespecttotheinterpretationoversetsofniteorinnitetrees. 20
AmyP.Felty1,DouglasJ.Howe1,andFrankA.Stomp2 ProtocolVericationinNuprl? 2Dept.ofComp.Sci.,UCDavis,Davis,CA95616,[email protected] 1BellLabs,MurrayHill,NJ07974,USA.ffelty,[email protected] whileretainingexistingadvantagesofthesystem,anddescribesapplicationoftheprovertoverifyingthescicachecoherenceprotocol.the
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
KeyEscrowinMutuallyMistrustingDomains?
KeyEscrowinMutuallyMistrustingDomains? Abstract.Inthispaperwepresentakeyescrowsystemwhichmeets L.Chen,D.GollmannandC.J.Mitchell possiblerequirementsforinternationalkeyescrow,wheredierentdomainsmaynottrusteachother.inthissystemmultiplethirdparties,
Thepurposeofahospitalinformationsystem(HIS)istomanagetheinformationthathealth
FederatedDatabaseSystemsforReplicatingInformationin UniversityofDortmund,DepartmentofComputerScience,Informatik10 ExtendingtheSchemaArchitectureof E-mail:[email protected] HospitalInformationSystems
Internet!of!Services! Project!IntroducMon!
Internet!of!Services! Project!IntroducMon! Prof.!Dr.!Küpper,!S.!Göndör,!S.!Zickau,!M.!Slawik,!et!al.! ServiceIcentric!Networking! Telekom!InnovaMon!Laboratories!and!TU!Berlin! Introduc)on* Project!OrganizaMon!!
GContracts Programming by Contract with Groovy. Andre Steingress
FÕ Ò ŃÔ PŎ ÑŇÒ P ÌM Œ PÑǾ PÒ PÕ Ñ Œ PŘÕ Ñ GContracts Programming by Contract with Groovy Andre Steingress Andre FÕ Ò ŃÔ PŎ ÑŇÒ P ÌM Œ PSteingress ÑǾ PÒ PÕ Ñ Œ PŘÕ Ñ Independent Software Dev @sternegross,
Ordering Constraints on Trees
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-94-12 Ordering Constraints on Trees Hubert Comon and Ralf Treinen March 1994 Deutsches Forschungszentrum für Künstliche Intelligenz
ImprovingRooftopDetectioninAerialImages MarcusA.Maloofy([email protected]) ThroughMachineLearning PatLangleyy([email protected]) ThomasBinfordz([email protected]) yinstituteforthestudyoflearningandexpertise
All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda
F 228 D O z F/ Fx L / H V L I & P G G F Q, z,, B, z -, q k k k FUN F x 20% 02 F 9185957834 I P G j P, E, j, k,, ; I I G F Ex 2011 H B H 2011-2012 F H E U F P G I G L L 228 D & 228 k B P 04 F 9185957834
ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA
Introduction to Apache Pig Indexing and Search
Large-scale Information Processing, Summer 2014 Introduction to Apache Pig Indexing and Search Emmanouil Tzouridis Knowledge Mining & Assessment Includes slides from Ulf Brefeld: LSIP 2013 Organizational
How do we build good strategic partnerships? GUNILLA CARLECRANTZ, SENIOR ADVISOR EXTERNAL RELATIONS
How do we build good strategic partnerships? GUNILLA CARLECRANTZ, SENIOR ADVISOR EXTERNAL RELATIONS Where is Lund? Lund University Founded in 1666 A comprehensive university top 100 45 000 students Lund
ProgramVerificationandHardwareSynthesis 1 ProgramVerication HardwareSynthesis and Acommonapproachtohardwaredesignisto writeaprograminahardwaredescription languageandthencompileittoastatemachine usingasynthesissystem.somecorrectness
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
Appendix... B. The Object Constraint
UML 2.0 in a Nutshell Appendix B. The Object Constraint Pub Date: June 2005 Language The Object Constraint Language 2.0 (OCL) is an addition to the UML 2.0 specification that provides you with a way to
Rules Variation Summary for 2014 Master of Teaching (Secondary) Implications for current Master of Teaching (Secondary) students Note unit change
Rules Variation Summary for 2014 Summary of Changes for 2014 For candidates admitted under Rule (a): Group 4 Listed Elective Teaching Units Group 4C EDLT490 has been added Note unit change For candidates
Note on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:
Introduction to Python
Caltech/LEAD Summer 2012 Computer Science Lecture 2: July 10, 2012 Introduction to Python The Python shell Outline Python as a calculator Arithmetic expressions Operator precedence Variables and assignment
DistributedSharedMemorySystems? AdaptiveLoadBalancinginSoftware CompilerandRun-TimeSupportfor SotirisIoannidisandSandhyaDwarkadas fsi,[email protected] DepartmentofComputerScience Rochester,NY14627{0226
KEY ELEMENTS TO DESIGN AN EXTERNAL ACTIVE MANAGEMENT PROGRAM. Alejandro C. Reveiz H. Director, Quantitative Solutions, SAA & Analytics (QSA)
KEY ELEMENTS TO DESIGN AN EXTERNAL ACTIVE MANAGEMENT PROGRAM Alejandro C. Reveiz H. Director, Quantitative Solutions, SAA & Analytics (QSA) October 1, 2015 Table of Contents Design guidelines in such a
Problem Set #3 Answer Key
Problem Set #3 Answer Key Economics 305: Macroeconomic Theory Spring 2007 1 Chapter 4, Problem #2 a) To specify an indifference curve, we hold utility constant at ū. Next, rearrange in the form: C = ū
Number of objects. 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m
GarbageCollectionforLargeMemoryJava AndreasKrallandPhilippTomsich Applications InstitutfurComputersprachen,TechnischeUniversitatWien Argentinierstrae8,A{1040Wien,Austria tolarge,data-intensivescienticapplicationsallocatingmemoryinthe
CORRELATION ANALYSIS
CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient
3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true
Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the
7.1 Our Current Model
Chapter 7 The Stack In this chapter we examine what is arguably the most important abstract data type in computer science, the stack. We will see that the stack ADT and its implementation are very simple.
Name: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
Simple Graphs Degrees, Isomorphism, Paths
Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1
DataClusteringAnalysisinaMultidimensionalSpace A.BouguettayaandQ.LeViet QueenslandUniversityofTechnology fathman,[email protected] SchoolofInformationSystems Brisbane,Qld4001,Australia theresultofafairlyexhaustivestudytoevaluatethreecommonlyusedclusteringalgorithms,
Examples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
Materials Management and Inventory Systems
Materials Management and Inventory Systems Richard J.Tersine Old Dominion University 'C & North-Holland PUBLISHING COMPANY NEW YORK AMSTERDAM Contents Preface Chapter 1 INTRODUCTION 1 Inventory 4 Types
MeasuringWebPerformanceintheWideArea 111CummingtonSt,Boston,MA2215 PaulBarfordandMarkCrovella ComputerScienceDepartment BostonUniversity fbarford,[email protected] BU-CS-99-4 April26,1999 andcontinuedgrowthmakethisadicultquestiontoanswer.wedescribethewideareaweb
Start Here. Installation Guide. Rosetta Stone Standalone License. This Guide Will Show You How To: Install the Student Management System...
Rosetta Stone Standalone License Installation Guide This Guide Will Show You How To: Install the Student Management System... Set Up the SMS... Install Rosetta Stone... 4 Configure Rosetta Stone (If Needed)...
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
!NAVSEC':!A!Recommender!System!for!3D! Network!Security!Visualiza<ons!
!:!A!Recommender!System!for!3D! Network!Security!Visualiza
Variable Neighbourhood Search for the Global Optimization of Constrained NLPs
ProceedingsofGO2005,pp.1 5. Variable Neighbourhood Search for the Global Optimization of Constrained NLPs LeoLiberti, 1 andmilandražić 2 1 DEI,PolitecnicodiMilano,P.zzaL.daVinci32,20133Milano,Italy, [email protected]
threads threads threads
AHybridMultithreading/Message-PassingApproachforSolving IrregularProblemsonSMPClusters Jan-JanWu InstituteofInformationScience AcademiaSinica Taipei,Taiwan,R.O.C. Chia-LienChiang Nai-WeiLin Dept.ComputerScience
Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto
ATheoryofTimedAutomata1 Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ComputercienceDepartment,tanfordUniversity RajeevAlur2
Solver- aided DSL with. Rui Zhao (rz2290)
Solver- aided DSL with Rui Zhao (rz2290 Solver- aided Programming So>ware is widely used We all want to build programs, not only so>ware engineers Solver- aided Programming 1960 - So>ware crisis 1970 -
Cumulative cost. Progress through steps. Risk analysis. Risk analysis. Risk analysis. Protot. Protot. 3. Concept. A Protot.
IPTES:AConcurrentEngineeringApproachforReal-Time Kaitovayla1,P.O.Box201,SF-90571Oulu,Finland TechnicalResearchCentreofFinland(VTT) ComputerTechnologyLaboratory SoftwareDevelopment R.Elmstrm P.Pulli TheInstituteofAppliedComputerScience(IFAD)
Understanding FX Forwards. A Guide for Microfinance Practitioners
Understanding FX Forwards A Guide for Microfinance Practitioners Forwards Use: Forward exchange contracts are used by market participants to lock in an exchange rate on a specific date. An Outright Forward
Math 53 Worksheet Solutions- Minmax and Lagrange
Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial
1. Supply and demand are the most important concepts in economics.
Page 1 1. Supply and demand are the most important concepts in economics. 2. Markets and Competition a. Market is a group of buyers and sellers of a particular good or service. P. 66. b. These individuals
Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever!
ECE 551 C++ Programming, Data structures, and Algorithms Abstract Data Type: Stack Last In First Out (LIFO) 1 2 2 1 4 3 1 3 4 Stacks in Programming Worst line ever! 5 3 1 5 Stacks are not useful for waiting
Sample Questions Csci 1112 A. Bellaachia
Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k
Abstract. 1IntroductionandMotivation
AScalableArchitectureforAutonomous HeterogeneousDatabaseInteractions SteveMilliner,AthmanBouguettayaandMikePapazoglou fsteve,athman,[email protected] QueenslandUniv.ofTechnology Brisbane,QLD4001,Australia
Introduction to Functional Verification. Niels Burkhardt
Introduction to Functional Verification Overview Verification issues Verification technologies Verification approaches Universal Verification Methodology Conclusion Functional Verification issues Hardware
Optimal Resource Allocation for the Quality Control Process
Optimal Resource Allocation for the Quality Control Process Pankaj Jalote Department of Computer Sc. & Engg. Indian Institute of Technology Kanpur Kanpur, INDIA - 208016 [email protected] Bijendra
Announcements FORTRAN ALGOL COBOL. Simula & Smalltalk. Programming Languages
Announcements Programming Languages! Monday evening GBA section has been shut down " If you were assigned to this section, please find a different section " If you cannot attend a different section, please
Conference Call Q1-2015/2016
Conference Call Q1-2015/2016 DIRK KALIEBE August 12, 2015 Highlights Q1-2015/2016 Strategic reorientation is taking effect Good order situation, improved backlog Strong revenue growth due to solid order
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Specification and Validation of Telephone Systems in LOTOS 1,2
Specification and Validation of Telephone Systems in LOTOS 1,2 Rezki Boumezbeur and Luigi Logrippo Protocols and Software Engineering Research Group University of Ottawa, Computer Science Department Ottawa,
Prot Maximization and Cost Minimization
Simon Fraser University Prof. Karaivanov Department of Economics Econ 0 COST MINIMIZATION Prot Maximization and Cost Minimization Remember that the rm's problem is maximizing prots by choosing the optimal
Most limiting amino acid concept...
Review... Proteins are composed of amino acids Amino acids are the essential nutrients The dietary provision of amino acids in correct amount and provisions determines the adequacy of the protein in the
Structured Representation Models. Structured Information Sources
SchemalessRepresentationofSemistructured Dong-YalSeo1,Dong-HaLee1,Kang-SikMoon1,JisookChang1, DataandSchemaConstruction 1Dept.ofComputerScienceandEngineering PohangUniversityofScienceandTechnology Jeon-YoungLee1,andChang-YongHan2
Relational model. Relational model - practice. Relational Database Definitions 9/27/11. Relational model. Relational Database: Terminology
COS 597A: Principles of Database and Information Systems elational model elational model A formal (mathematical) model to represent objects (data/information), relationships between objects Constraints
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
Advanced Pig (or "we're not in Kansas anymore") Set operations in Map/Reduce How to parameterize an operation The oxymoron called "Pig Efficiency"
Advanced_Pig Page 1 Advanced Pig 2:25 PM Advanced Pig (or "we're not in Kansas anymore") Set operations in Map/Reduce How to parameterize an operation The oxymoron called "Pig Efficiency" Advanced_Pig
TheEectofNetworkTotalOrder,Broadcast,andRemote-Write CapabilityonNetwork-BasedSharedMemoryComputing RobertStets,SandhyaDwarkadas,LeonidasKontothanassisy,MichaelL.Scott DepartmentofComputerScienceyCompaqCambridgeResearchLab
to TMS 4.0 in an Integrated OC Environment
Possible Migration i Paths from TMO to TMS 4.0 in an Integrated OC Environment Introduction Sunil G. Singh and Stephan Kromov of Specialize in Oracle Pharmaceutical and E- Business implementations and
ALGEBRA I (Common Core)
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, June 17, 2015 1:15 to 4:15 p.m. MODEL RESPONSE SET Table of Contents Question 25..................
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Thales global payment card program
Thales global payment card program Jacques Chambre / Christian Dureault Who we are 61,500 people in 50 countries 20 000 researchers 2005 sales: 10.6bn 2 Our core markets Aerospace Defence Security 3 Our
Computers. An Introduction to Programming with Python. Programming Languages. Programs and Programming. CCHSG Visit June 2014. Dr.-Ing.
Computers An Introduction to Programming with Python CCHSG Visit June 2014 Dr.-Ing. Norbert Völker Many computing devices are embedded Can you think of computers/ computing devices you may have in your
Optimization under fuzzy if-then rules
Optimization under fuzzy if-then rules Christer Carlsson [email protected] Robert Fullér [email protected] Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming
Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography
Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic Theoretical Underpinnings of Modern Cryptography Lecture Notes on Computer and Network Security by Avi Kak ([email protected]) January 29, 2015
CSSE 372 Software Project Management: Software Estimation With COCOMO-II
CSSE 372 Software Project Management: Software Estimation With COCOMO-II Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: [email protected] Estimation Experience and Beware of the
Moving your money forward, at rates you want. dvfx Manual
Moving your money forward, at rates you want dvfx Manual devere Foreign Exchange Whether you are a private international investor or represent a business involved in international trade, devere Foreign
Applied Math 247 Exam#1: Summer 2008
AnswerthequestionsinthespacesprovidedonthequestionsheetsIfyourunoutofroomforan answercontinueonthebackofthepagenonotes,books,orotheraidsmaybeusedontheexam Student Id: Answer Key 1 (1 points) 2 (1 points)
CISC 322 Software Architecture
CISC 322 Software Architecture Lecture 20: Software Cost Estimation 2 Emad Shihab Slides adapted from Ian Sommerville and Ahmed E. Hassan Estimation Techniques There is no simple way to make accurate estimates
Chapter 7. Homotopy. 7.1 Basic concepts of homotopy. Example: z dz. z dz = but
Chapter 7 Homotopy 7. Basic concepts of homotopy Example: but γ z dz = γ z dz γ 2 z dz γ 3 z dz. Why? The domain of /z is C 0}. We can deform γ continuously into γ 2 without leaving C 0}. Intuitively,
Constrained Optimization: The Method of Lagrange Multipliers:
Constrained Optimization: The Method of Lagrange Multipliers: Suppose the equation p(x,) x 60x 7 00 models profit when x represents the number of handmade chairs and is the number of handmade rockers produced
Monitoring Network Traffic with Radial Traffic Analyzer
MonitoringNetworkTraffic withradialtrafficanalyzer DanielA.KeimFlorianMansmannJörnSchneidewindTobiasSchreck IEEESymposiumonVisualAnalyticsScienceandTechnology,2006 StefanHeinz SeminarVisualAnalytics SummerTerm2008
Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *
Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest
