Size: px
Start display at page:

Download ""

Transcription

1 InclusionConstraintsover MartinMuller1,JoachimNiehren1andAndreasPodelski2 Non-emptySetsofTrees? UniversitatdesSaarlandes,66041Saarbrucken,Germany ImStadtwald,66123Saarbrucken,Germany 2Max-Planck-InstitutfurInformatik, 1ProgrammingSystemLab, Abstract.WepresentanewconstraintsystemcalledINES.Itsconstraintsareconjunctionsofinclusionst1t2betweenrst-orderterms (withoutsetoperators)whichareinterpretedovernon-emptysetsof trees.theexistingsystemsofsetconstraintscanexpressinesconstraintsonlyiftheyincludenegation.theirsatisabilityproblemis NEXPTIME-complete.Wepresentanincrementalalgorithmthatsolves programminglanguage. toapplyinesconstraintsfortypeanalysisforaconcurrentconstraint thesatisabilityproblemofinesconstraintsincubictime.weintend Sets)andpresentanincrementalalgorithmtodecidethesatisabilityofINES 1Introduction WeproposeanewconstraintsystemcalledINES(InclusionsoverNon-Empty constraintsintimeo(n3).inesconstraintsareconjunctionsofinclusionst1t2 betweenrst-orderterms(withoutsetoperators)whichareinterpretedoverthe t16;^t1t2issatisableoverarbitrarysets.notethattheconstraintt6; AnINES-constraintt1t2issatisableovernon-emptysetsifandonlyif innitetrees.allgivenresultscanbeeasilyadaptedtonitetrees. domainofnon-emptysetsoftrees.inthispaperwefocusonsetsofpossibly cannotbeexpressedbypositivesetconstraintsonly[16].theexpressivenessof INESconstraintsissubsumedbythatofsetconstraintswithnegation[9,16].In thecaseofnitetrees,thesatisabilityproblemofsetconstraintswithnegation isknowntobedecidable[1,13];itiscompletefornondeterministicexponential time[9,10].thisresultimpliesthatthesatisabilityproblemofinesconstraints WecharacterizethesatisabilityofINESconstraintsbyasetofaxiomssuchthat aninesconstraintissatisableovernon-emptysetsifandonlyifitissatisable hasnotbeenconsideredbefore. oversetsofnitetreesisdecidable.thecorrespondingproblemforinnitetrees?asummaryhasappearedin:maxdauchet,ed.,proc.ofcaap'97aspartof TAPSOFT'97,TheoryandPracticeofSoftwareDevelopment.April1997,Lille,France.

2 closesagiveninputconstraintunderitsconsequenceswithrespecttotheaxioms. insomemodeloftheseaxioms.theseaxiomsdeneaxpointalgorithmthat Weprovethataconstraint'issatisableifandonlyifthealgorithmwith formulaeinterpretedovertreesandovernon-emptysetsoftreesareclosely SetsversusTrees.Thesatisabilityproblemsofseveralclassesofrst-order willbediscussedlaterinthisintroduction. input'doesnotderive?asaconsequenceof'.allaxioms(forinnitetrees) related.thefollowingtwoinstancesofthisobservationhaveinspiredourchoice ofaxiomsorunderlyourproofs. Equalityconstraintsareconjunctionsofequationst1=t2betweenrst-order oftherst-ordertheoryofequalityconstraintsovertrees[18,19,12]sinceits non-emptysetsoftreescoincide.thisfollowsfromthecompleteaxiomatization ordertheoriesofequalityconstraintsovertreesandofequalityconstraintsover symmetryofsetinclusion(t1=t2$t1t2^t2t1).actually,eventherst- terms.oversets,theycanbeexpressedbyinclusionconstraintsduetoanti- axiomsalsoholdovernon-emptysetsoftrees(butdon'toverpossiblyempty sets). ThereexistsanaturalinterpretationofINES-constraintovertreelikestructures thatwecalltreeprexes.inadierentcontext[6]treeprexesarecalledbohm trees(without-binders).treeprexescomewithanaturalorderingrelation overtreeprexes(wheretheinclusionsymbolisinterpretedastheinverseofthe wheretheemptytreeprexisthegreatestelement.weprovethatanines constraintissatisableovernon-emptysetsoftreesifandonlyifitissatisable formulatedforabinaryfunctionsymbolf). oftheinclusionrelation.wealsoassumethefollowingdecompositionaxiom(here Axioms.Thersttwoaxiomsweneedpostulatethereexivityandtransitivity prexorderingontreeprexes). Thisaxiomholdsovernon-emptysetsoftreesbutnotoverpossiblyemptysets, sinceeveryvariableassignmentwith(x)=;or(y)=;isasolutionof f(x;y)f(x0;y0)!xx0^yy0 f(x;y)f(x0;y0)butnotnecessarilyofxx0^yy0.ananalogousstatement holdsforthefollowingclashaxiom. Forinstance,theunsatisabilityoftheconstraint'givenbyxg(x)^xg(y)^ yz^zaisnotderivablewiththeseaxiomsalone.weneedfurtheraxioms TheseaxiomsdonotsucetocharacterizethesatisabilityofINESconstraints. f(x;y)g(x0;y0)!? forf6=g thatusenon-disjointnessconstraintst16jt2denedast1\t26;.forthenondisjointnessrelationwerequirereexivityandsymmetryandadecompositionaxiomasfortheinclusionrelation. f(y;z)6jf(y0;z0)!y6jy0^z6jz0 2

3 Finally,weassumeaclashaxiomsimilartotheoneforinclusionandrequire nondisjointnesstobecompatiblewithinclusioninthefollowingsense. Nowreconsidertheconstraint'givenaboveandobservethatwecanderive x6jz^xy!y6jz x6jxbyreexivity,thenx6jybydecomposition,andx6jzbycompatibility.this AlgorithmandComplexity.Theaboveaxiomsyieldanalgorithmthatadds yieldsaclashwithxg(x)^za. constraintsoftheformxy,x6jytoagiveninputconstraint'until'isclosed underallaxiomsorimplies?.theinesconstraintxt1^:::^xtnexpresses x1\:::\xk6;(whichcanbeexpressedbytheformula9y(yx1^:::^yxk)) thensetsdenotedbythetermst1;:::;tnhaveanon-emptyintersection.fortunately,itisnotnecessarytoaddk-arynon-disjointnessconstraintsoftheform ofwhichthereareexponentiallymany.instead,ouralgorithmaddsatmost O(n2)constraintstotheinputconstraint',wherenisthenumberofvariables timeo(n).thisyieldsanimplementationofouralgorithmwithtimecomplexity in'.theadditionofasingleconstraintcanbeimplementedsuchthatitcosts TypeAnalysis.OneapplicationforINESconstraintswhichweareinvestigatingin[23]istypeanalysisforconcurrentconstraintprogramming[17,27],in O(n3).Thisimplementationcanbeorganizedincrementally. anerrorifthesetofpossiblerun-timevaluesisemptyforsomevariable.this INESallowsaninterpretationoversetsofpossiblyinnitetrees.Itisconsidered programvariables.sincevaluesinozincludeinnitetrees,itisimportantthat There,INESconstraintsareusedtoapproximatethesetofrun-timevaluesfor particularoz[28].asformalfoundationsweintendtousethecalculiin[24,25]. factwasourinitialmotivationforthechoiceofnon-emptysetsoftreesasthe PlanofthePaper.InSection2,wediscussrelatework.InSection3,we denethesyntaxandsemanticsofinesconstraintsandinsection4,wepresent interpretationdomainforinesconstraints. theaxiomsandthealgorithm.insection5,weprovethecompletenessofour thedetailsoftheproofsintheconferenceversionofthepaper. algorithm.insection6,wecomparetheinterpretationsofinesconstraintsover treeprexesandovernon-emptysetsoftrees.duetospacelimitations,weomit AppendixAgivesanexampleillustratingprogramanalysisforOzwithINES constraints.appendixbcontainstheomittedproofs.appendixcdetailshow ofatomicsetconstraints(standardsetconstraintswithoutsetoperatorsand toimplementthealgorithmwithincrementalo(n3)complexity.inappendixd, negation)isinvariantwithrespecttothechoiceofniteorinnitetrees. withexplicitnon-emptinessconstraintsx6;.wealsoprovethatsatisability ofstandardsetconstraints(interpretedoverpossiblyemptysetsofnitetrees) weadaptthealgorithmtothenite-treecase,andinappendixetoasubclass 3

4 2RelatedWork StandardSetConstraints.Setconstraintsasin[2,5,10,15]areinclusions Ouralgorithmcanbeadaptedsuchthatitsolvesasubclassofsetconstraints betweenrst-ordertermswithsetoperatorsinterpretedoversetsofnitetrees. withoutsetoperatorsincubictime(seeappendixe).thegeneralcaseisnondeterministicallyexponentialtimecompleteasprovedin[1,13].thesubclass thatwecansolveincubictimesyntacticallyextendstheinesconstraintswith explicitnon-emptinessconstraintx6;(seeappendixe).notethatthesatisabilityofthesesetconstraintsdependsonthechoiceofniteorinnitetrees (considerxf(x)^x6;),whichisincontrasttostandardsetconstraintswithout negation.ouralgorithmaccountsfornitenessthroughtheoccurcheck. AtomicSetConstraints.HeintzeandJaarconsiderso-calledatomicset constraints[15]whichsyntacticallycoincidewithinesconstraintsbutareinterpretedoverpossiblyemptysetsofnitetrees.thesatisabilityproblemfor SetConstraintsforTypeAnalysis.Aikenetal.[3,4]useconstraints resultsof[14]and[15].anexplicitproofisgiveninappendixeofthispaper. overspecicsetsoftreescalled\types"forthetypeanalysisoffl.thereisa atomicsetconstraintsisalsoo(n3).thisresultisimplicitinthecombined minimaltype0which{intermsofconstraintsolving{behavesjustlikethe emptysetinstandardsetconstraints(althoughitisnotanemptysetfromthe typespointofviewbutcontainsavaluedenotingnon-termination).incontrast followingconstraintsimplicationrulebydroppingthedisjunctsinbrackets[4]. intersection.oneoftheoptimizationsusedbyaikenetal.istostrengthenthe totheconstraintsofthispaper,theirsetconstraintsprovideforunionand Asstatedin[4],thisoptimizationdoesnotpreservesoundness(f(a;0)f(b;0) holdsbutab^00doesnot).itmightbepossibletojustifyitbyusingnonemptysetsasinterpretationdomain.thisislefttofurtherresearch. Podelski[11]giveanalgorithmwhichdecidestheentailmentproblembetween INESconstraintswheninterpretedoversetsofnitetrees.Theyalsodecidethe EntailmentandIndependenceforInesConstraints.Charatonikand in[11]donotincludeanyoftheresultspresentedheresincetheyuseasan satisabilityofinesconstraintswithnegationinthenitetreecase.theresults explicitprerequisitethefactthatsatisabilityofinesconstraintsisdecidable. f(x;y)f(x0;y0)!xx0^yy0[_x0_y0] thetwosatisabilityproblemsareratherdierentproblemssincetarskianset TarskianSetConstraints.MacAllesterandGivan[21]giveacubicalgorithm whichdecidessatisabilityforaclassoftarskiansetconstraints[22],andwhich alsocontainsanon-disjointnessconstraint.apartfromthissyntacticsimilarity, constraintsarenotinterpretedoverthedomainoftrees(thisisalsoobserved in[22]).arelatedopenquestioniswhetherouraxiomsdenealocaltheory[20, 8],whichwouldalsoproofthecubiccomplexityboundofouralgorithm. 4

5 asetoffunctionsymbolsf;gandtheirrespectivearityn0.constants(i.e. Weassumeasetofvariablesrangedoverbyx;y;zandasignaturethatdenes 3SyntaxandSemanticsofInesConstraints functionsymbolsofarity0)aredenotedwithaandb. Trees.Webasethedenitionoftreesonthenotionofpathssincewewishto includeinnitetrees.pathswillturnoutcentralforourproofsinsection5.a pathpisasequenceofpositiveintegersrangedoverbyi;j;n;m.theemptypath isdenotedby".wewritethefree-monoidconcatenationofpathspandqaspq; wehave"p=p"=p.givenpathspandq,qiscalledaprexofpifp=qp0for somepathp0. Letbeasetofpairs(p;f)ofpathspandfunctionsymbolsf.Wesaythat isprexclosed,if(p;f)2andqisaprexofpimpliesthatthereisagsuch that(q;g)2.itispathconsistent,if(p;f)2and(p;g)2impliesf=g. Wecallarityconsistent,if(p;f)2,(pi;g)2impliesthati2f1;:::;ng providedthearityoffisn.finally,iscalledaritycomplete,if(p;f)2, wherethearityoffisn,impliesforalli2f1;:::;ngtheexistenceofagwith (pi;g)2. A(possiblyinnite)treeisasetofpairs(p;f)thatisnon-empty,prexclosed, aritycomplete,pathconsistent,andarityconsistent.thesetofall(possibly InesConstraints.AnINESconstraintt1t01^:::^tnt0nisaconjunctionof treesbyp+(tree). innite)treesoverisdenotedbytreeandthesetofallnon-emptysetsof inclusionsbetweenrst-ordertermstdenedbythefollowingabstractsyntax. implicitlythatthelengthoftcoincideswiththearityoff.weinterpretines Hereandthroughoutthepaper,tstandsforasequenceoftermsandweassume constraintsoverthestructurep+(tree)ofnon-emptysetsoftrees.inthisstructure,afunctionsymbolfofisinterpretedaselementwisetreeconstructor andtherelationsymbolassubsetrelation.wecallarst-orderformulaover INESconstraintsatisableifitissatisableinthestructureP+(Tree).TworstorderformulaeoverINESconstraintsarecalledequivalentiftheyareequivalently interpretedinp+(tree). t::=xjf(t) inclusionsxf(y)andf(y)x(thisisamatteroftaste).andthird,weneed insteadofpossiblydeeptermst.second,weuseequalitiesx=f(y)ratherthan binarynon-disjointnessconstraintsx6jy.theirsemanticsisgivenbytheequivalencetotheformulax\y6;oversetsoftrees.overnon-emptysetsoftrees,x6jstraintsyntaxinthesequel.first,werestrictourselvestoattermsf(x)andx FlatInesConstraints.Foralgorithmicreasons,weuseanalternativecon- 5

6 isequivalentto9z(zx^zy).crucially,however,nondisjointnessconstraints x6jyavoidexplicitexistentialquanticationinouralgorithm. junction,i.e.,weconsider'asamultisetofinclusionsxy,equalitiesx=f(y), WeidentifyatINESconstraints'uptoassociativityandcommutativityofcon- ThesethreestepsleadustoatINESconstraints'denedasfollows. andnon-disjointnessconstraintsx6jy. '::='1^'2jxyjx=f(y)jx6jy Fromnowon,wewillconsideronlyatINESconstraintsandcallthemconstraintsforshort.ThisisjustiedbythefollowingProposition.Letthesize ofaconstraint'bethenumberoffunctionsymboloccurrencesplusvariable Proposition1.ThesatisabilityproblemsofINESconstraintsandofatINES occurrencesin'. 4AxiomsandAlgorithm constraintshavethesametimecomplexityuptoalineartransformation. WepresentasetofaxiomsvalidforINES-constraintsinterpretedovernon-empty solvesthesatisabilityproblemofinesconstraints.thecorrectnessandthe setsoftrees.inasecondstep,weinterprettheseaxiomsasanalgorithmthat A1.xxandxy^yz!xz complexityofthisalgorithmwillbeprovedinsection5. A2.x=f(y)^xx0^x0=f(z)!yz A5.x=f(y)^x6jx0^x0=f(z)!y6jz A3.xy!x6jyandxy^x6jz!y6jzandx6jy!y6jx A4.x=f(y)^x6jx0^x0=g(z)!?forf6=g Table1containsverulesA1-A5representingsetsofaxioms.1Theunionof Table1.AxiomsofINESconstraintsovernon-emptysetsofinnitetrees thesesetsisdenotedbya.forinstance,arulexxrepresentstheinniteset 1Notethattheseaxiomsdierfromtheonesgivenintheintroduction.Theconstraints usedtherearenotatandthevariable-variablecasexyandx6jyareomitted. Indeed,theaxiomsintheintroductionaresemanticallycomplete,althoughthisis non-trivialtoseeanddependsonthecorrectnessofthealgorithmpresentedhere. 6

7 ofaxiomsthatisobtainedbyinstantiationofthemetavariablexwithconcrete Proposition2.ThestructureP+(Tree)isamodeloftheaxiomsinA. constraints'! variables.notethatanaxiomiseitheraconstraint',animplicationbetween,oranimplication'!?. Proof.Byaroutinecheck.Wenotethatthenon-emptinessassumptionof P+(Tree)isessentialforaxiomsA2andA3:1. TheAlgorithm.ThesetofaxiomsAcanbeconsideredasa(nave)xed pointalgorithmathat,givenaninputconstraint',iterativelyaddslogical 2 consequencesofa[f'gto'.moreprecisely,ineverystepainputsaconstraint' possibleif?takesplaceifthereexists andeitherterminateswith?oroutputsaconstraint'^ 02'suchthat 0!?2A.Outputof'^.Terminationwith Example1.Arsttypeofinconsistencydependsonthetransitivityofsetinclusion.Hereisatypicalexample: 2Aorthereexists 0in'with 0! with?bya4. AlgorithmAmayaddxzbyA1:2,thenx6jzwithA3:1,andthenterminate x=a^xy^yz^z=b!? fora6=b disjointnessrequirements.forillustration,weconsider: Example2.Asecondtypeofinconsistencycomeswithimplicitorexplicitnon- AlgorithmAmayaddz6jxbyA3:1,thenx6jzviaA3:3,thenx6jywithA3:2,and nallyterminatewith?viaa4. x=a^zx^zy^y=b!?for fora6=b reasoningwitha2.consider: Example3.Inconsistenciesoftheabovetwotypesmaybedetectedbystructural AlgorithmAmayaddxxbyA1:1,thenxzwithA2,thenx6jzbyA3:1,and nallyterminatewith?witha4. x=f(x)^x=f(z)^z=a!? Example4.WeneedanotherstructuralargumentbasedonA5forderivingthe unsatisabilityofthefollowingconstraint. AlgorithmAmayaddx6jyafterseveralstepsasshowninExample2.Thenit mayproceedwithx6jx0viaa5andterminatewith?viaa4. x=f(x)^zx^zy^y=f(x0)^x0=a!? 7

8 Termination. straintsx6jyandxyto'whicharenotcontainedin'.wealsorestrictre- addingasimplecontrol.givenaninputconstraint',weaddonlysuchcon- exivityofinclusionxxtosuchvariablesxoccurringin'.givenasubsets ofa,aconstraint'iscalleda0-closed,ifalgorithmaunderthegivencontrol AlgorithmAcanbeorganizedinaterminatingmannerby notcontain?bydenition.)thisdenesthenotionofa-closednessbutalsoof andrestrictedtotheaxiomsina0cannotproceed.(notethatconstraintsdo A1-closedness,A2-closedness,etc.,whichwillbeneededlateron. Example5.Ourcontroltakescareofterminationinpresenceofcycleslike x=f(x).forinstance,thefollowingconstraintisa-closed. Inparticular,A2andA5donotloopthroughthecyclex=f(x)innitelyoften. Proposition3.If'isaconstraintwithmvariablesthenalgorithmAwith x=f(x)^xy^y=f(x)^xx^yy^x6jx^y6jy^x6jy^y6jx Proof.SinceAdoesnotintroducenewvariables,itmayaddatmostm2nondisjointnessconstraintsx6jyandm2inclusionsxy. 2 TheproofofthisstatementisthesubjectofSection5.There,weconstructthe Proposition4.EveryA-closedconstraint'issatisableoverP+(Tree). input'terminatesundertheabovecontrolinatmost2m2steps. (oineandonline)wherenistheconstraintsize. generaldonothaveasmallestsolution(considerxf(xy)). Theorem5.ThesatisabilityofINESconstraintscanbedecidedintimeO(n3) greatestsolutionforasatisableconstraint(lemma9).notethatconstraintsin control(proposition3),thisyieldsaeectivedecisionprocedure.thecomplexitystatementisprovedinproposition14.themainideaisthateverystepof implementationofalgorithma.itexploitsthatalgorithmaleavestheorder unspeciedinwhichaxiomsinaareapplied. algorithmacanbeimplementedintimeo(n)andthatthereareo(n2)steps (Proposition3).2IntheproofofProposition14,wepresentanincremental ThereisaclassofconstraintsonwhichalgorithmAindeedtakescubictime, namelytheinclusionscyclesx1x2^:::^xn?1xn^xnx1wheren1.the closureunderaisthefulltransitiveclosurevfxixjji;j2f1:::nggplusthe 2 with?.proposition4provesthat'issatisableifastartedwith'terminates Proof.Proposition2showsthat'isunsatisableifAstartedwith'terminates withaconstraint.sinceaterminatesforallinputconstraintsundertheabove correspondingnon-disjointnessconstraints. 2EverystepofalgorithmAcoststimeO(n)onlywithrespecttoanamortizedtime analysis,whichwedonotmakeexplicitinourcomplexityproof. 8

9 inproposition4.wehavetoconstructasolutionforeverya-closedconstraint. 5Completeness ThegoalofthisSectionistoprovethecompletenessofouralgorithmasstated TheideaistoconstructsolutioninasubstructureofP+(Tree)thestructureof treeprexes. TreePrexes.Atreeprexisasetofpairs(p;f)thatisprexclosed,path overtreeprexessuchthatprexbecomesastructure.functionsymbolsf2 alltreeprexesisdenotedbyprex.wecannaturallyinterpretinesconstraints consistent,andarityconsistent.notethateverytreeisatreeprex.thesetof areinterpretedastreeprexconstructors(generalizingtreeconstructors).the inclusionsymbolisinterpretedastheinvertedsubsetrelationontreeprexes thatwedenotewith(i.e.,12i12).therelation16j2holdsover Prexi1[2ispathconsistent(andhenceatreeprex). dingtrees:prex!p+(tree)givenby: Proposition6.PrexisasubstructureofP+(Tree)withrespecttotheembed- Proof.ThemappingTreesisahomomorphismwithrespecttofunctionsymbolsf2andtherelationsymbolsand6j. Trees()=f0j0isatreesuchthat0g Corollary7.IfaconstraintissatisableoverPrexthenitissatisableover P+(Tree). 2 Aconjunctionofsuchconstraintsissatisableifallconjunctsaresatisable.2 PathReachability. Proof.Forconstraintsxy,x=f(y),andx6jy,thisfollowsfromProposition6. constraint',wedeneabinaryrelation';p,wherex';pyreadsas\yis thenotionofpathconsistencywithrespecttoconstraints.forallpathspand reachablefromxoverpathpin'": Weintroducethepathreachabilityrelations';pand x';"yifxyin' Wedenerelationsx';pfmeaning\fcanbereachedfromxviapathpin'": x';iyiifx=f(y1:::yi:::yn)in'; x';pqyifx';puandu';qy: Forexample,if'istheconstraintxy^y=f(u;z)^z=g(x)thenthefollowing reachabilityfromxrelationshipshold:x';"y,x';2z,x';21x,x';21y,etc., aswellasx';"f,x';2g,x';21f,etc. x';pfifx';pyandy=f(u)in'; 9

10 Denition8PathConsistency.Wecallaconstraint'pathconsistentifthe followingtwoconditionsholdforallx,y,p,f,andg. Lemma9.EveryA1-A2-closedandpathconsistentconstraintissatisableover 1.Ifx';pg,xx,andx';pfthenf=g. Prex. 2.Ifx';pg,x6jy,andy';pfthenf=g. ProofofProposition4.WehavetoshowthateveryA-closedconstraint'is andhencesatisableinp+(tree)bycorollary7. satisable.'ispathconsistentbylemma10,satisableinprexbylemma9, Lemma10.EveryA3-A5-closedconstraintispathconsistent. 6Non-EmptySetsversusTrees 2 Theorem11.GivenanINESconstraints',thefollowingthreestatementsare interpretationovertrees. emptysetsoftrees.forthefragmentofequalityconstraintswealsoconsideran WediscussinterpretationsofINESconstraintsovertreeprexesandovernon- equivalent: 1.'issatisable(overP+(Tree)). Proof.1)to3).If'issatisableoverP+(Tree),thenitissatisableinsome 3.'issatisableinsomemodeloftheaxiomsinA. 2.'issatisableoverPrex. 3)to2).Let'besatisableinsomemodelofA.AlgorithmAterminateswhen modelofa,sincep+(tree)isamodelofabyproposition2. 2)to1).If'issatisableoverPrexthenitissatisablebyCorollary7. startedwith'byproposition3.itoutputsaconstraint isequivalentto'inallmodelsofa. PrexbyLemmata9and10. isa-closedandhencesatisableover (andnot?)that ingisantisymmetric(x=y$xy^yx). P+(Tree),equalitiescanbeexpressedbyinclusionssincetheinclusionorder- Anequalityconstraintisaconjunctionofequalitiesx=yandx=f(y).Over 2 Theorem12.Thethreerst-ordertheoriesofequalityconstraintsovernonemptysetsoftrees,overtreeprexes,andovertreescoincide(i.e.,ofthestructuresP+(Tree),PrexandTree).3 3Independently,A.ColmerauerobservedthisforP+(Tree)andTree(pers.comm.). 10

11 equality. isimmediatesincetheyarealreadycontainedinawithinclusionreplacedfor Proof.Thisfollowsfromthefactthatallaxiomsofthecompleteaxiomatization oftrees[18,19,12]arevalidfornon-emptysetsoftrees.thisholdsfortheaxioms oftheform8y9!x(x1=f1(xy)^:::^xn=fn(xy)).validityoftheotheraxioms structuresp+(tree)andprex.aformulathatholdsoverprexbutnotover Incontrast,rst-orderformulaeoverinclusionconstraintscandistinguishthe P+(Tree)isgivenby 2 partialordersin[6]). wherea6=b.anotherformuladistinguishingbothstructurescomeswitha constraint-basedreformulationofthecoherenceproperty(denedforcomplete 8x(ax^bx!8y(yx)) Wesaythatanorderingrelationsatisesthecoherencepropertyifitsatisesthe thegivenordering).vi;j2i9z(zxi^zxj)!9z(vi2izxi) followingformulaeforallnitesetsi(whereinclusionsymbolisinterpretedas propertydoesnothold.thereitstatesthenon-emptinessofann-intersection Thisformulastatesthatforallvariableassignmenttheelementsfromthe (xi);(xj)have(i;j;2f1;:::;ng).forinclusionovernon-emptysetsthis nitesetf(xi)ji2ighaveacommonlowerboundifeverytwoofitselements t1\:::\tnifallpairwiseintersectionsti\tjarenon-empty(i;j2f1:::ng), whichisrefutedbytheexamplei=f1;2;3gand(x1)=fa;bg,(x2)=fa;cg, (x3)=fb;cgfordistinctconstantsa;b;c. Proposition13.Thetreeprexorderingsatisesthecoherenceproperty. solutionof9z(vi2izxi). Proof.ForsomeniteindexsetJIandvariableassignmentintoPrex, pathconsistentsuchthattheunionsi2i(xi)ispathconsistent.henceisa isasolutionofall9z(zxi^zxj)thenallpairwiseunions(xi)[(xj)are notethatisasolutionof9z(vi2jzxi)isi2j(xi)ispathconsistent.if Acknowledgements.WewouldliketothankDavidBasin,DenysDuchier,Witold astheanonymousrefereesforvaluablecommentsondraftsofthispaper.theresearch Charatonik,HaraldGanzinger,GertSmolka,RalfTreinenandUweWaldmann,aswell 2 reportedinthispaperhasbeensupportedbythetheespritworkinggroupcclii (EP22457)andtheDeutscheForschungsgemeinschaftthroughtheGraduiertenkolleg KognitionswissenschaftandtheSFB378attheUniversitatdesSaarlandes. References 1.A.Aiken,D.Kozen,andE.Wimmers.DecidabilityofSystemsofSetConstraints withnegativeconstraints.informationandcomputation,

12 2.A.AikenandE.Wimmers.SolvingSystemsofSetConstraints.InProc.7thLICS, pp.329{340.ieee, A.AikenandE.Wimmers.TypeInclusionConstraintsandTypeInference.In Proc.6thFPCA,pp.31{ A.Aiken,E.Wimmers,andT.Lakshman.SoftTypingwithConditionalTypes. InProc.21stPOPL.ACM, L.Bachmair,H.Ganzinger,andU.Waldmann.SetConstraintsaretheMonadic Class.InProc.8thLICS,pp.75{83.IEEE, H.P.Barendregt.TheTypeFreeLambdaCalculus.InBarwise[7], J.Barwise,ed.HandbookofMathematicalLogic.Number90inStudiesinLogic. North{Holland, D.BasinandH.Ganzinger.AutomatedComplexityAnalysisBasedonOrdered Resolution.In11thLICS.IEEE, W.CharatonikandL.Pacholski.Negativesetconstraintswithequality.In Proc.9thLICS,pp.128{ W.CharatonikandL.Pacholski.SetconstraintswithprojectionsareinNEXP- TIME.InProc.35thFOCS,pp.642{ W.CharatonikandA.Podelski.TheIndependencePropertyofaClassofSet Constraints.InProc.2ndCP.LNCS1118,Springer, H.ComonandP.Lescanne.Equationalproblemsanddisunication.Journalof SymbolicComputation,7:371{ R.Gilleron,S.Tison,andM.Tommasi.SolvingSystemsofSetConstraintswith NegatedSubsetRelationships.InProc.34ndFOCS,pp.372{ N.Heintze.SetBasedAnalysisofMLPrograms.TechnicalReportCMU{CS{93{ 193,SchoolofComputerScience,CarnegieMellonUniversity.July N.HeintzeandJ.Jaar.ADecisionProcedureforaClassofSetConstraints (ExtendedAbstract).InProc.5thLICS,pp.42{51.IEEE, D.Kozen.Logicalaspectsofsetconstraints.InProc.CSL,pp.175{ M.J.Maher.Logicsemanticsforaclassofcommitted-choiceprograms.InJ.-L. Lassez,ed.,Proc.4thICLP,pp.858{876.TheMITPress, M.J.Maher.CompleteAxiomatizationsoftheAlgebrasofFinite,Rationaland InniteTrees.InProc.3rdLICS,pp.348{457.IEEE, A.I.Malc'ev.AxiomatizableClassesofLocallyFreeAlgebrasofVariousType. InTheMetamathematicsofAlgebraicSystens:CollectedPapers ,ch.23, pp.262{281.north{holland, D.McAllester.AutomaticRecognitionofTractabilityinInferenceRelations. JournaloftheACM,40(2),Apr D.McAllesterandR.Givan.TaxonomicSyntaxforFirst-OrderInference.Journal oftheacm,40(2),apr D.McAllester,R.Givan,D.Kozen,andC.Witty.TarskianSetConstraints.In Proc.11thLICS.IEEE, M.Muller.TypeAnalysisforaHigher-OrderConcurrentConstraintLanguage. DoctoralDissertation.UniversitatdesSaarlandes,TechnischeFakultat,66041 Saarbrucken,Germany.Inpreparation. 24.J.Niehren.FunctionalComputationasConcurrentComputation.In23rdPOPL, pp.333{343.acm, J.NiehrenandM.Muller.ConstraintsforFreeinConcurrentComputation.In Proc.1stASIAN,LNCS1023,pp.171{186.Springer, TheOzProgrammingSystem.ProgrammingSystemsLab,UniversitatdesSaarlandes.Availableathttp:// 12

13 27.V.A.Saraswat.ConcurrentConstraintProgramming.TheMITPress, G.Smolka.TheOzProgrammingModel.InJ.vanLeeuwen,ed.,ComputerScienceToday,LNCS1000,pp.324{343.Springer,1995. AInes-ConstraintsforProgramAnalysis constraintprogramminglanguages[17,27]suchasoz[28](see[24,25]forformalfoundationsofoz).duringtheexecutionofprogramsintheselanguages, WeareinvestigatingtheapplicationofINESconstraintsforprogramanalysis. Morespecically,weintendtoconstructatypeanalysissystemforconcurrent thesetofpossiblevaluesisemptyforsomeprogramvariable. thepossiblevaluesofprogramvariablesareapproximatedbyconstraints.for analysisaddedincomments(usingthespecialfunctionsymbolproc).4 Forillustration,considerthefollowingOzprogramwithitsconstraint-based programswithoutsearch(backtracking),itisconsideredaprogrammingerrorif proc{px}x=aend proc{qy}y=bend {PZ}{QZ} %9x(p=proc(x)^x=a)^ %9y(q=proc(y)^y=b)^ argumentsxandy,respectively,aswellastwoprocedureapplicationswiththe TheprogramcontainsthedenitionoftwoproceduresPandQwithformal %proc(z)p^proc(z)q andz=bwillbeemittedwhichareinconsistentwitheachother. TheprogramvariablesP,Q,X,Y,andZaremappedtoconstraintvariablesp, sameactualargumentz.onexecutionoftheseapplications,theconstraintsz=a indicatedinthecomments.theconjunctionoftheseconstraintsischeckedfor q,x,y,andz,andtheprogramsubexpressionsaremappedtoconstraintsas AprogramanalysisintermsofINES-constraintscandetectthiserrorasfollows. satisabilityandtheprogramisrejectedifthistestfails.theaboveprogramis rejectedsinceitsanalysisimpliesza^zbwhichisunsatisable. useitexperimentallyforozprograms.thefulldescriptionofthetypeanalysis systemisoutofthescopeofthispaperandwillbereportedin[23]. WehaveimplementedatypeanalysissystembasedonINES-constraintsand constraintshavethethesametimecomplexityuptoalineartransformation. BOmittedProofs Proposition1.ThesatisabilityproblemsofINESconstraintsandofatINES 4Thisexamplealsoappearedinthefollow-uppaper[11]withtheexplicitstatement thatitisborrowedfromhere. 13

14 equivalenttoarst-orderformulaoverinesconstraints. Proof.WithrespecttothestructureP+(Tree),everyatINESconstraintis INESconstraints. Conversely,everyINESconstraintisequivalenttoarst-orderformulaoverat x=f(y)$xf(y)^f(y)x x6jy$9z(zx^zy): straintsintoatinesconstraintsandviceversa.hence,foreveryinesconstraint TheseequivalencescanbeinterpretedasconstrainttransformersfromINEScon- f(t)x$9y9z(tz^f(z)=y^yx) xf(t)$9y9z(xy^y=f(z)^zt) tt0$9x(tx^xt0) thereexistsasatisfactionequivalentconstraintandviceversa.itiseasytoorganizethetransformationssuchthattheypreservethesizeofconstraintsuptoa Prex. Lemma9.EveryA1-A2-closedandpathconsistentconstraintissatisableover factorof2.hence,thecomplexityofthesatisabilityproblemsispreserved.ut Proof.Let'beA1-A2-closedandpathconsistent.Wedeneavariableassignmentprex'intoPrexasfollows: Thepathconsistencyof'(condition1)impliesthepathconsistencyof p).wenowverifythatprex'isasolutionof'. prex'(x).thusprex'(x)isatreeprex(onecanshowthisbyinductionover prex'(x)=f(p;f)jx';pfg {Considerx=f(y1:::yn)in'.Ifi2f1:::ngandyi';pgthenx';ipg. {Letxyin'.Ify';pgthenx';pgbythedenitionofpathreachability. Thus,prex'(y)prex'(x). Thus,f(prex'(y1):::prex'(yn))prex'(x).Fortheconverseinclusion, werstshowthat'satisesthefollowingtwopropertiesforallgandi: ForprovingP1weassumex';"g.Sincex=f(u)in'wehavexxin'by P2 P1 ifi2f1:::ngandx';ipgthenyi';pg. ifx';"gthenf=g. A1:1-closedness.Thusx';"fwhichimpliesf=gsince'ispathconsistent (condition1)anda1:1-closed,i.e.p1holds. ForprovingP2,weassumei2f1:::ngandx';ipg.Bydenitionofpath reachabilitythereexistsx0,f0,andvsuchthat x';"x0; x0=f0(y01:::y0i:::y0n); 14 y0i';pg:

15 TheA1:2-closednessof'andx';"x0implyxx0in'.Thepathconsistency Wenallyshowprex'(x)f(prex'(y1):::prex'(yn)).Given(p;g)2 closednessensuresyiy0iin'suchthatyi';pgholds.thisprovesp2. of'(condition1)andthea1:1-closednessof'impliesf=f0.hence,a2- {Letx6jyin'.Wehavetoshowthatthesetprex'(x)[prex'(y)ispath f=gandhence(";g)2f(prex'(y1):::prex'(yn)).ifp=iqthenx';iqg prex'(x),wedistinguishtwocases.ifp=",thenx';"gsuchthatp1implies suchthatp2yieldsyi';qgandhence(p;g)2f(prex'(y1):::prex'(yn)). Lemma10.EveryA3-A5-closedconstraintispathconsistent. consistent.if(p;g)2prex'(x)and(p;f)2prex'(y)thenx';pgand y';pf.thepathconsistencyof'(condition2)impliesf=g. 2 2ofDenition8andA3:1-closedness.Theproofofcondition2inDenition8is Proof.Let'beA3?A5-closed.Condition1ofDenition8followsfromcondition byinductiononpathsp.weassumex,y,f,andgsuchthatx';pf,x6jyin', andx';pg. Ifp=",thenthereexistn;m0,x1;:::;xn,y1;:::ym,u,andvsuchthat: A3-closednessimpliesthatxn6jymin'(A3:2yieldsx6jy1in',:::,x6jymin'. Thusym6jxin'byA3:3-closednesssuchthatA3:2-closednessyields yy1^:::^ym?1ym^ym=g(y0)in': xx1^:::^xn?1xn^xn=f(x0)in'; ym6jx1in',:::,ym6jxnin').hence,a4-closednessimpliesf=g.ifp=iq, thenthereexistf0,g0,x0,y0,u,vwith: Sincex6jx0in',wehavex06jy0in'byA3-closedness(thishasbeenprovedfor y';"y0;y0=g0(y01:::y0i:::y0n)in';y0i';pg: x';"x0;x0=f0(x01:::x0i:::x0n)in';x0i';pf; thecasep=").thus,a4-closednessyieldsf0=g0suchthata5-closedness impliesx0i6jy0iin',andhencef=gholdsbyinductionassumption. CComplexity 2 WeelaboratetheproofofthecomplexityandincrementalitystatementinTheorem5bypresentinganimplementationofalgorithmA. itterminatesintimeo(n3)wherenisthesizeoftheinputconstraint. Proposition14.AlgorithmAcanbeimplemented(onlineandoine)suchthat 15

16 oremptymultisetsrepresentedby>.initially,thepool'istheinputconstraint called'0(whichmaybeinputedincrementallyintheonlinecase)andthestore where'iscalledpooland Proof.WeorganizealgorithmAasareductionrelationonpairs('; isempty. store.thestoreandthepoolareeitherconstraints )or?, of apair('; Reductionpreservestheinvariantthat'^ ('0; withrespecttoalgorithma(andrestrictedtovariablesoccuringin'0).if )reducesto?then'^ isequivalentto?.if('; containsallone-stepconsequences nalstoreisa-closedandequivalenttotheinitialconstraint'0. orwithanemptypool.inthelattercase,theaboveinvariantsensurethatthe 0)then'^ isequivalentto'0^ 0.Reductioneitherterminateswith? )reducesto implementedbyrecursivelyexecutingthefollowingsequenceofinstructions: Letabasicconstraintbeoftheformxy,x6jy,orx=f(y).Reductioncanbe 1.Selectabasicconstraint'0fromthepool.If'0iscontainedinthestore 2.Else,forallaxiomsinAoftheform'0^ deleteiffromthepoolandnish. '00tothepool.Ifthereexistsanaxiomoftheform'0^ 0!'00with 0inthepooladd 3.Add'0tothestoreanddeleteitfromthepool. isnotcontainedinthestorethenaddittothestore. 0inthepoolthenreduceto?.If'0containsavariablexsuchthatxx 0!?inAwith arestrictedcase.inasecondstepweshowthattheserestrictionscanbeomitted. Werstdiscussthenecessarydatastructuresforimplementingthereductionin R3'0containsatmostoneequalitypervariable. R2Thearityofconstructorsin'0isboundedbyaconstant,sayk. R1Thealgorithmisoine,i.e.theinputconstraint'0isstaticallyknown. Letmbethenumberofvariablesin'0.Thepoolcanbeimplementedsuchthat itprovidesforthefollowingoperations(forinstanceasaqueue). {selectanddeleteabasicconstraintfromthepoolino(1). mostonepervariable)andatableofsize2m2fortheconstraintsxyandx6jy Thestorecanbeimplementedasanarrayofsizemfortheequalitiesx=f(y)(at foralloccuringvariables.thestorecansupportthethefollowingoperations: {addabasicconstrainttothepoolino(1). {testthepresenceofanequalityforxino(1). {givenavariablexwithx=f(y)2',retrievethefunctionsymbolfandthe {testthemembershipxy2 sequenceyintimeo(1). andx6jy2 intimeo(1). 16

17 {givenavariablex,retrievethesetofallysuchthatxy2'intimeo(m) {addabasicconstraintintimeo(1). Asshowninthenextparagraph,thereductionrelationcanbeimplementedsuch thatalloperationsonthestoreandthepoolareinvokedadmosto(m2)times. (analogouslyforx6jy). SinceeveryoperationcostsatmostO(m)timeandmn,thisyieldsanO(n3) ThereareatmostO(m2)distinctbasicconstraintsthatmaybeaddedtothe implementation. storeandeverybasicconstraintmaybeaddedatmostonce.hencethereareat mosto(m2)addoperationsonthestore.constraintsareaddedtothepoolonly ifsomebasicconstraintisaddedtothestore.inthiscase,atmosto(k)basic constraintsareaddedtothepoolbyr2.hence,thereareatmosto(km2)add operationsonthepool. Wenallydiscusshowtogetridoftheaboverestrictions. R2IfthearityofconstructorsisunboundedthenwestillknowthateveryoperationcostatmostO(n)wherenisthesizeof'0.Theonlyproblemis thatthenumberofbasicconstraintsthatmaybeaddedtothepoolisno tothepoolatmostonce,i.e.byrememberingthoseconstraintsthathave beenaddedtopool(andpossiblydeleted)before.thiscanbedonewitha quadratictableasforthestore. moreboundedbyo(n2).thiscanbecircumventedbyaddingconstraints R1Foranonlinealgorithm,wecanaddtheinputconstraint'0incrementally R3Ifwereplaceallequalitiesx=f(y)in'0byxx0^x0x^x0=f(y)wherex0 isafreshvariablerespectivelythentheresultingconstraintdoesnotcontain twoequationsforthesamevariable. tothepool.theproblemisthatthenumberofvariablesin'0isnotknown statically.wehavetoreplaceourstatictablesandarraysbydynamichash DFiniteTrees tablessuchthatnewvariablescanbeinserted. 2 niteorinnitetrees. Example6.Forinstance,theconstraintxf(x)issatisableoversetsofinnite ThesatisabilityofINESconstraintsdependsontheinterpretationoversetsof treesbyx7!ff(f(f(:::)))g,butnon-satisableoversetsofnitetrees. TheresultsofSectionCcarryovertothenitetreecasewhenweaddthe \occurs-check"axioma6fromtable2toaxiomseta.inparticular,lemma9 andtheorem5canbeadapted.calltreenthesetofnitetrees. 17

18 A6.'!?ifx';pxforsomepathp6=" Lemma15.Apathconsistentconstraint'closedunderA1-A3andA6issatisableinP+(Treen). Table2.Theoccurscheckaxiom ableinp+(tree)wehavedenedtheprexprex'(x)=f(p;f)jx';pfg.since Proof.ToshowaA1-A3andA6-closedandpathconsistentconstraint'satis- mustbeaniteprexforallx.hence,'issatisableinp+(treen). 'isniteandtheassumptionaboutaxioma6excludescyclicpaths,prex'(x) Theorem16.ThesatisabilityofINESconstraintsovernon-emptysetsofnite treescanbedecided(oineoronline)intimeo(n3). 2 everystep.thisisconstantiftheclosureofthereachabilityrelationbetween variablesis(justlike)implementedbyatableofsizequadraticinthenumber termination.thisislinearinthesizeofthenalconstraintandcubicinthesize ofthestartconstraint.theonlineversionmustscheduletheoccurs-checkafter Proof.Theoineversionofouralgorithmmayperformtheoccurs-checkupon EStandardSetConstraints ofvariables. 2 emptinessconstraintsx6;(\xdenotesanon-emptyset").weshowthatthe cubicalgorithmforinesconstraintscanbeadaptedtothisfragmentofstandard INESconstraintsoverpossiblyemptysetsoftreesandallowingforexplicitnon- Inthissection,wetakeaalternativeapproachtoachievetheexpressivenessof setconstraintsatthecostofadditionalaxioms. INESconstraints.Weconsideraclassofstandardsetconstraintsbyinterpreting WeinterpretetheseconstrainteitherinthestructureofsetsoftreesP(Tree) lows. Weextendourconstraintsyntaxwithexplicitnon-emptinessconstraintsasfol- satisabilityofsetconstraintsdiersdependingonthechoiceofniteorinnite orinthestructureofsetsofnitetreesp(treen).duetotheconstraintx6;, '::='1^'2jx=f(y)jxyjx6jyjx6; (1) trees.thisisnotthecasewithoutx6;aswewillshowbelow(corollary20). Example6adaptsasfollows. Example7.Theconstraintx6;^xf(x)issatisableoversetsofinnitetrees bythevariableassignmentx7!ff(f(f(:::)))g,butnon-satisableoversetsof nitetrees. 18

19 A1.xxandxy^yz!xz A3'.x6;^xy!x6jyandxy^x6jz!y6jzandx6jy!y6jx A4.f(y)x^x6jx0^x0g(z)!?forf6=g A2'.x6;^x=f(y)^xx0^x0=f(z)!yz A6'.x6;^'!?ifx';pxforsomepathp6=" A5.x=f(y)^x6jx0^x0=f(z)!y6jz B8.x6jy!y6; B7.x6;^x=f(y)!y6;andy6;^x=f(y)!x6; InTable3,wepresentthesetofaxiomsB,whichadaptsthesetAforthenew Table3.Axiomsforinclusionconstraintsover(possiblyempty)setsofnitetrees emptinesspremisesexplicit,andb7andb8havebeenadded.b7propagatesnon- emptinessthroughterms.foreveryconstantsymbola2,b7:2postulatesthat musthaveanon-emptydenotationthemselves.itiseasilycheckedthatallthese constraints.theaxiomsetsa20,a30,anda60arechangedtomakeimplicitnon- P(Tree). axiomsarevalidinp(treen)andthatallaxiomsapartfroma6arevalidin x=a!x6;.b8statesthatvariablesinvolvedinanon-disjointnessconstraint Proposition17.EveryB-closedconstraintissatisableoverP(Treen).Every constraintthatisb-closedapartfromtheoccurs-checkaxioma6'issatisable overp(tree). Proof.GivenaB-closedconstraint',wedenethesetofvariablesin'which areconstrainedtobenon-empty. Thepart of'containingonlyvariablesvar' 6;def =fxjx6;in'g Forthenitetreecase,assume'tobeB-closed.ByProposition15thereexists straintsisaclosedinesconstraint. avariableassignmentintop+(treen)whichsatises 6;andnonon-emptinesscon- Denethevariableassignmentby(x)=;forx62Var' elsewhere.weshowthatsatises'.letx62var' in'containingx. 6;.Weconsidertheinclusions inp(treen). 6;and(x)=(x) 19

20 {Ify=f(:::x:::)in',theny6;cannotbein'duetoB7:2.Hence(y)= {Constraintsxyaretriviallysatisedby. {Ifx=f(y1:::yn)in',thenyi6;cannotbein'forsomeyiduetoB7:1. {Ifyxin',theny6;cannotbein'duetoA30andB8.Hence(y)= ;(f(:::x:::)). ;(x). Hence(x)=;=(f(:::yi:::)). Fortheinnitetreecaseassume'tobeB-closedwiththeexceptionofA6'.Then bylemma9,thereexistsasatisfyingvariableassignmentintop+(tree).apart fromthat,theaboveargumentisunchanged. Theorem18.Thesatisabilityofconjunctionsofinclusionconstraintsand non-emptinessconstraintsoversetsofnitetreescanbetestedino(n3). 2 AtomicSetConstraints.INESconstraintsinterpretedoverallsetsofnite Proof.TheaxiomsinTable3againinduceaxedpointalgorithmforthesatisabilitytest.Bycarryingoverthetechniquesforthecomplexityresultsfrom treesp(treen)arealsocalledatomicsetconstraints[15].theorem18implies SectionC,weobtainthesamecomplexitybound. timecomplexityo(n3)fortheirsatisabilityproblem.furthermore,weshow 2 thattheoccurscheckaxioma60isnotneededtodecidesatisabilityofatomic setconstraints. Proof.Ifx';pxforsomep6=",thenalsox';pnxforeverypathpn=pp:::p (n-foldconcatenation).thus,foreveryprexqofsuchapathpn,thereexistsa doesnotimply?accordingtoaxioma60. Lemma19.Lettheconstraint'beB-closedwiththeexceptionofA60.Then' Butthenthereexistn1andaprexqofpnleadingtoaleafint.Thus, non-constantfunctionsymbolf2andatermf(y)suchthatx';qf(y). (q;a)2tforsomeconstantsymbola2.ifx';qf(y),wecanshowby Ifx6;2'then'containsaconjunctionexpressingthattxforsome groundtermt. (2) inductionoverqthatthereexistz;z0suchthatz=a,zz0,andz0=f(y)in'. FromLemma19andTheorem18wehavethefollowingCorollary[.Notethat thisisincontrasttoexamples6and7. whichcontradictstheassumption. FromB7:2,andA30weobtainz6jz0andhence,?isaconsequenceofAxiomA4 2 Corollary20.Thesatisabilityofatomicsetconstraintsisinvariantwithrespecttotheinterpretationoversetsofniteorinnitetrees. 20

AmyP.Felty1,DouglasJ.Howe1,andFrankA.Stomp2 ProtocolVericationinNuprl? 2Dept.ofComp.Sci.,UCDavis,Davis,CA95616,[email protected] 1BellLabs,MurrayHill,NJ07974,USA.ffelty,[email protected] whileretainingexistingadvantagesofthesystem,anddescribesapplicationoftheprovertoverifyingthescicachecoherenceprotocol.the

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

KeyEscrowinMutuallyMistrustingDomains?

KeyEscrowinMutuallyMistrustingDomains? KeyEscrowinMutuallyMistrustingDomains? Abstract.Inthispaperwepresentakeyescrowsystemwhichmeets L.Chen,D.GollmannandC.J.Mitchell possiblerequirementsforinternationalkeyescrow,wheredierentdomainsmaynottrusteachother.inthissystemmultiplethirdparties,

More information

Thepurposeofahospitalinformationsystem(HIS)istomanagetheinformationthathealth

Thepurposeofahospitalinformationsystem(HIS)istomanagetheinformationthathealth FederatedDatabaseSystemsforReplicatingInformationin UniversityofDortmund,DepartmentofComputerScience,Informatik10 ExtendingtheSchemaArchitectureof E-mail:[email protected] HospitalInformationSystems

More information

Internet!of!Services! Project!IntroducMon!

Internet!of!Services! Project!IntroducMon! Internet!of!Services! Project!IntroducMon! Prof.!Dr.!Küpper,!S.!Göndör,!S.!Zickau,!M.!Slawik,!et!al.! ServiceIcentric!Networking! Telekom!InnovaMon!Laboratories!and!TU!Berlin! Introduc)on* Project!OrganizaMon!!

More information

GContracts Programming by Contract with Groovy. Andre Steingress

GContracts Programming by Contract with Groovy. Andre Steingress FÕ Ò ŃÔ PŎ ÑŇÒ P ÌM Œ PÑǾ PÒ PÕ Ñ Œ PŘÕ Ñ GContracts Programming by Contract with Groovy Andre Steingress Andre FÕ Ò ŃÔ PŎ ÑŇÒ P ÌM Œ PSteingress ÑǾ PÒ PÕ Ñ Œ PŘÕ Ñ Independent Software Dev @sternegross,

More information

Ordering Constraints on Trees

Ordering Constraints on Trees Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-94-12 Ordering Constraints on Trees Hubert Comon and Ralf Treinen March 1994 Deutsches Forschungszentrum für Künstliche Intelligenz

More information

ImprovingRooftopDetectioninAerialImages MarcusA.Maloofy([email protected]) ThroughMachineLearning PatLangleyy([email protected]) ThomasBinfordz([email protected]) yinstituteforthestudyoflearningandexpertise

More information

All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda

All of my instructors showed a true compassion for teaching. This passion helped students enjoy every class. Amanda F 228 D O z F/ Fx L / H V L I & P G G F Q, z,, B, z -, q k k k FUN F x 20% 02 F 9185957834 I P G j P, E, j, k,, ; I I G F Ex 2011 H B H 2011-2012 F H E U F P G I G L L 228 D & 228 k B P 04 F 9185957834

More information

ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA

More information

Introduction to Apache Pig Indexing and Search

Introduction to Apache Pig Indexing and Search Large-scale Information Processing, Summer 2014 Introduction to Apache Pig Indexing and Search Emmanouil Tzouridis Knowledge Mining & Assessment Includes slides from Ulf Brefeld: LSIP 2013 Organizational

More information

How do we build good strategic partnerships? GUNILLA CARLECRANTZ, SENIOR ADVISOR EXTERNAL RELATIONS

How do we build good strategic partnerships? GUNILLA CARLECRANTZ, SENIOR ADVISOR EXTERNAL RELATIONS How do we build good strategic partnerships? GUNILLA CARLECRANTZ, SENIOR ADVISOR EXTERNAL RELATIONS Where is Lund? Lund University Founded in 1666 A comprehensive university top 100 45 000 students Lund

More information

ProgramVerificationandHardwareSynthesis 1 ProgramVerication HardwareSynthesis and Acommonapproachtohardwaredesignisto writeaprograminahardwaredescription languageandthencompileittoastatemachine usingasynthesissystem.somecorrectness

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Appendix... B. The Object Constraint

Appendix... B. The Object Constraint UML 2.0 in a Nutshell Appendix B. The Object Constraint Pub Date: June 2005 Language The Object Constraint Language 2.0 (OCL) is an addition to the UML 2.0 specification that provides you with a way to

More information

Rules Variation Summary for 2014 Master of Teaching (Secondary) Implications for current Master of Teaching (Secondary) students Note unit change

Rules Variation Summary for 2014 Master of Teaching (Secondary) Implications for current Master of Teaching (Secondary) students Note unit change Rules Variation Summary for 2014 Summary of Changes for 2014 For candidates admitted under Rule (a): Group 4 Listed Elective Teaching Units Group 4C EDLT490 has been added Note unit change For candidates

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

Introduction to Python

Introduction to Python Caltech/LEAD Summer 2012 Computer Science Lecture 2: July 10, 2012 Introduction to Python The Python shell Outline Python as a calculator Arithmetic expressions Operator precedence Variables and assignment

More information

DistributedSharedMemorySystems? AdaptiveLoadBalancinginSoftware CompilerandRun-TimeSupportfor SotirisIoannidisandSandhyaDwarkadas fsi,[email protected] DepartmentofComputerScience Rochester,NY14627{0226

More information

KEY ELEMENTS TO DESIGN AN EXTERNAL ACTIVE MANAGEMENT PROGRAM. Alejandro C. Reveiz H. Director, Quantitative Solutions, SAA & Analytics (QSA)

KEY ELEMENTS TO DESIGN AN EXTERNAL ACTIVE MANAGEMENT PROGRAM. Alejandro C. Reveiz H. Director, Quantitative Solutions, SAA & Analytics (QSA) KEY ELEMENTS TO DESIGN AN EXTERNAL ACTIVE MANAGEMENT PROGRAM Alejandro C. Reveiz H. Director, Quantitative Solutions, SAA & Analytics (QSA) October 1, 2015 Table of Contents Design guidelines in such a

More information

Problem Set #3 Answer Key

Problem Set #3 Answer Key Problem Set #3 Answer Key Economics 305: Macroeconomic Theory Spring 2007 1 Chapter 4, Problem #2 a) To specify an indifference curve, we hold utility constant at ū. Next, rearrange in the form: C = ū

More information

Number of objects. 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m

Number of objects. 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m GarbageCollectionforLargeMemoryJava AndreasKrallandPhilippTomsich Applications InstitutfurComputersprachen,TechnischeUniversitatWien Argentinierstrae8,A{1040Wien,Austria tolarge,data-intensivescienticapplicationsallocatingmemoryinthe

More information

CORRELATION ANALYSIS

CORRELATION ANALYSIS CORRELATION ANALYSIS Learning Objectives Understand how correlation can be used to demonstrate a relationship between two factors. Know how to perform a correlation analysis and calculate the coefficient

More information

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

More information

7.1 Our Current Model

7.1 Our Current Model Chapter 7 The Stack In this chapter we examine what is arguably the most important abstract data type in computer science, the stack. We will see that the stack ADT and its implementation are very simple.

More information

Name: ID: Discussion Section:

Name: ID: Discussion Section: Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

DataClusteringAnalysisinaMultidimensionalSpace A.BouguettayaandQ.LeViet QueenslandUniversityofTechnology fathman,[email protected] SchoolofInformationSystems Brisbane,Qld4001,Australia theresultofafairlyexhaustivestudytoevaluatethreecommonlyusedclusteringalgorithms,

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

Materials Management and Inventory Systems

Materials Management and Inventory Systems Materials Management and Inventory Systems Richard J.Tersine Old Dominion University 'C & North-Holland PUBLISHING COMPANY NEW YORK AMSTERDAM Contents Preface Chapter 1 INTRODUCTION 1 Inventory 4 Types

More information

MeasuringWebPerformanceintheWideArea 111CummingtonSt,Boston,MA2215 PaulBarfordandMarkCrovella ComputerScienceDepartment BostonUniversity fbarford,[email protected] BU-CS-99-4 April26,1999 andcontinuedgrowthmakethisadicultquestiontoanswer.wedescribethewideareaweb

More information

Start Here. Installation Guide. Rosetta Stone Standalone License. This Guide Will Show You How To: Install the Student Management System...

Start Here. Installation Guide. Rosetta Stone Standalone License. This Guide Will Show You How To: Install the Student Management System... Rosetta Stone Standalone License Installation Guide This Guide Will Show You How To: Install the Student Management System... Set Up the SMS... Install Rosetta Stone... 4 Configure Rosetta Stone (If Needed)...

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

!NAVSEC':!A!Recommender!System!for!3D! Network!Security!Visualiza<ons!

!NAVSEC':!A!Recommender!System!for!3D! Network!Security!Visualiza<ons! !:!A!Recommender!System!for!3D! Network!Security!Visualiza

More information

Variable Neighbourhood Search for the Global Optimization of Constrained NLPs

Variable Neighbourhood Search for the Global Optimization of Constrained NLPs ProceedingsofGO2005,pp.1 5. Variable Neighbourhood Search for the Global Optimization of Constrained NLPs LeoLiberti, 1 andmilandražić 2 1 DEI,PolitecnicodiMilano,P.zzaL.daVinci32,20133Milano,Italy, [email protected]

More information

threads threads threads

threads threads threads AHybridMultithreading/Message-PassingApproachforSolving IrregularProblemsonSMPClusters Jan-JanWu InstituteofInformationScience AcademiaSinica Taipei,Taiwan,R.O.C. Chia-LienChiang Nai-WeiLin Dept.ComputerScience

More information

Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto

Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ATheoryofTimedAutomata1 Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ComputercienceDepartment,tanfordUniversity RajeevAlur2

More information

Solver- aided DSL with. Rui Zhao (rz2290)

Solver- aided DSL with. Rui Zhao (rz2290) Solver- aided DSL with Rui Zhao (rz2290 Solver- aided Programming So>ware is widely used We all want to build programs, not only so>ware engineers Solver- aided Programming 1960 - So>ware crisis 1970 -

More information

Cumulative cost. Progress through steps. Risk analysis. Risk analysis. Risk analysis. Protot. Protot. 3. Concept. A Protot.

Cumulative cost. Progress through steps. Risk analysis. Risk analysis. Risk analysis. Protot. Protot. 3. Concept. A Protot. IPTES:AConcurrentEngineeringApproachforReal-Time Kaitovayla1,P.O.Box201,SF-90571Oulu,Finland TechnicalResearchCentreofFinland(VTT) ComputerTechnologyLaboratory SoftwareDevelopment R.Elmstrm P.Pulli TheInstituteofAppliedComputerScience(IFAD)

More information

Understanding FX Forwards. A Guide for Microfinance Practitioners

Understanding FX Forwards. A Guide for Microfinance Practitioners Understanding FX Forwards A Guide for Microfinance Practitioners Forwards Use: Forward exchange contracts are used by market participants to lock in an exchange rate on a specific date. An Outright Forward

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

1. Supply and demand are the most important concepts in economics.

1. Supply and demand are the most important concepts in economics. Page 1 1. Supply and demand are the most important concepts in economics. 2. Markets and Competition a. Market is a group of buyers and sellers of a particular good or service. P. 66. b. These individuals

More information

Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever!

Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever! ECE 551 C++ Programming, Data structures, and Algorithms Abstract Data Type: Stack Last In First Out (LIFO) 1 2 2 1 4 3 1 3 4 Stacks in Programming Worst line ever! 5 3 1 5 Stacks are not useful for waiting

More information

Sample Questions Csci 1112 A. Bellaachia

Sample Questions Csci 1112 A. Bellaachia Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k

More information

Abstract. 1IntroductionandMotivation

Abstract. 1IntroductionandMotivation AScalableArchitectureforAutonomous HeterogeneousDatabaseInteractions SteveMilliner,AthmanBouguettayaandMikePapazoglou fsteve,athman,[email protected] QueenslandUniv.ofTechnology Brisbane,QLD4001,Australia

More information

Introduction to Functional Verification. Niels Burkhardt

Introduction to Functional Verification. Niels Burkhardt Introduction to Functional Verification Overview Verification issues Verification technologies Verification approaches Universal Verification Methodology Conclusion Functional Verification issues Hardware

More information

Optimal Resource Allocation for the Quality Control Process

Optimal Resource Allocation for the Quality Control Process Optimal Resource Allocation for the Quality Control Process Pankaj Jalote Department of Computer Sc. & Engg. Indian Institute of Technology Kanpur Kanpur, INDIA - 208016 [email protected] Bijendra

More information

Announcements FORTRAN ALGOL COBOL. Simula & Smalltalk. Programming Languages

Announcements FORTRAN ALGOL COBOL. Simula & Smalltalk. Programming Languages Announcements Programming Languages! Monday evening GBA section has been shut down " If you were assigned to this section, please find a different section " If you cannot attend a different section, please

More information

Conference Call Q1-2015/2016

Conference Call Q1-2015/2016 Conference Call Q1-2015/2016 DIRK KALIEBE August 12, 2015 Highlights Q1-2015/2016 Strategic reorientation is taking effect Good order situation, improved backlog Strong revenue growth due to solid order

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Specification and Validation of Telephone Systems in LOTOS 1,2

Specification and Validation of Telephone Systems in LOTOS 1,2 Specification and Validation of Telephone Systems in LOTOS 1,2 Rezki Boumezbeur and Luigi Logrippo Protocols and Software Engineering Research Group University of Ottawa, Computer Science Department Ottawa,

More information

Prot Maximization and Cost Minimization

Prot Maximization and Cost Minimization Simon Fraser University Prof. Karaivanov Department of Economics Econ 0 COST MINIMIZATION Prot Maximization and Cost Minimization Remember that the rm's problem is maximizing prots by choosing the optimal

More information

Most limiting amino acid concept...

Most limiting amino acid concept... Review... Proteins are composed of amino acids Amino acids are the essential nutrients The dietary provision of amino acids in correct amount and provisions determines the adequacy of the protein in the

More information

Structured Representation Models. Structured Information Sources

Structured Representation Models. Structured Information Sources SchemalessRepresentationofSemistructured Dong-YalSeo1,Dong-HaLee1,Kang-SikMoon1,JisookChang1, DataandSchemaConstruction 1Dept.ofComputerScienceandEngineering PohangUniversityofScienceandTechnology Jeon-YoungLee1,andChang-YongHan2

More information

Relational model. Relational model - practice. Relational Database Definitions 9/27/11. Relational model. Relational Database: Terminology

Relational model. Relational model - practice. Relational Database Definitions 9/27/11. Relational model. Relational Database: Terminology COS 597A: Principles of Database and Information Systems elational model elational model A formal (mathematical) model to represent objects (data/information), relationships between objects Constraints

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

Advanced Pig (or "we're not in Kansas anymore") Set operations in Map/Reduce How to parameterize an operation The oxymoron called "Pig Efficiency"

Advanced Pig (or we're not in Kansas anymore) Set operations in Map/Reduce How to parameterize an operation The oxymoron called Pig Efficiency Advanced_Pig Page 1 Advanced Pig 2:25 PM Advanced Pig (or "we're not in Kansas anymore") Set operations in Map/Reduce How to parameterize an operation The oxymoron called "Pig Efficiency" Advanced_Pig

More information

TheEectofNetworkTotalOrder,Broadcast,andRemote-Write CapabilityonNetwork-BasedSharedMemoryComputing RobertStets,SandhyaDwarkadas,LeonidasKontothanassisy,MichaelL.Scott DepartmentofComputerScienceyCompaqCambridgeResearchLab

More information

to TMS 4.0 in an Integrated OC Environment

to TMS 4.0 in an Integrated OC Environment Possible Migration i Paths from TMO to TMS 4.0 in an Integrated OC Environment Introduction Sunil G. Singh and Stephan Kromov of Specialize in Oracle Pharmaceutical and E- Business implementations and

More information

ALGEBRA I (Common Core)

ALGEBRA I (Common Core) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, June 17, 2015 1:15 to 4:15 p.m. MODEL RESPONSE SET Table of Contents Question 25..................

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Thales global payment card program

Thales global payment card program Thales global payment card program Jacques Chambre / Christian Dureault Who we are 61,500 people in 50 countries 20 000 researchers 2005 sales: 10.6bn 2 Our core markets Aerospace Defence Security 3 Our

More information

Computers. An Introduction to Programming with Python. Programming Languages. Programs and Programming. CCHSG Visit June 2014. Dr.-Ing.

Computers. An Introduction to Programming with Python. Programming Languages. Programs and Programming. CCHSG Visit June 2014. Dr.-Ing. Computers An Introduction to Programming with Python CCHSG Visit June 2014 Dr.-Ing. Norbert Völker Many computing devices are embedded Can you think of computers/ computing devices you may have in your

More information

Optimization under fuzzy if-then rules

Optimization under fuzzy if-then rules Optimization under fuzzy if-then rules Christer Carlsson [email protected] Robert Fullér [email protected] Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming

More information

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic Theoretical Underpinnings of Modern Cryptography Lecture Notes on Computer and Network Security by Avi Kak ([email protected]) January 29, 2015

More information

CSSE 372 Software Project Management: Software Estimation With COCOMO-II

CSSE 372 Software Project Management: Software Estimation With COCOMO-II CSSE 372 Software Project Management: Software Estimation With COCOMO-II Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: [email protected] Estimation Experience and Beware of the

More information

Moving your money forward, at rates you want. dvfx Manual

Moving your money forward, at rates you want. dvfx Manual Moving your money forward, at rates you want dvfx Manual devere Foreign Exchange Whether you are a private international investor or represent a business involved in international trade, devere Foreign

More information

Applied Math 247 Exam#1: Summer 2008

Applied Math 247 Exam#1: Summer 2008 AnswerthequestionsinthespacesprovidedonthequestionsheetsIfyourunoutofroomforan answercontinueonthebackofthepagenonotes,books,orotheraidsmaybeusedontheexam Student Id: Answer Key 1 (1 points) 2 (1 points)

More information

CISC 322 Software Architecture

CISC 322 Software Architecture CISC 322 Software Architecture Lecture 20: Software Cost Estimation 2 Emad Shihab Slides adapted from Ian Sommerville and Ahmed E. Hassan Estimation Techniques There is no simple way to make accurate estimates

More information

Chapter 7. Homotopy. 7.1 Basic concepts of homotopy. Example: z dz. z dz = but

Chapter 7. Homotopy. 7.1 Basic concepts of homotopy. Example: z dz. z dz = but Chapter 7 Homotopy 7. Basic concepts of homotopy Example: but γ z dz = γ z dz γ 2 z dz γ 3 z dz. Why? The domain of /z is C 0}. We can deform γ continuously into γ 2 without leaving C 0}. Intuitively,

More information

Constrained Optimization: The Method of Lagrange Multipliers:

Constrained Optimization: The Method of Lagrange Multipliers: Constrained Optimization: The Method of Lagrange Multipliers: Suppose the equation p(x,) x 60x 7 00 models profit when x represents the number of handmade chairs and is the number of handmade rockers produced

More information

Monitoring Network Traffic with Radial Traffic Analyzer

Monitoring Network Traffic with Radial Traffic Analyzer MonitoringNetworkTraffic withradialtrafficanalyzer DanielA.KeimFlorianMansmannJörnSchneidewindTobiasSchreck IEEESymposiumonVisualAnalyticsScienceandTechnology,2006 StefanHeinz SeminarVisualAnalytics SummerTerm2008

More information

Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *

Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * * Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest

More information