Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost
|
|
|
- Hugo Lloyd
- 9 years ago
- Views:
Transcription
1 Ameica Joual of Applied Scieces (8: 3-7, 005 ISS Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue of Mathematical Statistics, Faculty of Sciece, Tata Uivesity, Tata, Egypt Abstact: This study teats the pobabilistic safety stock -items ivetoy system havig vayig ode cost ad zeo lead-time subject to two liea costaits. The expected total cost is composed of thee compoets: the aveage puchase cost; the expected ode cost ad the expected holdig cost. The policy vaiables i this model ae the umbe of peiods ad the optimal maximum ivetoy level Q m ad the miimum expected total cost. e ca obtai the optimal values of these policy vaiables by usig the geometic pogammig appoach. A special case is deduced ad a illustative umeical example is added. Key wods: Pobabilistic model, zeo lead-time, safety stock, multi-item, vayig ode cost, geometic pogammig ITRODUCTIO I may situatios demad is pobabilistic sice it is a adom vaiable havig a kow pobability distibutio. All eseaches have studied ucostaied pobabilistic ivetoy models assumig the odeig cost to be costat ad idepedet of the umbe of peiods. Hadley, et al [4] ad Taha [6], has examied ucostaied pobabilistic ivetoy poblems. Fabic ad Baks [3] studied the pobabilistic sigleitem, the sigle souce ivetoy system with zeo leadtime, usig the classical optimizatio. Also Haii ad Abou-El-Ata [5] deduced the detemiistic multi-item poductio lot size ivetoy model with a vayig ode cost ude a estictio: a geometic pogammig appoach. Recetly Abou-El-Ata, et al [] studied the pobabilistic multi-item ivetoy model with vayig ode cost ude two estictios: a geometic pogammig appoach. The aim of this study is to ivestigate the pobable safety stock multi-item, sigle souce ivetoy model with zeo lead-time ad vayig ode cost ude two costaits, oe of them of the expected holdig cost ad the othe o the expected cost of safety stock. The optimal amout of peiods, the optimal maximum Q ivetoy levels m ad mi E (TC ae obtaied. Also special case is deduced ad a illustative umeical example is added. Model developmet: The followig otatios ae adopted fo developig ou model: C p The puchase cost of the th item, C o ( The vayig ode cost of the th item pe cycle The holdig cost of the th item pe peiod Coespodig Autho: Hala A. Fegay, Lectue of Mathematical Statistics, Faculty of Sciece, Tata Uivesity, Tata, Egypt 3 C h I x F(x E (x D E (D Q m υ The expected level of ivetoy held pe th cycle A adom vaiable epeset the demad of the th item duig the cycle The pobability desity fuctio of the demad x The expected value of the demad x xu x f (x dx, whee x u ad xl xl ae the maximum value ad miimum value of x The aual demad ate of the th item pe peiod The expected aual demad D The maximum ivetoy level of the th item The umbe of peiods, cycle,of the th item (a decisio vaiable ad a eview of the stock level of the th item is made evey peiod The positive value epesetig a pat of time fo safety stock K The limitatio o the expected holdig cost K The limitatio o the expected safety stock cost E (TC The expected total cost fuctio. The model aalysis: Coside a ivetoy pocess i which a eview of the stock level is made evey peiod,,,,. A amout is odeed so that the stock level has etued to its iitial positio desigated by: Q m,,,,. To avoid shotage duig.
2 Am. J. Applied Sci., (8: 3-7, 005 be: g( υ Hece, the followig fom gives the expected holdig cost pe peiod: Fig. : Ivetoy system with safety stock Peiods we must maitai a safety stock absobig demad fluctuatio. Also, this is doe maitaiig the quatity Q m x u fo ay cycle. Hece the esultig safety stock, D v, meets the exceed demads cycle. The peiodic ivetoy system is exhibited gaphically as show i Fig.. The expected aual total cost is composed of thee compoets: the expected puchase cost the expected ode cost ad the expected holdig costs as follows: E(TC E(PC E(OC E(HC, C ( o E(PC Cp, E(OC, Ch I E(HC hee: E(x I Qm E(x The: [ ] C Q E(HC h m Ch [ υ] E(HC The ode cost pe uit is a vayig fuctio of the expected umbe of peiods,, which takes the followig fom: C O ( Co β, whee, C o > 0 ad 0.5 β < ae costats eal umbes selected to povide us the best estimatio of the cost fuctio. Ou objective is to miimize the elevat expected aual total cost fuctio, accodig to the pevious assumptios of the model: C C υ ( β p o E(TC C h C h i.e. Ude the followig costaits: Ch K Ch υ K ( The cost of safety stock isuace is give by the last tem i the equatio (, i the safety pocess a amout is held i excess of the expected equiemet as isuace agaist the isk of a stakeout. The tems C E( D p ad C E( D υ ca be posted without h ay effect. The the miimum expected total cost ca be witte as: The Optimizatio of the decisio vaiables ad Q m ca be pefomed if we assume that the maximum demad duig the cycle, x u, is elated to the expected demad duig the cycle as: xu E(x g( g( C whee, g ( is a elatioal fuctio which coside to K 4 β Ch mi E(TC Co (3 Subject to: h ChE(x υ ad K (4
3 Am. J. Applied Sci., (8: 3-7, 005 Applyig the geometic pogammig techiques to the equatio (3 ad (4, the elaged pedual fuctio could be witte i the followig fom: β 3 o h h h C C C C E(x υ G( K K C o Ch Ch K3 ChE(x υ K 4 4 ( β 3 4 whee, j, 0 < j <, j,,3, 4,,,, ae the weights ad ca be chose to yield the omal ad the othogoality coditios as follows: (5 4 Similaly: l g( 3, 4 { l( βco l ( 3 4 } β β 4 C ( β β β ( h l l 3 4 ChE(x υ l l 4 0 β K (9 Simplifyig the equatio (8 ad (9 ad multiplyig them, we get: C E(x υ (0 h 3 4 KK e ( β 0,,,,. 3 4 Solvig the above equatios, we get: The, we obtai: f ( a A 4β 3β β j j j j j j b d A b 0 j j j ( 3 4 β 3 4 ad,,,,. β β (6 Substitutig fom (6 ito (5, the dual fuctio is give i the fom: 3 4 β 3 4 ( β C o β ( βch β g( 3, ( β C C E(x 4 h h υ K3 K4 Takig the logaithm of both sides of (7: lg( 3, 4 [ 3 4 ] { l ( Co l ( 3 4 } β β Ch ( β [ β 3 4 ] l l [ β 3 4 ] β C C E(x υ l l l l h h K K (7 To calculate 3 ad 4 which maximize g( 3, 4, equate the fist patial deivatives of l g( 3, 4 with espect to 3 ad 4 espectively to zeo as follows: l g( 3, 4 { l( βco l ( 3 4 } β β 3 C ( β β β [ ] h l l 3 4 Ch l l 3 0 β K (8 hee: C E(x υ A, 5 h KKe C C β o h B, Ch Ke β Ch υ Ch C K e Co, j 3 a j, β, j 4 B, j 3 bj ad C, j 4 B ( β, j 3 d j C, j 4 It could be easily poved that fj(0 < 0 ad fj(>0, j 3, 4 ad this is meas that thee exists a oot j ε (0,,j 3,4. Ay method such as the tial ad eo, could be used to calculate these oots. ow to veify that ay oot 3 ad 4 calculated fom equatios ( maximize g( 3, 4 espectively. Applyig the followig coditios: l g(, < 0 β 3 4 β l g(, < 0 β 3 4 β
4 Am. J. Applied Sci., (8: 3-7, 005 l g(, > β 3 4 β Hece: l g(, l g(, l g(, < 0 β 3 4 β Thus, the oots 3 ad 4 calculated fom equatios ( maximize the dual fuctio g ( 3, 4. j, j,,3, 4, Hece the optimal solutio is whee 3, ae the solutio of ( ad, ae calculated by substitutig the values of 3, i expessio (6. To fid the optimal umbe of peiods, use the followig elatios due to Duffi ad Peteso s theoem [] as follows: C g(, β o 3 4 Table : The paametes of thee items Items Item Item Item 3 Paametes E (D C h C o C p Also assumig that υ 5, K 0000, K 000 ad 0.5 β < Solutio: Table : The esults usig the Mathematica pogam 3 β mi E(TC C h g(, 3 4 Solvig these equatios, the optimal expected umbe of peiods pe cycle is give by: Ch 3 β 4 Co 3 4 { } { β } ( Fig. : The Relatio betwee ad β The: β h 3 4 β ( { } o { β 3 4} C Qm υ C (3 Substitutig the value of i equatio (3 afte addig the costat tems, we get: { } mi E(TC Cp C o { β 3 4 } β β ChCo 3 4 β C h { 3 4} h C C h Co { β 3 4 } υ 6 Special case: Let β0, ad K, K C O ( C o costat, 3, 4 0 ad /. This is a pobabilistic sigle-item ivetoy model without ay estictio ad costat costs, which agee with the model of maitaiig stock to absob demad fluctuatios [3], the equatios (, (3 ad (4 become: C C υ o o,qm Ch Ch mi E ( TC C E( D C C E( D C p h o h (4 E( D υ
5 Am. J. Applied Sci., (8: 3-7, 005 REFERECES Fig. 3: The Relatio betwee mie (TC ad β A illustative example: Let us fid the optimal expected umbe of peiods ad the miimum expected total cost mi E (TC fo the pevious model of peiodic eview pobabilistic multi-item ivetoy system with zeo lead time ude costaits ad vayig ode cost, o the data of Table. Also, by usig the feelace pogam we ca daw the elatio betwee, mi E (TC agaist β as show i Fig. ad 3 espectively. Mi E (TC. Abou-El-Ata, Fegay, H.A. ad M.F. El-akeel, 00. Pobabilistic multi-item ivetoy model with vayig ode cost ude two estictios: A geometic pogammig appoach. Itl. J. Poduct. Eco., 83: Duffi, R.J. ad E.L. Peteso, 974. Costaied miima teated by geometic meas. estighouse Scietific pape, 64: Fabycky,.J. ad J. Baks, 967. Pocuemet ad Ivetoy Systems: Theoy ad Aalysis. Reihold Publishig Copoatio, USA. 4. Hadley, G. ad T.M. hiti, 963. Aalysis of Ivetoy Systems. Eglewood Cliffs,.J. Petice-Hall. 5. Haii, A.M.A. ad M.O. Abou-El-Ata, 995. Multi-item poductio lot-size ivetoy model with vayig ode cost ude a estictio: A Geometic pogammig appoach. Poduct. Pla. Cotol., 6: Taha, H.A., 997. Opeatios Reseach. 6th Ed. Petice-Hall, IC, Eglewood Cliffs, J, USA. COCLUSIO e have evaluated the optimal expected umbe of peiods,,,,, the we deduced the miimum expected total cost mi E (TC of the cosideed safety stock pobabilistic multi-item ivetoy model. e daw the cuves ad mi E (TC agaist β, which idicate the values of ad β that give the miimum value of the expected total cost of ou umeical example. 7
Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of
Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system
wo degee of feedom systems Equatios of motio fo foced vibatio Fee vibatio aalysis of a udamped system Itoductio Systems that equie two idepedet d coodiates to descibe thei motio ae called two degee of
Finance Practice Problems
Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.
Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)
Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig
Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version
Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio
The dinner table problem: the rectangular case
The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people
Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments
8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
Valuation of Floating Rate Bonds 1
Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
Estimating Surface Normals in Noisy Point Cloud Data
Estiatig Suface Noals i Noisy Poit Cloud Data Niloy J. Mita Stafod Gaphics Laboatoy Stafod Uivesity CA, 94305 [email protected] A Nguye Stafod Gaphics Laboatoy Stafod Uivesity CA, 94305 [email protected]
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
On the Optimality and Interconnection of Valiant Load-Balancing Networks
O the Optimality ad Itecoectio of Valiat Load-Balacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
30 H. N. CHIU 1. INTRODUCTION. Recherche opérationnelle/operations Research
RAIRO Rech. Opé. (vol. 33, n 1, 1999, pp. 29-45) A GOOD APPROXIMATION OF THE INVENTORY LEVEL IN A(Q ) PERISHABLE INVENTORY SYSTEM (*) by Huan Neng CHIU ( 1 ) Communicated by Shunji OSAKI Abstact. This
Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)
Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
Ilona V. Tregub, ScD., Professor
Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with
Theorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius
Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing
M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME
OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME G. Aja Babu, 2 D. M. Padmavathamma Lectue i Compute Sciece, S.V. Ats College fo Me, Tiupati, Idia 2 Head, Depatmet of Compute Applicatio.
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS
ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,
The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
AMB111F Financial Maths Notes
AMB111F Financial Maths Notes Compound Inteest and Depeciation Compound Inteest: Inteest computed on the cuent amount that inceases at egula intevals. Simple inteest: Inteest computed on the oiginal fixed
Output Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
Strategic Remanufacturing Decision in a Supply Chain with an External Local Remanufacturer
Assoiatio fo Ifomatio Systems AIS Eletoi Libay (AISeL) WHICEB 013 Poeedigs Wuha Iteatioal Cofeee o e-busiess 5-5-013 Stategi Remaufatuig Deisio i a Supply Chai with a Exteal Loal Remaufatue Xu Tiatia Shool
CHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
580.439 Course Notes: Nonlinear Dynamics and Hodgkin-Huxley Equations
58.439 Couse Notes: Noliea Dyamics ad Hodgki-Huxley Equatios Readig: Hille (3 d ed.), chapts 2,3; Koch ad Segev (2 d ed.), chapt 7 (by Rizel ad Emetout). Fo uthe eadig, S.H. Stogatz, Noliea Dyamics ad
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
Estimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS...
ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... WHAT IS AN ANNUITY?... EXAMPLE 1... QUESTIONS... EXAMPLE BRANDON S
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
Logistic Regression, AdaBoost and Bregman Distances
A exteded abstact of this joual submissio appeaed ipoceedigs of the Thiteeth Aual Cofeece o ComputatioalLeaig Theoy, 2000 Logistic Regessio, Adaoost ad egma istaces Michael Collis AT&T Labs Reseach Shao
Financing Terms in the EOQ Model
Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 [email protected] August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
Systems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised
SEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation
Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,
High-Performance Computing and Quantum Processing
HPC-UA (Україна, Київ, - жовтня року High-Pefomace Computig ad Quatum Pocessig Segey Edwad Lyshevski Depatmet of Electical ad Micoelectoic Egieeig, Rocheste Istitute of Techology, Rocheste, NY 3, USA E-mail:
Institute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory
Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t
Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:
est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
Promised Lead-Time Contracts Under Asymmetric Information
OPERATIONS RESEARCH Vol. 56, No. 4, July August 28, pp. 898 915 issn 3-364X eissn 1526-5463 8 564 898 infoms doi 1.1287/ope.18.514 28 INFORMS Pomised Lead-Time Contacts Unde Asymmetic Infomation Holly
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree
www.ijcsi.og 385 Calculatio adaalysis alysis of the Syegetic Degee Model betwee Mode Logistics ad Taspotatio Idusty i Gasu Povice Ya Ya 1, Yogsheg Qia, Yogzhog Yag 3,Juwei Zeg 4 ad Mi Wag 5 1 School of
Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
THE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
Heat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
Maximum Entropy, Parallel Computation and Lotteries
Maximum Etopy, Paallel Computatio ad Lotteies S.J. Cox Depatmet of Electoics ad Compute Sciece, Uivesity of Southampto, UK. G.J. Daiell Depatmet of Physics ad Astoomy, Uivesity of Southampto, UK. D.A.
University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.
On Some Functions Involving the lcm and gcd of Integer Tuples
SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: APPL. MATH. INFORM. AND MECH. vol. 6, 2 (2014), 91-100. On Some Functions Involving the lcm and gcd of Intege Tuples O. Bagdasa Abstact:
A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
Partial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
An Analysis of Manufacturer Benefits under Vendor Managed Systems
An Analysis of Manufactue Benefits unde Vendo Managed Systems Seçil Savaşaneil Depatment of Industial Engineeing, Middle East Technical Univesity, 06531, Ankaa, TURKEY [email protected] Nesim Ekip 1
Hypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS
1 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 2 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 1.0 MAINTENANCE Maiteace is a routie ad recurrig activity of keepig a particular
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in
THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen
THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad [email protected] ABSTRACT The piciple of fomulatig the
Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps
Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence
Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
Basic Financial Mathematics
Financial Engineeing and Computations Basic Financial Mathematics Dai, Tian-Shy Outline Time Value of Money Annuities Amotization Yields Bonds Time Value of Money PV + n = FV (1 + FV: futue value = PV
Asian Development Bank Institute. ADBI Working Paper Series
DI Wokig Pape Seies Estimatig Dual Deposit Isuace Pemium Rates ad oecastig No-pefomig Loas: Two New Models Naoyuki Yoshio, ahad Taghizadeh-Hesay, ad ahad Nili No. 5 Jauay 5 sia Developmet ak Istitute Naoyuki
Skills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
Research Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
Channel selection in e-commerce age: A strategic analysis of co-op advertising models
Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of
Ekkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/
Development of Customer Value Model for Healthcare Services
96 Developmet of Custome Value Model fo Healthcae Sevices Developmet of Custome Value Model fo Healthcae Sevices Wa-I Lee ad Bih-Yaw Shih Depatmet of Maetig ad Distibutio Maagemet, Natioal Kaohsiug Fist,
Personal Saving Rate (S Households /Y) SAVING AND INVESTMENT. Federal Surplus or Deficit (-) Total Private Saving Rate (S Private /Y) 12/18/2009
1 Pesonal Saving Rate (S Households /Y) 2 SAVING AND INVESTMENT 16.0 14.0 12.0 10.0 80 8.0 6.0 4.0 2.0 0.0-2.0-4.0 1959 1961 1967 1969 1975 1977 1983 1985 1991 1993 1999 2001 2007 2009 Pivate Saving Rate
Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
Chapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
