Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost

Size: px
Start display at page:

Download "Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost"

Transcription

1 Ameica Joual of Applied Scieces (8: 3-7, 005 ISS Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue of Mathematical Statistics, Faculty of Sciece, Tata Uivesity, Tata, Egypt Abstact: This study teats the pobabilistic safety stock -items ivetoy system havig vayig ode cost ad zeo lead-time subject to two liea costaits. The expected total cost is composed of thee compoets: the aveage puchase cost; the expected ode cost ad the expected holdig cost. The policy vaiables i this model ae the umbe of peiods ad the optimal maximum ivetoy level Q m ad the miimum expected total cost. e ca obtai the optimal values of these policy vaiables by usig the geometic pogammig appoach. A special case is deduced ad a illustative umeical example is added. Key wods: Pobabilistic model, zeo lead-time, safety stock, multi-item, vayig ode cost, geometic pogammig ITRODUCTIO I may situatios demad is pobabilistic sice it is a adom vaiable havig a kow pobability distibutio. All eseaches have studied ucostaied pobabilistic ivetoy models assumig the odeig cost to be costat ad idepedet of the umbe of peiods. Hadley, et al [4] ad Taha [6], has examied ucostaied pobabilistic ivetoy poblems. Fabic ad Baks [3] studied the pobabilistic sigleitem, the sigle souce ivetoy system with zeo leadtime, usig the classical optimizatio. Also Haii ad Abou-El-Ata [5] deduced the detemiistic multi-item poductio lot size ivetoy model with a vayig ode cost ude a estictio: a geometic pogammig appoach. Recetly Abou-El-Ata, et al [] studied the pobabilistic multi-item ivetoy model with vayig ode cost ude two estictios: a geometic pogammig appoach. The aim of this study is to ivestigate the pobable safety stock multi-item, sigle souce ivetoy model with zeo lead-time ad vayig ode cost ude two costaits, oe of them of the expected holdig cost ad the othe o the expected cost of safety stock. The optimal amout of peiods, the optimal maximum Q ivetoy levels m ad mi E (TC ae obtaied. Also special case is deduced ad a illustative umeical example is added. Model developmet: The followig otatios ae adopted fo developig ou model: C p The puchase cost of the th item, C o ( The vayig ode cost of the th item pe cycle The holdig cost of the th item pe peiod Coespodig Autho: Hala A. Fegay, Lectue of Mathematical Statistics, Faculty of Sciece, Tata Uivesity, Tata, Egypt 3 C h I x F(x E (x D E (D Q m υ The expected level of ivetoy held pe th cycle A adom vaiable epeset the demad of the th item duig the cycle The pobability desity fuctio of the demad x The expected value of the demad x xu x f (x dx, whee x u ad xl xl ae the maximum value ad miimum value of x The aual demad ate of the th item pe peiod The expected aual demad D The maximum ivetoy level of the th item The umbe of peiods, cycle,of the th item (a decisio vaiable ad a eview of the stock level of the th item is made evey peiod The positive value epesetig a pat of time fo safety stock K The limitatio o the expected holdig cost K The limitatio o the expected safety stock cost E (TC The expected total cost fuctio. The model aalysis: Coside a ivetoy pocess i which a eview of the stock level is made evey peiod,,,,. A amout is odeed so that the stock level has etued to its iitial positio desigated by: Q m,,,,. To avoid shotage duig.

2 Am. J. Applied Sci., (8: 3-7, 005 be: g( υ Hece, the followig fom gives the expected holdig cost pe peiod: Fig. : Ivetoy system with safety stock Peiods we must maitai a safety stock absobig demad fluctuatio. Also, this is doe maitaiig the quatity Q m x u fo ay cycle. Hece the esultig safety stock, D v, meets the exceed demads cycle. The peiodic ivetoy system is exhibited gaphically as show i Fig.. The expected aual total cost is composed of thee compoets: the expected puchase cost the expected ode cost ad the expected holdig costs as follows: E(TC E(PC E(OC E(HC, C ( o E(PC Cp, E(OC, Ch I E(HC hee: E(x I Qm E(x The: [ ] C Q E(HC h m Ch [ υ] E(HC The ode cost pe uit is a vayig fuctio of the expected umbe of peiods,, which takes the followig fom: C O ( Co β, whee, C o > 0 ad 0.5 β < ae costats eal umbes selected to povide us the best estimatio of the cost fuctio. Ou objective is to miimize the elevat expected aual total cost fuctio, accodig to the pevious assumptios of the model: C C υ ( β p o E(TC C h C h i.e. Ude the followig costaits: Ch K Ch υ K ( The cost of safety stock isuace is give by the last tem i the equatio (, i the safety pocess a amout is held i excess of the expected equiemet as isuace agaist the isk of a stakeout. The tems C E( D p ad C E( D υ ca be posted without h ay effect. The the miimum expected total cost ca be witte as: The Optimizatio of the decisio vaiables ad Q m ca be pefomed if we assume that the maximum demad duig the cycle, x u, is elated to the expected demad duig the cycle as: xu E(x g( g( C whee, g ( is a elatioal fuctio which coside to K 4 β Ch mi E(TC Co (3 Subject to: h ChE(x υ ad K (4

3 Am. J. Applied Sci., (8: 3-7, 005 Applyig the geometic pogammig techiques to the equatio (3 ad (4, the elaged pedual fuctio could be witte i the followig fom: β 3 o h h h C C C C E(x υ G( K K C o Ch Ch K3 ChE(x υ K 4 4 ( β 3 4 whee, j, 0 < j <, j,,3, 4,,,, ae the weights ad ca be chose to yield the omal ad the othogoality coditios as follows: (5 4 Similaly: l g( 3, 4 { l( βco l ( 3 4 } β β 4 C ( β β β ( h l l 3 4 ChE(x υ l l 4 0 β K (9 Simplifyig the equatio (8 ad (9 ad multiplyig them, we get: C E(x υ (0 h 3 4 KK e ( β 0,,,,. 3 4 Solvig the above equatios, we get: The, we obtai: f ( a A 4β 3β β j j j j j j b d A b 0 j j j ( 3 4 β 3 4 ad,,,,. β β (6 Substitutig fom (6 ito (5, the dual fuctio is give i the fom: 3 4 β 3 4 ( β C o β ( βch β g( 3, ( β C C E(x 4 h h υ K3 K4 Takig the logaithm of both sides of (7: lg( 3, 4 [ 3 4 ] { l ( Co l ( 3 4 } β β Ch ( β [ β 3 4 ] l l [ β 3 4 ] β C C E(x υ l l l l h h K K (7 To calculate 3 ad 4 which maximize g( 3, 4, equate the fist patial deivatives of l g( 3, 4 with espect to 3 ad 4 espectively to zeo as follows: l g( 3, 4 { l( βco l ( 3 4 } β β 3 C ( β β β [ ] h l l 3 4 Ch l l 3 0 β K (8 hee: C E(x υ A, 5 h KKe C C β o h B, Ch Ke β Ch υ Ch C K e Co, j 3 a j, β, j 4 B, j 3 bj ad C, j 4 B ( β, j 3 d j C, j 4 It could be easily poved that fj(0 < 0 ad fj(>0, j 3, 4 ad this is meas that thee exists a oot j ε (0,,j 3,4. Ay method such as the tial ad eo, could be used to calculate these oots. ow to veify that ay oot 3 ad 4 calculated fom equatios ( maximize g( 3, 4 espectively. Applyig the followig coditios: l g(, < 0 β 3 4 β l g(, < 0 β 3 4 β

4 Am. J. Applied Sci., (8: 3-7, 005 l g(, > β 3 4 β Hece: l g(, l g(, l g(, < 0 β 3 4 β Thus, the oots 3 ad 4 calculated fom equatios ( maximize the dual fuctio g ( 3, 4. j, j,,3, 4, Hece the optimal solutio is whee 3, ae the solutio of ( ad, ae calculated by substitutig the values of 3, i expessio (6. To fid the optimal umbe of peiods, use the followig elatios due to Duffi ad Peteso s theoem [] as follows: C g(, β o 3 4 Table : The paametes of thee items Items Item Item Item 3 Paametes E (D C h C o C p Also assumig that υ 5, K 0000, K 000 ad 0.5 β < Solutio: Table : The esults usig the Mathematica pogam 3 β mi E(TC C h g(, 3 4 Solvig these equatios, the optimal expected umbe of peiods pe cycle is give by: Ch 3 β 4 Co 3 4 { } { β } ( Fig. : The Relatio betwee ad β The: β h 3 4 β ( { } o { β 3 4} C Qm υ C (3 Substitutig the value of i equatio (3 afte addig the costat tems, we get: { } mi E(TC Cp C o { β 3 4 } β β ChCo 3 4 β C h { 3 4} h C C h Co { β 3 4 } υ 6 Special case: Let β0, ad K, K C O ( C o costat, 3, 4 0 ad /. This is a pobabilistic sigle-item ivetoy model without ay estictio ad costat costs, which agee with the model of maitaiig stock to absob demad fluctuatios [3], the equatios (, (3 ad (4 become: C C υ o o,qm Ch Ch mi E ( TC C E( D C C E( D C p h o h (4 E( D υ

5 Am. J. Applied Sci., (8: 3-7, 005 REFERECES Fig. 3: The Relatio betwee mie (TC ad β A illustative example: Let us fid the optimal expected umbe of peiods ad the miimum expected total cost mi E (TC fo the pevious model of peiodic eview pobabilistic multi-item ivetoy system with zeo lead time ude costaits ad vayig ode cost, o the data of Table. Also, by usig the feelace pogam we ca daw the elatio betwee, mi E (TC agaist β as show i Fig. ad 3 espectively. Mi E (TC. Abou-El-Ata, Fegay, H.A. ad M.F. El-akeel, 00. Pobabilistic multi-item ivetoy model with vayig ode cost ude two estictios: A geometic pogammig appoach. Itl. J. Poduct. Eco., 83: Duffi, R.J. ad E.L. Peteso, 974. Costaied miima teated by geometic meas. estighouse Scietific pape, 64: Fabycky,.J. ad J. Baks, 967. Pocuemet ad Ivetoy Systems: Theoy ad Aalysis. Reihold Publishig Copoatio, USA. 4. Hadley, G. ad T.M. hiti, 963. Aalysis of Ivetoy Systems. Eglewood Cliffs,.J. Petice-Hall. 5. Haii, A.M.A. ad M.O. Abou-El-Ata, 995. Multi-item poductio lot-size ivetoy model with vayig ode cost ude a estictio: A Geometic pogammig appoach. Poduct. Pla. Cotol., 6: Taha, H.A., 997. Opeatios Reseach. 6th Ed. Petice-Hall, IC, Eglewood Cliffs, J, USA. COCLUSIO e have evaluated the optimal expected umbe of peiods,,,,, the we deduced the miimum expected total cost mi E (TC of the cosideed safety stock pobabilistic multi-item ivetoy model. e daw the cuves ad mi E (TC agaist β, which idicate the values of ad β that give the miimum value of the expected total cost of ou umeical example. 7

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system wo degee of feedom systems Equatios of motio fo foced vibatio Fee vibatio aalysis of a udamped system Itoductio Systems that equie two idepedet d coodiates to descibe thei motio ae called two degee of

More information

Finance Practice Problems

Finance Practice Problems Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

More information

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV) Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig

More information

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio

More information

The dinner table problem: the rectangular case

The dinner table problem: the rectangular case The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people

More information

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments 8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Estimating Surface Normals in Noisy Point Cloud Data

Estimating Surface Normals in Noisy Point Cloud Data Estiatig Suface Noals i Noisy Poit Cloud Data Niloy J. Mita Stafod Gaphics Laboatoy Stafod Uivesity CA, 94305 [email protected] A Nguye Stafod Gaphics Laboatoy Stafod Uivesity CA, 94305 [email protected]

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

On the Optimality and Interconnection of Valiant Load-Balancing Networks

On the Optimality and Interconnection of Valiant Load-Balancing Networks O the Optimality ad Itecoectio of Valiat Load-Balacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

30 H. N. CHIU 1. INTRODUCTION. Recherche opérationnelle/operations Research

30 H. N. CHIU 1. INTRODUCTION. Recherche opérationnelle/operations Research RAIRO Rech. Opé. (vol. 33, n 1, 1999, pp. 29-45) A GOOD APPROXIMATION OF THE INVENTORY LEVEL IN A(Q ) PERISHABLE INVENTORY SYSTEM (*) by Huan Neng CHIU ( 1 ) Communicated by Shunji OSAKI Abstact. This

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Ilona V. Tregub, ScD., Professor

Ilona V. Tregub, ScD., Professor Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation

More information

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME

OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME G. Aja Babu, 2 D. M. Padmavathamma Lectue i Compute Sciece, S.V. Ats College fo Me, Tiupati, Idia 2 Head, Depatmet of Compute Applicatio.

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

AMB111F Financial Maths Notes

AMB111F Financial Maths Notes AMB111F Financial Maths Notes Compound Inteest and Depeciation Compound Inteest: Inteest computed on the cuent amount that inceases at egula intevals. Simple inteest: Inteest computed on the oiginal fixed

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Strategic Remanufacturing Decision in a Supply Chain with an External Local Remanufacturer

Strategic Remanufacturing Decision in a Supply Chain with an External Local Remanufacturer Assoiatio fo Ifomatio Systems AIS Eletoi Libay (AISeL) WHICEB 013 Poeedigs Wuha Iteatioal Cofeee o e-busiess 5-5-013 Stategi Remaufatuig Deisio i a Supply Chai with a Exteal Loal Remaufatue Xu Tiatia Shool

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

580.439 Course Notes: Nonlinear Dynamics and Hodgkin-Huxley Equations

580.439 Course Notes: Nonlinear Dynamics and Hodgkin-Huxley Equations 58.439 Couse Notes: Noliea Dyamics ad Hodgki-Huxley Equatios Readig: Hille (3 d ed.), chapts 2,3; Koch ad Segev (2 d ed.), chapt 7 (by Rizel ad Emetout). Fo uthe eadig, S.H. Stogatz, Noliea Dyamics ad

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS...

ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS... ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... WHAT IS AN ANNUITY?... EXAMPLE 1... QUESTIONS... EXAMPLE BRANDON S

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Logistic Regression, AdaBoost and Bregman Distances

Logistic Regression, AdaBoost and Bregman Distances A exteded abstact of this joual submissio appeaed ipoceedigs of the Thiteeth Aual Cofeece o ComputatioalLeaig Theoy, 2000 Logistic Regessio, Adaoost ad egma istaces Michael Collis AT&T Labs Reseach Shao

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 [email protected] August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,

More information

High-Performance Computing and Quantum Processing

High-Performance Computing and Quantum Processing HPC-UA (Україна, Київ, - жовтня року High-Pefomace Computig ad Quatum Pocessig Segey Edwad Lyshevski Depatmet of Electical ad Micoelectoic Egieeig, Rocheste Istitute of Techology, Rocheste, NY 3, USA E-mail:

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Promised Lead-Time Contracts Under Asymmetric Information

Promised Lead-Time Contracts Under Asymmetric Information OPERATIONS RESEARCH Vol. 56, No. 4, July August 28, pp. 898 915 issn 3-364X eissn 1526-5463 8 564 898 infoms doi 1.1287/ope.18.514 28 INFORMS Pomised Lead-Time Contacts Unde Asymmetic Infomation Holly

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree

between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree www.ijcsi.og 385 Calculatio adaalysis alysis of the Syegetic Degee Model betwee Mode Logistics ad Taspotatio Idusty i Gasu Povice Ya Ya 1, Yogsheg Qia, Yogzhog Yag 3,Juwei Zeg 4 ad Mi Wag 5 1 School of

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

Maximum Entropy, Parallel Computation and Lotteries

Maximum Entropy, Parallel Computation and Lotteries Maximum Etopy, Paallel Computatio ad Lotteies S.J. Cox Depatmet of Electoics ad Compute Sciece, Uivesity of Southampto, UK. G.J. Daiell Depatmet of Physics ad Astoomy, Uivesity of Southampto, UK. D.A.

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

On Some Functions Involving the lcm and gcd of Integer Tuples

On Some Functions Involving the lcm and gcd of Integer Tuples SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: APPL. MATH. INFORM. AND MECH. vol. 6, 2 (2014), 91-100. On Some Functions Involving the lcm and gcd of Intege Tuples O. Bagdasa Abstact:

More information

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

An Analysis of Manufacturer Benefits under Vendor Managed Systems

An Analysis of Manufacturer Benefits under Vendor Managed Systems An Analysis of Manufactue Benefits unde Vendo Managed Systems Seçil Savaşaneil Depatment of Industial Engineeing, Middle East Technical Univesity, 06531, Ankaa, TURKEY [email protected] Nesim Ekip 1

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS

Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 1 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 2 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 1.0 MAINTENANCE Maiteace is a routie ad recurrig activity of keepig a particular

More information

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in

More information

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad [email protected] ABSTRACT The piciple of fomulatig the

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Basic Financial Mathematics

Basic Financial Mathematics Financial Engineeing and Computations Basic Financial Mathematics Dai, Tian-Shy Outline Time Value of Money Annuities Amotization Yields Bonds Time Value of Money PV + n = FV (1 + FV: futue value = PV

More information

Asian Development Bank Institute. ADBI Working Paper Series

Asian Development Bank Institute. ADBI Working Paper Series DI Wokig Pape Seies Estimatig Dual Deposit Isuace Pemium Rates ad oecastig No-pefomig Loas: Two New Models Naoyuki Yoshio, ahad Taghizadeh-Hesay, ad ahad Nili No. 5 Jauay 5 sia Developmet ak Istitute Naoyuki

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Channel selection in e-commerce age: A strategic analysis of co-op advertising models

Channel selection in e-commerce age: A strategic analysis of co-op advertising models Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Development of Customer Value Model for Healthcare Services

Development of Customer Value Model for Healthcare Services 96 Developmet of Custome Value Model fo Healthcae Sevices Developmet of Custome Value Model fo Healthcae Sevices Wa-I Lee ad Bih-Yaw Shih Depatmet of Maetig ad Distibutio Maagemet, Natioal Kaohsiug Fist,

More information

Personal Saving Rate (S Households /Y) SAVING AND INVESTMENT. Federal Surplus or Deficit (-) Total Private Saving Rate (S Private /Y) 12/18/2009

Personal Saving Rate (S Households /Y) SAVING AND INVESTMENT. Federal Surplus or Deficit (-) Total Private Saving Rate (S Private /Y) 12/18/2009 1 Pesonal Saving Rate (S Households /Y) 2 SAVING AND INVESTMENT 16.0 14.0 12.0 10.0 80 8.0 6.0 4.0 2.0 0.0-2.0-4.0 1959 1961 1967 1969 1975 1977 1983 1985 1991 1993 1999 2001 2007 2009 Pivate Saving Rate

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information