Options. Pricing. Binomial models. Black-Scholes model. Greeks
|
|
|
- Vivian Lee Tyler
- 9 years ago
- Views:
Transcription
1 Options. Priing. Binomial moels. Blak-Sholes moel. Greeks 1. Binomial moel,. Blak-Sholes moel, assmptions, moifiations (iviens, rreny options, options on ftres 3. Implie volatility 4. Sensitivity measres The binomial moel has the avantage of allowing to prie Amerian options. This is a isrete time moel. Senarios are shown on a binomial tree. The proess of valing an option is often alle risk-netral valation. The BSM moel is a ontinos time moel se to prie only Eropean options. Simple Binomial Priing Moel [ox, Ross an Rbinstein] Serity S S S all Option Max (, S - E Max (, S - E Figre. 1. Simple Binomial Priing Moel. all Option (1 q + (1 - q (1 + r T ( q S (1 + r T - S S - S
2 Derivatives on Finanial Market Two-Perio Binomial Priing Moel Serity S S S S S all Option S Figre. Two-Perio Binomial Priing Moel. all Option q + (1 q rt S rt S q S S S rt S q S S q [ q + (1 q ] + (1 q [ q + (1 q ] rt
3 Derivatives on Finanial Market Blak-Sholes option priing moel Aoring to the Blak-Sholes moel, the vale of a all option is given as rt (1 SN(1 Ee N( where ln(s/e + (r + σs /T 1 σ T s 1 σs T σs is the variane of the asset s retrns N(x is the mlative probability for a nit normal variable allate at a vale of x. Assmptions 1 Retrns for the nerlying asset are log normally istribte an inepenent over time. onstant variane 3 onstant interest rate 4 No iviens 5 No early exerise Table 1. Option Priing. Eqity an Debt as Options Option Priing Eqity an Debt premim eqity S spot prie maret vale of assets E exerise prie book vale of ebt S- ebt T matrity matrity of ebt * R B risk-free rate risk-free rate σ s volatility of retrns volatility of ROA Sensitivity Measres Table. Sensitivity Measres Miernik Notaja all Pt Delta N( 1 1 p S Gamma Theta Rho Vega γ S n( Sσ 1 γ p Sσn(1 rt θ θ ree N( T T ρ rt ρ TEe N( r υ σ T υ S Tn(1 θ ρ p p γ γ θ ρ + ree TEe υ υ p rt rt where: e / n( π 3
4 Derivatives on Finanial Market Problem 1. Binomial Priing Moel The rrent serity prie is $1. The exerise prie on the option is $11. It will either go p to $15 or own to $9. The riskless rate of interest is 5%. Matrity is 36 ays, T 1. (a allate the prie of the all option, the hege ratio, probabilities of the p an own movements sing ox, Ross an Rbinstein moel. ompare the reslt with the prie allate sing BSM moel. allate the present vale of the ening payoff. (b allate the weights for the repliating strategy, the ening payoff of the all, option an the prie of the all option. The bon prie is $1. Soltion (a Serity prie Exerise The payoff of the The hege ratio: prie all option (S S h -1,5 ( 9 11 The ening payoff B S + h 9, B S + h 9, q + (1 q,5 9,5 (1 + rt The option premim sing Blak-Sholes moel: BS 1,3 The present vale of the ening payoff : B B rt 85,7 B S + h 85,7 (b S(1 + rt S q S S w w a b S S w as + w S - S ( S S P b P 1 h 66,7% -6,% 4 w as + w w S + w a b b P P 9,5 4
5 Derivatives on Finanial Market Problem. Binomial Priing Moel. Mlti-perio Binomial Moel. Dration an onvexity T 1, 1, 1, 1, 1, f,%,4%,8% 4,% 5,% z,%,1998%,3995%,7973% 3,341% z+shift,%,1998%,3995%,7973% 3,341% σ 1% 1% 9% 1% 1% 5,% E 1, 1, 1, OAS,8% Reqire allate the prie of a bon with a all option. allate the effetive ration an onvexity. 5, S 1, 5, r 11,977% S 97,143 5, r 8,885% 5, S 98,5 S 1, 5, r 4,8133% 5, r 9,916% S 1, S 98,345 r 3,851% 5, r 6,7673% 5, S 1,14 S 99,78 S 1, r,8% 5, r 4,15% 5, r 8,591% S 1, S 99,351 r 3,% 5, r 5,6856% 5, S 1, S 1, r 3,6% 5, r 6,97% S 1, r 4,8% 5, S 1, r 5,8% ena opji 15-1,14,86 V- V+ D V y V- + V+ V V y (, ,14 -,5% 1,799 53,764,5% 11,549 5
6 Derivatives on Finanial Market Problem 3. Blak-Sholes Moel With the following parameteres S spot prie 1, E exerise prie 11, Time to expiration (nmber of ays 36 Risk free interest rate 5% σ volatility 36,1% (a allate the prie of the all option sing the Blak-Sholes moel. (b allate the prie of the pt option sing pt-all parity. Soltion (a S N ( rt Ee N ( 1 1 ln( S / E + ( r + σ / T σ s T s σ T 1 s T,9863 1,511 -,376 N(1,54 N(,379 e^(-rt,95 Ee^(-rT 14,769 1,33 (b The prie of the pt option rt [ ( 1] [ ( 1] rt 1 P S + Ee S N Ee N 17,4 6
7 Derivatives on Finanial Market Problem 4. Implie. Volatility S spot prie 1 E exerise prie 1 Time to expiration (nmber of ays 45 Risk free interest rate 7% all prie 4 Reqire allate the implie volatility sing sensitivity ananlysis. Soltion Expete volatility all Premim 1% 3,8 11% 3,38 1% 3,49 13% 3,61 14% 3,7 15% 3,84 16% 3,97 < above this vale 17% 4,9 18% 4, 19% 4,35 % 4,47 1% 4,6 % 4,74 3% 4,87 4% 5, 5% 5,13 7
8 Derivatives on Finanial Market Problem 5. Sensitivity Measres The all option has the following parameters S spot prie 11 E exerise prie 1 Time to expiration (nmber of ays 3 Risk free interest rate 5% σ volatility % (a allte sensitivity measres for the all option, pt option, overe all protete pt, strale, bll all sprea, bear all sprea. (b Show the sensitivity of sensitivity measres on prie hanges 8-1. Soltion (a Delta Gamma Theta Rho Vega all Option 1,96,1 -,,8,3 Pt Option -,4,1 -,1,,3 overe all 3,4 -,1, -,8,3 Protetive pt 4,96,1 -,1,,3 Strale 5,9,3 -,3,7,5 Bll all Sprea 6,14 -,3,,1 -,6 Bear all Sprea 7 -,4,1 -,1,, (b all option Spot Delta Gamma Theta Rho Vega Pt option Prie 8,,,,, 85,,,,, 9,4, -,1,, 95,1,5 -,3,,8 1,54,7 -,4,4,11 15,83,4 -,4,7,8 11,96,1 -,,8,3 115,99, -,,8,1 1 1,, -,1,8, Spot Delta Gamma Theta Rho Vega Prie 8-1,,,1 -,8, 85-1,,,1 -,8, 9 -,96,,1 -,8, 95 -,79,5 -, -,7,8 1 -,46,7 -,3 -,4, ,17,4 -, -,,8 11 -,4,1 -,1,, ,1,,,,1 1,,,,, 8
9 Derivatives on Finanial Market Delta Delta 1,5 1,,5, 8 -, , Pt all -1,5 Spot Prie all option Sensitivity Measres,14,1,1,8,6,4,, -, ,4 -,6 Spot prie Gamma Theta Rho Vega Pt option,15 Sensitivity Measres,1,5, ,5 Gamma Theta Rho Vega -,1 Spot Prie 9
Bonds with Embedded Options and Options on Bonds
FIXED-INCOME SECURITIES Chapter 14 Bonds with Embedded Options and Options on Bonds Callable and Ptable Bonds Instittional Aspects Valation Convertible Bonds Instittional Aspects Valation Options on Bonds
CURRENCY OPTION PRICING II
Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity
Underlier Filters Category Data Field Description
Price//Capitalization Market Capitalization The market price of an entire company, calculated by multiplying the number of shares outstanding by the price per share. Market Capitalization is not applicable
Additional questions for chapter 4
Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
Ross Recovery Empirical Project
Jens Carsten Jackwert Marco Menner University of Konstanz [email protected] ttp://www.wiwi.ni-konstanz.e/jackwert/ 2 Motivation State prices q pricing kernel m pysical probabilities f Normally
Using GPU to Compute Options and Derivatives
Introdction Algorithmic Trading has created an increasing demand for high performance compting soltions within financial organizations. The actors of portfolio management and ris assessment have the obligation
Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5
Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. One-Perio Binomial Moel Creating synthetic options (replicating options)
Options/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
Black-Scholes model: Greeks - sensitivity analysis
VII. Black-Scholes model: Greeks- sensitivity analysis p. 1/15 VII. Black-Scholes model: Greeks - sensitivity analysis Beáta Stehlíková Financial derivatives, winter term 2014/2015 Faculty of Mathematics,
Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
Lecture 8. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 1
Lecture 8 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 8 1 One-Step Binomial Model for Option Price 2 Risk-Neutral Valuation
Binomial trees and risk neutral valuation
Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
where N is the standard normal distribution function,
The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
How to use the Options/Warrants Calculator?
How to use the Options/Warrants Calculator? 1. Introduction Options/Warrants Calculator is a tool for users to estimate the theoretical prices of options/warrants in various market conditions by inputting
Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
How To Understand The Greeks
ETF Trend Trading Option Basics Part Two The Greeks Option Basics Separate Sections 1. Option Basics 2. The Greeks 3. Pricing 4. Types of Option Trades The Greeks A simple perspective on the 5 Greeks 1.
Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
Option Calculators User Manual
Option Calculators User Manual Option Calculators provide means for implied volatility calculation, option contracts pricing and calculation of option price sensitivities (greeks). Currently, through our
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
Or part of or all the risk is dynamically hedged trading regularly, with a. frequency that needs to be appropriate for the trade.
Option position (risk) management Correct risk management of option position is the core of the derivatives business industry. Option books bear huge amount of risk with substantial leverage in the position.
Option Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in
ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option
Figure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
Valuation, Pricing of Options / Use of MATLAB
CS-5 Computational Tools and Methods in Finance Tom Coleman Valuation, Pricing of Options / Use of MATLAB 1.0 Put-Call Parity (review) Given a European option with no dividends, let t current time T exercise
GAMMA.0279 THETA 8.9173 VEGA 9.9144 RHO 3.5985
14 Option Sensitivities and Option Hedging Answers to Questions and Problems 1. Consider Call A, with: X $70; r 0.06; T t 90 days; 0.4; and S $60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report
University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
Fundamentals of Futures and Options (a summary)
Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.
Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington
Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................
Martingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
FINANCIAL ENGINEERING CLUB TRADING 201
FINANCIAL ENGINEERING CLUB TRADING 201 STOCK PRICING It s all about volatility Volatility is the measure of how much a stock moves The implied volatility (IV) of a stock represents a 1 standard deviation
Week 13 Introduction to the Greeks and Portfolio Management:
Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios
Options 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
Option Payoffs. Problems 11 through 16: Describe (as I have in 1-10) the strategy depicted by each payoff diagram. #11 #12 #13 #14 #15 #16
Option s Problems 1 through 1: Assume that the stock is currently trading at $2 per share and options and bonds have the prices given in the table below. Depending on the strike price (X) of the option
( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
Consider a European call option maturing at time T
Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13
TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:
Lecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
Lecture 5: Put - Call Parity
Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264
Sensitivity Analysis of Options c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264 Cleopatra s nose, had it been shorter, the whole face of the world would have been changed. Blaise Pascal
Risk Management for Derivatives
Risk Management or Derivatives he Greeks are coming the Greeks are coming! Managing risk is important to a large number o iniviuals an institutions he most unamental aspect o business is a process where
Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8
Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Introduction Pricing Effects Greeks Summary. Vol Target Options. Rob Coles. February 7, 2014
February 7, 2014 Outline 1 Introduction 2 3 Vega Theta Delta & Gamma Hedge P& L Jump sensitivity The Basic Idea Basket split between risky asset and cash Chose weight of risky asset w to keep volatility
1 The Black-Scholes Formula
1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,
14 Greeks Letters and Hedging
ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold
S 1 S 2. Options and Other Derivatives
Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating
CHAPTER 15. Option Valuation
CHAPTER 15 Option Valuation Just what is an option worth? Actually, this is one of the more difficult questions in finance. Option valuation is an esoteric area of finance since it often involves complex
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
Lecture 17/18/19 Options II
1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Hedging of Financial Derivatives and Portfolio Insurance
Hedging of Financial Derivatives and Portfolio Insurance Gasper Godson Mwanga African Institute for Mathematical Sciences 6, Melrose Road, 7945 Muizenberg, Cape Town South Africa. e-mail: [email protected],
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
The Greeks Vega. Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega.
The Greeks Vega 1 1 The Greeks Vega Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega. 2 Outline continued: Using greeks to shield your
VALUATION IN DERIVATIVES MARKETS
VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver
9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
Jung-Soon Hyun and Young-Hee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest
Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values
Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
Options, Derivatives, Risk Management
1/1 Options, Derivatives, Risk Management (Welch, Chapter 27) Ivo Welch UCLA Anderson School, Corporate Finance, Winter 2014 January 13, 2015 Did you bring your calculator? Did you read these notes and
OPTIONS CALCULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape
OPTIONS CALCULATOR QUICK GUIDE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table of Contents Introduction 3 Valuing options 4 Examples 6 Valuing an American style non-dividend paying stock
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
TABLE OF CONTENTS. Introduction Delta Delta as Hedge Ratio Gamma Other Letters Appendix
GLOBAL TABLE OF CONTENTS Introduction Delta Delta as Hedge Ratio Gamma Other Letters Appendix 3 4 5 7 9 10 HIGH RISK WARNING: Before you decide to trade either foreign currency ( Forex ) or options, carefully
Other variables as arguments besides S. Want those other variables to be observables.
Valuation of options before expiration Need to distinguish between American and European options. Consider European options with time t until expiration. Value now of receiving c T at expiration? (Value
How To Value Options In Black-Scholes Model
Option Pricing Basics Aswath Damodaran Aswath Damodaran 1 What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
Lecture 3: Put Options and Distribution-Free Results
OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option
b. June expiration: 95-23 = 95 + 23/32 % = 95.71875% or.9571875.9571875 X $100,000 = $95,718.75.
ANSWERS FOR FINANCIAL RISK MANAGEMENT A. 2-4 Value of T-bond Futures Contracts a. March expiration: The settle price is stated as a percentage of the face value of the bond with the final "27" being read
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
Part V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction
Ch 7. Greek Letters and Trading Strategies
Ch 7. Greek Letters and Trading trategies I. Greek Letters II. Numerical Differentiation to Calculate Greek Letters III. Dynamic (Inverted) Delta Hedge IV. elected Trading trategies This chapter introduces
Factors Affecting Option Prices
Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The risk-free interest rate r. 6. The
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein
Option pricing in detail
Course #: Title Module 2 Option pricing in detail Topic 1: Influences on option prices - recap... 3 Which stock to buy?... 3 Intrinsic value and time value... 3 Influences on option premiums... 4 Option
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
Lecture 1: Asset pricing and the equity premium puzzle
Lecture 1: Asset pricing and the equity premium puzzle Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Overview Some basic facts. Study the asset pricing implications of household portfolio
1 Pricing options using the Black Scholes formula
Lecture 9 Pricing options using the Black Scholes formula Exercise. Consider month options with exercise prices of K = 45. The variance of the underlying security is σ 2 = 0.20. The risk free interest
