MPLS VPNs: Layer 2 or Layer 3? Understanding the Choice
|
|
|
- Elaine Reynolds
- 10 years ago
- Views:
Transcription
1 #128 TECHNOLOGY WHITE PAPER Page: 1 of 6 MPLS VPNs: Layer 2 or Layer 3? Understanding the Choice Tim Wu, Riverstone Networks ABSTRACT Since there s been data networking, there s been a debate between switched and routed architectures stated in OSI terms, between performing functions at Layer 3 or Layer 2. Today, we see it again surfacing as network architects consider the design of Virtual Private Networks (VPNs) that take advantage of Multi-Protocol Label Switching (MPLS). The question is, when are MPLS VPNs better implemented at Layer 3, using BGP-based VPNs, and when at Layer 2, using MPLS tunneling technologies? The goal of this paper is to explain, in detail, what underlies the choice between Layer 2 and Layer 3 MPLS VPNs. Neither will always be the "right" choice for every service provider the nature of existing network architectures and desired service offerings are what ultimately decide the matter. And, of course, some service providers may deploy both types of VPN, or salutary combinations of the two technologies. For many (though not all) carriers, the complexity and expense of a Layer 3 MPLS VPN will be overkill. Layer 3 MPLS VPNs will likely remain most appealing to Internet Service s that already use BGP extensively and have already deployed high-end IP/MPLS routing equipment at the edge. However, for carriers with existing Layer 2 VPN deployments or those accustomed to delivering transport services, Layer 2 s MPLS "overlay" model should prove much more attractive. This follows because such carriers are unlikely to be interested in the degree of IP routing and (more to the point) high-end IP-equipment expenditures that Layer 3 VPNs call for. In addition, it is clear that where direct interoperability with existing Layer 2 VPN deployments is important, Layer 2 VPNs have the advantage. Riverstone s MPLS interfaces currently offer complete Layer 2 VPN solutions based on Martini-draft tunneling and various extensions. Riverstone MPLS routers can also form part of a Layer 3 MPLS RFC 2547 VPN network, and the company plays a leading role in developing joint Layer 2/Layer 3 VPN solutions. This paper introduces (1) VPN basics, (2) the Layer 3 "Private Routed Network" VPN approach, (3) the Layer 2 Martini approach, and (4) which network suits whom.
2 Page: 2 of 6 THE BASICS It is easy to lose sight of the purpose of MPLS VPN technology in the first place. The goal is simple: to build a network that, as much as possible, acts like an extension of the private corporate network on a service provider s shared network infrastructure. The result, ideally, is a fast and efficient means of making scattered places seem just like local sites, from workers homes to branch offices. MPLS, designed to scale IP networks, is a natural choice for virtual private networks. Supporting multiple private networks on a shared infrastructure suggests immediate scaling problems for both Layer 3 and Layer 2 networks. On a Layer 3 network, asking each router on the network to potentially support thousands of different routing tables (one for each virtual private network, in addition to those of the public network) is an interminable option. Layer 2 networks, on the other hand, have a different scaling problem: they lack the scope of routed networks, limiting a Layer 2 implementation to the confines of the transport medium. Certain link-layer protocols, like Ethernet, also have scaling limits that reflect their LAN origins (i.e., the 4095 VLAN limit). For each of these problems, MPLS can help. THE LAYER 3 APPROACH The Layer 3 VPN MPLS implementation is an early leader. The BGP model is based on an IETF Request for Comments (RFC) 2547, and these "2547 VPNs" have already been implemented in several major carrier networks, including parts of the IP/MPLS backbones of AT&T, Bell Canada, and Global Crossing. How does a 2547 VPN work? As the RFC explains, "MPLS is used for forwarding packets over the backbone, and BGP is used to distribute routes over the backbone." Each 2547 VPN is really a private IP network, with modified private IP addresses for each of the Edge (PE) routers immediately connected to the customer site. The route to each of the sites on the private network is distributed using the familiar BGP routing protocol. Site 3 Site Private Address Share IP/MPLS Network Private Address Site Private Address Figure 1 A Private BGP Network with Private IP Addresses The relationship between the PE router and the Customer Edge (CE) router is the truly distinctive aspect of 2547 VPNs. The CE router becomes a peer of the PE router (and not a peer to the other CE routers). The CE router provides the PE router with route information for the private network. The PE router, in turn, must be capable of storing multiple private routing tables one for each customer connection along with the usual public Internet forwarding information.
3 Page: 3 of 6 Customer A Customer B Core Router Private Route Information LSP Customer C Customer s Routing Table A Routing Table B Routing Table C Internet Routing Table Figure 2 The Edge/Customer Relationship MPLS handles the forwarding between the nodes on a 2547 network (in this respect, Layer 2 and 3 VPN approaches are identical). This MPLS forwarding role is crucial because it means the routers in the core of the network ("P" routers) need not know about the routes connecting the 2547 private network. A 2547 network uses a two-level label stack the ingress PE router pushes both a Next-Hop BGP header (for the private network) and a Next-Hop Interior Gateway Protocol (IGP) header (for the shared infrastructure) onto the packet. After reaching the egress PE router via one or more MPLS Label Switched Paths (LSPs), the PE pops the MPLS headers and delivers a normal IP packet to the customer. What is to be made of the RFC 2547 approach? It has great potential. It takes advantage of the ubiquity of IP networks and, like IP, runs over multiple transport networks. It also has strong automatic route discovery, which is important for dynamic VPNs. On the other hand, several comparative limitations are also clear. The 2547 approach can be very demanding of provider edge routers. Today, only the most expensive routers can maintain multiple private routing tables. While not all 2547 deployments will necessarily require anything but a number of static routes, the potential for overburdening the network exists. Some, like AT&T s Randy Bush, therefore believe RFC 2547 can threaten the integrity of an entire network. LAYER 2 MPLS VPNS A DIFFERENT PHILOSOPHY A different philosophy underlies Layer 2 MPLS virtual private networks [also known as Transparent LAN Services (TLS) or Virtual Private LAN Services (VPLS)]. The goal is the extension, rather than replacement, of existing Layer 2 VPN services. Instead of building a separate, private IP network and running traffic across it, Layer 2 VPNs take existing Layer 2 traffic and send it through point-to-point tunnels on the MPLS network backbone. Both Layer 2 and Layer 3 MPLS VPNs rely on MPLS transport through the core. The principal difference lies in how PE-CE router relations are handled. In a Layer 2 MPLS VPN, the PE router is not a peer to the CE router and does not maintain separate routing tables. Rather, it simply maps incoming Layer 2 traffic onto the appropriate point-to-point tunnel. The result is best described as an "overlay" model as opposed to the Layer 3 "peer" model.
4 Page: 4 of 6 Analogies are tricky, but we might think of the wide area network as a mountain that must be traversed. A 2547 VPN is more like a separate railway system that must be boarded to traverse a network of mountain tunnels. The Layer 2 approach better resembles a series of simple car tunnels that go straight through the mountain without the transition to rail. As this comparison suggests, there might be different reasons to want each. Crucial to the Layer 2 VPN model is a method for establishing simple point-to-point tunnels on an MPLS network that can handle various forms of Layer 2 traffic. Today, the industry is standardizing on the Martini drafts (named after Luca Martini from Level 3 Communications), which define point-to-point encapsulation mechanisms for Ethernet, frame relay, ATM, TDM, and PPP/HDLC traffic. Indeed, Martini interoperability between many MPLS vendors was conclusively demonstrated at ilabs testing at the Networld+Interop conference in September Still other Internet drafts are building on the Martini draft encapsulations to define frame relay and ATM operation (see drafts from Allan, Azad, Tsenier, Koleyni, and Harrison) and to define Ethernet Transparent LAN Services (see the Lasserre draft). WHICH WORKS BETTER WHERE? The Layer 3 approach, as stated above, is ideally suited to "classic" ISP networks with existing core router deployments. It is a good fit for carriers serving large VPNs with changing locations, making automatic route discovery useful. The Layer 2 approach, on the other hand, is the preferred approach for service providers who want to extend and scale legacy Layer 2 VPN deployments, transport-oriented carriers in general, or any situation with few VPN sites and static routes. Many carriers may already be providing Layer 2 VPN services (over, say, frame relay or metro Ethernet) and are interested in scaling such services. In that case, the SP doesn t want a whole new VPN infrastructure, just a way to overlay Layer 2 traffic on MPLS/IP networks. For this task, Layer 2 MPLS VPNs are ideal. Frame Access LSP MPLS/IP Ethernet Frame Access Ethernet Access Figure 3 Using Layer 2 MPLS VPNs to Scale Existing Layer 2 VPNs Transport-oriented carriers also should prefer the Layer 2 approach. Again, the main difference with Layer 2 VPNs is at the PE router. Among other things, the Layer 2 approach eliminates the need to peer with CE routers and maintain multiple routing tables. This approach suits carriers that traditionally offer transport services and leave routing to the customer. VPN traffic is carried over an IP/MPLS network, without upgrading to expensive and specialized core routers at the edge. In addition, in a Layer 2 MPLS VPN, reachability is achieved in the data plane through address learning, rather than in the control plane through BGP route exchange.
5 # 127 TECHNOLOGY WHITE PAPER Page: 5 of 6 Finally, where routes are likely to be static and private networks simple, the relative simplicity of the Layer 2 approach is appealing. In a metro TLS scenario, for example, a carrier usually needs only to interconnect a few sites; a 2547 MPLS VPN may be overkill, from both a cost and complexity standpoint. In the end, as MPLS VPNs are deployed, it is likely that carriers will choose Layer 2 or Layer 3 VPNs for many of the same reasons they decided to deploy Layer 2 or Layer 3 networks. The question of Layer 2 or Layer 3 deployment, like nature or nurture in human development, is likely to stay with networking for quite some time. RIVERSTONE S CONTRIBUTION Riverstone currently offers an L2 MPLS VPN solution based on Martini code, both in point-to-point and point-to-multi-point forms. Indeed, at the time of this writing (October 2001), the company offers the only generally available, deployed L2 Martini VPN solution in the market. The implementation has been successfully tested numerous times for interoperability with major core routers from Juniper and Cisco (most recently at the ilabs testing at N+I Atlanta, 2001). In addition, interoperability testing has shown that the Riverstone Label Switch Router can function comfortably as a P router in a 2547 network. Riverstone has also taken an active role in developing joint Layer 2/Layer 3 MPLS VPN solutions, and has developed a migration strategy for service providers interested in supporting both Layer 2 tunneling and private routed networks. Service providers interested in any aspect of Riverstone s MPLS VPN solutions are encouraged to contact the company for further details.
6 Page: 6 of 6 Acronyms ACL Access Control List ANSI American National Standards Institute ASIC Application-Specific Integrated Circuit ASP Application Service ATM Asynchronous Transfer Mode CBR Constant Bit Rate CWDM Coarse Wave Division Multiplexing DS1/DS3 Digital Signal, Level 1 (1.54 Mbps) or 3 (44.7 Mbps) DSL Digital Subscriber Line DWDM Dense Wave Division Multiplexing DVMRP Distance Vector Multicast Protocol E1/E2 European Trunk 1/2 (2 Mbps/34.3 Mbps) ERP Enterprise Resource Planning HSSI High Speed Serial Interface ISP Internet Service ITU International Telecommunications Union LAN Local Area Network LEC Local Exchange Carrier MAC Media Access Control MAN Metropolitan Area Network MDU Multiple Dwelling Unit MLPPP Multi Layer Point-to-Point Protocol MPLS Multiple Protocol Label Switching. See "MPLS in Metro IP Networks," MTU Multiple Tenant Unit OC-3/OC-12 Optical Carrier 3/12 (155 Mbps/622 Mbps) PDH Plesiochronous Digital Hierarchy PIM Protocol Independent Multicast POS Packet over SONET PPP Point-to-Point Protocol PVC Private Virtual Circuit QoS Quality of Service RED Random Early Discard SONET Synchronous Optical NETwork See SLA Service Level Agreement SPE Synchronous Payload Envelope SRP Spatial Reuse Protocol See RFC 2892 T1 Trunk 1 (1.544 Mbps) TCP/IP Transport Control Protocol/Internet Protocol TDM Time Division Multiplexing UBR Undefined Bit Rate VBR Variable Bit Rate VLAN Virtual LAN VoD Video on Demand WAN Wide Area Network WDM Wave Division Multiplexing WRED Weighted Random Early Discard Riverstone Networks, Inc Great America Parkway, Santa Clara, CA USA 877 / or 408 / or Riverstone Networks, Inc. All rights reserved. Riverstone Networks, RapidOS, and Enabling Service Infrastructure are trademarks or service marks of Riverstone Networks, Inc. All other trademarks mentioned herein belong to their respective owners. Printed in the USA v /01
MPLS and IPSec A Misunderstood Relationship
# 129 TECHNOLOGY WHITE PAPER Page: 1 of 5 MPLS and IPSec A Misunderstood Relationship Jon Ranger, Riverstone Networks ABSTRACT A large quantity of misinformation and misunderstanding exists about the place
MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs
A Silicon Valley Insider MPLS VPN Services PW, VPLS and BGP MPLS/IP VPNs Technology White Paper Serge-Paul Carrasco Abstract Organizations have been demanding virtual private networks (VPNs) instead of
MPLS L2VPN (VLL) Technology White Paper
MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
Spanning Tree: Death is Not an Option
# 131 TECHNOLOGY WHITE PAPER Page: 1 of 9 Spanning Tree: Death is Not an Option Nick Slabakov, Riverstone Networks ABSTRACT This article is an overview of the progression of both the spanning tree algorithm
IP/MPLS-Based VPNs Layer-3 vs. Layer-2
Table of Contents 1. Objective... 3 2. Target Audience... 3 3. Pre-Requisites... 3 4. Introduction...3 5. MPLS Layer-3 VPNs... 4 6. MPLS Layer-2 VPNs... 7 6.1. Point-to-Point Connectivity... 8 6.2. Multi-Point
Tackling the Challenges of MPLS VPN Testing. Todd Law Product Manager Advanced Networks Division
Tackling the Challenges of MPLS VPN ing Todd Law Product Manager Advanced Networks Division Agenda Background Why test MPLS VPNs anyway? ing Issues Technical Complexity and Service Provider challenges
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification
MP PLS VPN MPLS VPN. Prepared by Eng. Hussein M. Harb
MP PLS VPN MPLS VPN Prepared by Eng. Hussein M. Harb Agenda MP PLS VPN Why VPN VPN Definition VPN Categories VPN Implementations VPN Models MPLS VPN Types L3 MPLS VPN L2 MPLS VPN Why VPN? VPNs were developed
Master Course Computer Networks IN2097
Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0 Introduction...2 Overview...2 1. Technology Background...2 2. MPLS PNT Offer Models...3
MPLS in Private Networks Is It a Good Idea?
MPLS in Private Networks Is It a Good Idea? Jim Metzler Vice President Ashton, Metzler & Associates March 2005 Introduction The wide area network (WAN) brings indisputable value to organizations of all
Multi Protocol Label Switching (MPLS) is a core networking technology that
MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of
MPLS Pseudowire Innovations: The Next Phase Technology for Today s Service Providers
MPLS Innovations: The Next Phase Technology for Today s Service Providers Introduction MPLS technology enables a smooth evolution of core networks within today s service provider infrastructures. In particular,
How To Understand The Benefits Of An Mpls Network
NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 Introduction MPLS in the Enterprise Multi-Protocol Label Switching (MPLS) as a technology has been around for over a decade
VPLS Technology White Paper HUAWEI TECHNOLOGIES CO., LTD. Issue 01. Date 2012-10-30
Issue 01 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of
Enhancing Converged MPLS Data Networks with ATM, Frame Relay and Ethernet Interworking
TECHNOLOGY WHITE PAPER Enhancing Converged Data Networks with, Frame Relay and Ethernet Interworking Virtual Private Networks (VPN) are a popular way for enterprises to interconnect remote sites. Traditionally,
Introducing Basic MPLS Concepts
Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding
November 2013. Defining the Value of MPLS VPNs
November 2013 S P E C I A L R E P O R T Defining the Value of MPLS VPNs Table of Contents Introduction... 3 What Are VPNs?... 4 What Are MPLS VPNs?... 5 What Are the Benefits of MPLS VPNs?... 8 How Do
ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2
1 ISTANBUL 1.1 MPLS overview 1 1.1.1 Principle Use of a ATM core network 2 Overlay Network One Virtual Circuit per communication No routing protocol Scalability problem 2 1.1.1 Principle Weakness of overlay
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India [email protected] 2 Department of Information Technolgy,
MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service
Nowdays, most network engineers/specialists consider MPLS (MultiProtocol Label Switching) one of the most promising transport technologies. Then, what is MPLS? Multi Protocol Label Switching (MPLS) is
Addressing Inter Provider Connections With MPLS-ICI
Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched
MPLS/IP VPN Services Market Update, 2014. United States
MPLS/IP VPN Services Market Update, 2014 United States August 2014 Contents Section Slide Numbers Executive Summary 4 Market Overview & Definitions 8 Drivers & Restraints 14 Market Trends & Revenue Forecasts
IPv6 over IPv4/MPLS Networks: The 6PE approach
IPv6 over IPv4/MPLS Networks: The 6PE approach Athanassios Liakopoulos Network Operation & Support Manager ([email protected]) Greek Research & Technology Network (GRNET) III Global IPv6 Summit Moscow, 25
MPLS Layer 3 and Layer 2 VPNs over an IP only Core. Rahul Aggarwal Juniper Networks. [email protected]
MPLS Layer 3 and Layer 2 VPNs over an IP only Core Rahul Aggarwal Juniper Networks [email protected] Agenda MPLS VPN services and transport technology Motivation for MPLS VPN services over an IP only core
Introduction to MPLS-based VPNs
Introduction to MPLS-based VPNs Ferit Yegenoglu, Ph.D. ISOCORE [email protected] Outline Introduction BGP/MPLS VPNs Network Architecture Overview Main Features of BGP/MPLS VPNs Required Protocol Extensions
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet.
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet. Petr Grygárek rek 1 Layer 2 VPNs 2 Usages of L2 VPNs Server farms/clusters and other L2- dependent applications redundancy and
WAN. Introduction. Services used by WAN. Circuit Switched Services. Architecture of Switch Services
WAN Introduction Wide area networks (WANs) Connect BNs and LANs across longer distances, often hundreds of miles or more Typically built by using leased circuits from common carriers such as AT&T Most
PRASAD ATHUKURI Sreekavitha engineering info technology,kammam
Multiprotocol Label Switching Layer 3 Virtual Private Networks with Open ShortestPath First protocol PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Abstract This paper aims at implementing
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
How Routers Forward Packets
Autumn 2010 [email protected] MULTIPROTOCOL LABEL SWITCHING (MPLS) AND MPLS VPNS How Routers Forward Packets Process switching Hardly ever used today Router lookinginside the packet, at the ipaddress,
MPLS Concepts. Overview. Objectives
MPLS Concepts Overview This module explains the features of Multi-protocol Label Switching (MPLS) compared to traditional ATM and hop-by-hop IP routing. MPLS concepts and terminology as well as MPLS label
Understanding PBB-TE for Carrier Ethernet
Understanding PBB-TE for Carrier Ethernet Introduction Ethernet is evolving from an enterprise LAN technology to a much more robust, carrier-grade transport technology for metropolitan service networks.
Expert Reference Series of White Papers. An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire
Expert Reference Series of White Papers An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire 1-800-COURSES www.globalknowledge.com An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire Al Friebe,
WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction...
Introduction WHITE PAPER Addressing Inter Provider Connections with MPLS-ICI The migration away from traditional multiple packet overlay networks towards a converged packet-switched MPLS system is now
MPLS - A Choice of Signaling Protocol
www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall
Junos MPLS and VPNs (JMV)
Junos MPLS and VPNs (JMV) Course No: EDU-JUN-JMV Length: Five days Onsite Price: $32500 for up to 12 students Public Enrollment Price: $3500/student Course Level JMV is an advanced-level course. Prerequisites
RFC 2547bis: BGP/MPLS VPN Fundamentals
White Paper RFC 2547bis: BGP/MPLS VPN Fundamentals Chuck Semeria Marketing Engineer Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2001 or 888 JUNIPER www.juniper.net
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans Contents Overview 1 1. L2 VPN Padding Verification Test 1 1.1 Objective 1 1.2 Setup 1 1.3 Input Parameters 2 1.4 Methodology 2 1.5
VPN Technologies A Comparison
VPN Technologies A Comparison Matthew Finlayson, [email protected] Jon Harrison, [email protected] Richard Sugarman, [email protected] First issued February 2003 100
The Keys for Campus Networking: Integration, Integration, and Integration
The Keys for Campus Networking: Introduction Internet Protocol (IP) is considered the working-horse that the vast majority of current and future applications use as the key technology for information exchange,
Virtual Private LAN Service
Virtual Private LAN Service Authors Kireeti Kompella, Juniper Networks, 1194 N Mathilda Avenue, Sunnyvale, CA 94089, USA E-mail : [email protected] Jean-Marc Uzé, Juniper Networks, Espace 21, 31 Place
- Multiprotocol Label Switching -
1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can
Chapter 2 - The TCP/IP and OSI Networking Models
Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application
Building Trusted VPNs with Multi-VRF
Building Trusted VPNs with Introduction Virtual Private Networks (VPNs) have been a key application in networking for a long time. A slew of possible solutions have been proposed over the last several
Implementing Virtual Leased Lines Using MPLS
Lines Using MPLS able of Contents 1. Objective... 3 2. arget Audience... 3 3. Pre-Requisites... 3 4. Introduction: MPLS and IP-Based VPNs... 3 5. he Promise of MPLS Layer-2 VPNs... 5 6. unneling Layer-2
Implementing VPN over MPLS
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. I (May - Jun.2015), PP 48-53 www.iosrjournals.org Implementing VPN over
Internetworking II: VPNs, MPLS, and Traffic Engineering
Internetworking II: VPNs, MPLS, and Traffic Engineering 3035/GZ01 Networked Systems Kyle Jamieson Lecture 10 Department of Computer Science University College London Taxonomy of communica@on networks Virtual
Virtual Private LAN Service (VPLS)
White Paper Virtual Private LAN Service (VPLS) Scalable Ethernet-Based Enterprise Connectivity and Broadband Delivery Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, California 94089 USA 408.745.2000
Bandwidth Profiles for Ethernet Services Ralph Santitoro
Ralph Santitoro Abstract This paper provides a comprehensive technical overview of bandwidth profiles for Ethernet services, based on the work (as of October 2003) of the Metro Ethernet Forum (MEF) Technical
The New Age MAN The Architectures and Services
The New Age MAN The Architectures and Services Ashton, Metzler & Associates September, 2001 The Marketplace Void The growth in the capacity of the typical Local Area Network (LAN) over the last few years
MPLS over Various IP Tunnels. W. Mark Townsley
MPLS over Various IP Tunnels W. Mark Townsley Generic MPLS over IP Manual, Point to Point Tunnel IP/MPLS Network P Manually Configured Tunnel IP Network P IP/MPLS Network Typically a GRE tunnel, but may
The Evolution of Ethernet
June 2010 White Paper The Evolution of Ethernet How Ethernet solutions, such as NTT America s VLink, can help businesses reduce private networking costs while leveraging Ethernet technology. Introduction
Bandwidth Profiles for Ethernet Services Ralph Santitoro
Ralph Santitoro Abstract This paper provides a comprehensive technical overview of bandwidth profiles for Ethernet services, based on the work of the Metro Ethernet Forum (MEF) Technical Committee. The
WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.
MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead
Virtual Private Networks. Juha Heinänen [email protected] Song Networks
Virtual Private Networks Juha Heinänen [email protected] Song Networks What is an IP VPN? an emulation of private (wide area) network facility using provider IP facilities provides permanent connectivity between
Innovation in Access and Metropolitan Area Networks -
Innovation in Access and Metropolitan Area s - Combining Ethernet and MPLS By Jim Metzler SPONSORED BY: K ubernan Guiding Innovation Innovation in Access and Metropolitan Area s - Combining Ethernet and
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
Network Virtualization with the Cisco Catalyst 6500/6800 Supervisor Engine 2T
White Paper Network Virtualization with the Cisco Catalyst 6500/6800 Supervisor Engine 2T Introduction Network virtualization is a cost-efficient way to provide traffic separation. A virtualized network
Broadband Networks Virgil Dobrota Technical University of Cluj-Napoca, Romania [email protected]
Broadband Networks Virgil Dobrota Technical University of Cluj-Napoca, Romania [email protected] Copyright Virgil Dobrota 2007-2008, All rights reserved 1 Course 12 - Outline 46. NGN Next Generation
EVALUATING NETWORKING TECHNOLOGIES
WHITE PAPER EVALUATING NETWORKING TECHNOLOGIES CONTENTS EXECUTIVE SUMMARY 01 NETWORKS HAVE CHANGED 02 Origin of VPNS Next-generation VPNS TODAY S CHOICES 04 Layer 3 VPNS Layer 2 VPNS MAKING YOUR DECISION
Virtual Private LAN Service on Cisco Catalyst 6500/6800 Supervisor Engine 2T
White Paper Virtual Private LAN Service on Cisco Catalyst 6500/6800 Supervisor Engine 2T Introduction to Virtual Private LAN Service The Cisco Catalyst 6500/6800 Series Supervisor Engine 2T supports virtual
Cox Business. L2 / L3 and Network Topology Overview. February 1, 2011
Cox Business L2 / L3 and Network Topology Overview February 1, 2011 Layer 3 / Layer 2 Comparo Protocol Architecture Control Change: Adding sites Change: IP changes Faults: Management Faults: Calls Layer
Implementing Cisco Service Provider Next-Generation Edge Network Services **Part of the CCNP Service Provider track**
Course: Duration: Price: $ 3,695.00 Learning Credits: 37 Certification: Implementing Cisco Service Provider Next-Generation Edge Network Services Implementing Cisco Service Provider Next-Generation Edge
MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009
MikroTik RouterOS Introduction to MPLS Prague MUM Czech Republic 2009 Q : W h y h a v e n 't y o u h e a r d a b o u t M P LS b e fo re? A: Probably because of the availability and/or price range Q : W
Transport for Enterprise VoIP Services
Transport for Enterprise VoIP Services Introduction Many carriers are looking to advanced packet services as an opportunity to generate new revenue or lower costs. These services, which include VoIP, IP
INTRODUCTION TO L2VPNS
INTRODUCTION TO L2VPNS 4 Introduction to Layer 2 and Layer 3 VPN Services CE Layer 3 VPN Link Comprised of IP Traffic Passed Over IP Backbone LEGEND Layer 3 VPN Layer 2 VPN CE CE PE IP Backbone PE CE Layer
White Paper. Cisco MPLS based VPNs: Equivalent to the security of Frame Relay and ATM. March 30, 2001
The leading edge in networking information White Paper Cisco MPLS based VPNs: Equivalent to the security of Frame Relay and ATM March 30, 2001 Abstract: The purpose of this white paper is to present discussion
1.264 Lecture 37. Telecom: Enterprise networks, VPN
1.264 Lecture 37 Telecom: Enterprise networks, VPN 1 Enterprise networks Connections within enterprise External connections Remote offices Employees Customers Business partners, supply chain partners Patients
MPLS over IP-Tunnels. Mark Townsley Distinguished Engineer. 21 February 2005
MPLS over IP-Tunnels Mark Townsley Distinguished Engineer 21 February 2005 1 MPLS over IP The Basic Idea MPLS Tunnel Label Exp S TTL MPLS VPN Label Exp S TTL MPLS Payload (L3VPN, PWE3, etc) MPLS Tunnel
Demonstrating the high performance and feature richness of the compact MX Series
WHITE PAPER Midrange MX Series 3D Universal Edge Routers Evaluation Report Demonstrating the high performance and feature richness of the compact MX Series Copyright 2011, Juniper Networks, Inc. 1 Table
DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL
IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: [email protected]
Industry s First QoS- Enhanced MPLS TE Solution
Industry s First QoS- Enhanced MPLS TE Solution Azhar Sayeed Manager, IOS Product Management, [email protected] Contact Info: Kim Gibbons, [email protected],, 408-525 525-4909 1 Agenda MPLS Traffic Engineering
VPLS lies at the heart of our Next Generation Network approach to creating converged, simplified WANs.
Virtual Private LAN Service (VPLS) A WAN that thinks it s a LAN. VPLS is a high security, low latency means to connect sites or services either point-to-point or as a mesh. We use Virtual Private LAN Service
Broadband Network Architecture
Broadband Network Architecture Jan Martijn Metselaar May 24, 2012 Winitu Consulting Klipperaak 2d 2411 ND Bodegraven The Netherlands slide Broadband Services! Dual play, Triple play, Multi play! But what
MPLS/BGP Network Simulation Techniques for Business Enterprise Networks
MPLS/BGP Network Simulation Techniques for Business Enterprise Networks Nagaselvam M Computer Science and Engineering, Nehru Institute of Technology, Coimbatore, Abstract Business Enterprises used VSAT
Cisco Catalyst 3750 Metro Series Switches
Cisco Catalyst 3750 Metro Series Switches Product Overview Q. What are Cisco Catalyst 3750 Metro Series Switches? A. The Cisco Catalyst 3750 Metro Series is a new line of premier, customer-located switches
Riverstone Networks. Carrier Ethernet Standards Progress. Igor Giangrossi Sr. Systems Engineer, CALA
Riverstone Networks Carrier Ethernet Standards Progress Igor Giangrossi Sr. Systems Engineer, CALA Agenda History Metro Ethernet Forum work IETF work IEEE work Conclusion 2 Ethernet Evolution What do we
The Essential Guide to Deploying MPLS for Enterprise Networks
White Paper The Essential Guide to Deploying MPLS for Enterprise Networks Daniel Backman Systems Engineer Troy Herrera Sr. Field Solutions Manager Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale,
Performance Management for Next- Generation Networks
Performance Management for Next- Generation Networks Definition Performance management for next-generation networks consists of two components. The first is a set of functions that evaluates and reports
s@lm@n Cisco Exam 400-201 CCIE Service Provider Written Exam Version: 7.0 [ Total Questions: 107 ]
s@lm@n Cisco Exam 400-201 CCIE Service Provider Written Exam Version: 7.0 [ Total Questions: 107 ] Cisco 400-201 : Practice Test Question No : 1 Which two frame types are correct when configuring T3 interfaces?
MPLS VPN over mgre. Finding Feature Information. Prerequisites for MPLS VPN over mgre
The feature overcomes the requirement that a carrier support multiprotocol label switching (MPLS) by allowing you to provide MPLS connectivity between networks that are connected by IP-only networks. This
MPLS Implementation MPLS VPN
MPLS Implementation MPLS VPN Describing MPLS VPN Technology Objectives Describe VPN implementation models. Compare and contrast VPN overlay VPN models. Describe the benefits and disadvantages of the overlay
CS419: Computer Networks. Lecture 9: Mar 30, 2005 VPNs
: Computer Networks Lecture 9: Mar 30, 2005 VPNs VPN Taxonomy VPN Client Network Provider-based Customer-based Provider-based Customer-based Compulsory Voluntary L2 L3 Secure Non-secure ATM Frame Relay
ICTTEN4215A Install and configure internet protocol TV in a service provider network
ICTTEN4215A Install and configure internet protocol TV in a service provider network Release: 1 ICTTEN4215A Install and configure internet protocol TV in a service provider network Modification History
Data Communication Networks and Converged Networks
Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea ([email protected]) Senior Solutions Architect, Brocade Communications Inc. Jim Allen ([email protected]) Senior Architect, Limelight
VPN taxonomy. János Mohácsi NIIF/HUNGARNET tf-ngn meeting April 2005
VPN taxonomy János Mohácsi NIIF/HUNGARNET tf-ngn meeting April 2005 VPNs Definition: the capability of both private and public networks to support a communication infrastructure connecting geographically
WHY CHOOSE COX BUSINESS FOR YOUR COMPANY S NETWORK SERVICE NEEDS?
WHY CHOOSE COX BUSINESS FOR YOUR COMPANY S NETWORK SERVICE NEEDS? This document provides an overview of the Cox Business portfolio of business networking services and explains why customers should consider
WAN and VPN Solutions:
WAN and VPN Solutions: Choosing the Best Type for Your Organization xo.com WAN and VPN Solutions: Choosing the Best Type for Your Organization WAN and VPN Solutions: Choosing the Best Type for Your Organization
MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a
MPLS Environment Introduction to MPLS Multi-Protocol Label Switching (MPLS) is a highly efficient and flexible routing approach for forwarding packets over packet-switched networks, irrespective of the
APRICOT 2012 MPLS WORKSHOP L2VPN
APRICOT 2012 MPLS WORKSHOP L2VPN Alastair Johnson February 2012 [email protected] 2 MPLS WORKSHOP L2VPN 1. Introduction to L2VPN a. Background to VPNs b. Why L2VPNs c. Types of L2VPNs
An End-to-End QoS Architecture with the MPLS-Based Core
An End-to-End QoS Architecture with the MPLS-Based Core Victoria Fineberg, PE, Consultant, [email protected] Cheng Chen, PhD, NEC, [email protected] XiPeng Xiao, PhD, Redback, [email protected]
Deploying Multiservice Applications Using RPR Over the Existing SONET Infrastructure
Deploying Multiservice Applications Using RPR Over the Existing SONET Infrastructure Introduction The migration of Ethernet technology from the LAN to metro networks, driven by increasing demand in VoIP,
Migrating to MPLS Technology and Applications
Migrating to MPLS Technology and Applications Serge-Paul Carrasco June 2003 asiliconvalleyinsider.com Table Of Content Why to migrate to MPLS? Congestion on the Internet Traffic Engineering MPLS Fundamentals
Sprint Global MPLS VPN IP Whitepaper
Sprint Global MPLS VPN IP Whitepaper Sprint Product Marketing and Product Development January 2006 Revision 7.0 1.0 MPLS VPN Marketplace Demand for MPLS (Multiprotocol Label Switching) VPNs (standardized
Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.
Data Networking and Architecture The course focuses on theoretical principles and practical implementation of selected Data Networking protocols and standards. Physical network architecture is described
