MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a
|
|
|
- Scott Foster
- 10 years ago
- Views:
Transcription
1 MPLS Environment Introduction to MPLS Multi-Protocol Label Switching (MPLS) is a highly efficient and flexible routing approach for forwarding packets over packet-switched networks, irrespective of the protocol used to build the packets. A router which supports MPLS is referred to as a Label Switching Router (LSR). A network comprising interconnected LSRs is called MPLS network. To use MPLS, network layer packets (for example, IP packets) are converted into labeled packets by adding a label. A label is attached to each packet when it enters an MPLS network, and any remaining labels are removed when it leaves the MPLS network. Note however that MPLS packets do not require the presence of a network layer header for being forwarded to a destination within the MPLS network, or to a non- MPLS host directly attached to an LSR. Note To allow more complex routing capabilities, MPLS permits attaching a label stack to each packet (a label stack is an ordered set of labels). Within the MPLS network, forwarding actions are based only on the labels carried by the packets. Therefore, labeled packets following a certain path can be assigned the same label. Forwarding within the MPLS network is performed as follows: 1. When an LSR receives a packet, it looks up the incoming packet label in a table to determine what label to attach instead of the current label. MPLS Environment 1
2 Note The look up table may be preconfigured by traffic engineering personnel (static routing), or be dynamically created using dedicated protocols. 1. The LSR replaces the existing label with the new label. 2. The LSR now sends the packet over the appropriate port to the next hop. Therefore, the LSRs comprised in an MPLS network can forward traffic without knowing anything about the network protocol used by the packets: only the ingress LSR located on the edge of the MPLS network must be aware of the network protocol of the packets it receives from the directly attached non-mpls hosts, whereas the egress LSR must be aware of the network protocol of the packets it forwards to an attached non-mpls host. A label-switched path (LSP) connects the ingress LSR to the egress LSR. An LSP is inherently unidirectional: for bidirectional applications, for example, voice transport, data communication, etc., two LSPs must be associated. Different labels may thus be used in each direction. Since a packet is first assigned a label when it enters the network, the ingress LSR may use, in determining the assignment, any information it has about the packet: for example, packets arriving on different ports may be assigned different labels. Moreover, the ingress LSR can select the label in accordance with considerations such as the packet precedence, or class of service. MPLS Label Structure Figure 1 shows the MPLS label structure. Byte 1 Byte 2 Byte 3 Byte Label EXP S TTL Figure 1. MPLS Label Structure 2 MPLS Environment
3 Labe EXP S TTL Label value (the label itself). The label is represented by 20 bits, and thus the range allowed by the standards is 0 to Note that in accordance with the standards, certain values (for example, 0, 1, 2, 3) have special meaning. Three bits for experimental use. The value carried by these bits, which is in the range of 0 to 7, is usually used to indicate the class of service (7 indicates the highest priority). Bottom of stack indicator. When using label stacks, this bit is set to 0 for all the label entries in the stack, except for the last one, in which it is set to 1 to indicate that no other label follows. See Figure 2 for an example. Time To Live, consist of 8 bits (range: 0 to 255). The TTL value is decremented by 1 at each LSR: a packet with TTL = 0 is discarded. MPLS Packet Structure Figure 2 illustrates a typical structure for MPLS packets, identifies the location of the MPLS header, and general structure of MPLS label stack. Layer 2 Header MPLS Header Label n (most recent) EXP S=0 TTL Additional Labels Label 2 EXP S=0 TTL Label 1 EXP S=1 TTL Layer 3 Header (e.g., IP) Layer 4 Header (e.g., UDP) Optional Payload Figure 2. Typical MPLS Packet Structure MPLS Environment 3
4 The MPLS header is inserted after the Layer 2 (data link) header and before any higher layer header (for example, before the Layer 3 (network layer) header shown in Figure 2). As a minimum, an MPLS header consists of one label having the structure of Figure 1, with the S bit set to 1. An MPLS label stack consists several label entries, each having the structure of Figure 1, when the bottom label has its S bit set to 1, and all the other labels have the S bit set to 0. When an LSR receives a labeled packet, it looks up the label value at the top of the stack. As a result of a successful lookup, the LSR learns: 2. The next hop to which the packet is to be forwarded 3. The operation to be performed on the label stack before forwarding: either replace the top label in the stack with another, or pop (remove) an entry off the label stack, or replace the top label stack entry and then push one or more additional entries on the label stack. In addition to learning the next hop and the label stack, the LSR may also learn the outgoing data link encapsulation, and possibly other information which is needed to properly forward the packet. Handing over MPLS Traffic When the last label is popped (removed) from a packet label stack (resulting in the stack being emptied), further processing of the packet is based on the network layer header of the packet. For example, when the network header is an IP header, the packet can be forwarded to an IP router, which can route the packet toward its final destination through an IP-based network. Note that the last label can also be popped by the penultimate LSR, because it already knows how to forward the packet to its final destination. When MPLS hosts are directly attached to the edge LSRs, the packet MPLS label can be directly provided by that host therefore, no IP header needs be inserted in the packets, thereby reducing the packet overhead and increasing bandwidth utilization efficiency. For example, in voice compression applications, RAD supports the AAL2 over MPLS 4 MPLS Environment
5 (AAL2oMPLS) encapsulation for the compressed voice packets: this significantly decreases the overhead length. Transporting TDM Traffic over MPLS MPLS can be used to transport all the types of TDM traffic, including: Constant rate traffic: unframed, framed, and fractional data. This type of traffic, referred to as TDM over MPLS (TDMoMPLS) also includes uncompressed voice. Uncompressed voice is very similar to constant rate data, except that it requires special handling of the signaling information, which can be either CAS or CCS. Variable rate traffic. With respect to C, this type of traffic includes compressed voice, and HDLC traffic (CCS is often carried by means of HDLC). TDM over MPLS TDMoMPLS uses an MPLS header before the TDMoIP data. The resulting packet structure is shown in Figure 3. Tunnel Label EXP S=0 TTL Pseudowire Label EXP S=1 TTL TDMoIP Control Word Payload Figure 3. TDMoMPLS Packet Structure The specific fields are explained below: Tunnel Label Pseudowire Label The tunnel label is an MPLS label that identifies the MPLS LSP used to tunnel the TDM packets through the MPLS network (also known as the transport label). This label is not mandatory. The pseudowire label is mandatory, and it is used to carry the circuit bundle identifier (CBID), as in TDMoIP packets. MPLS Environment 5
6 AAL1 Payload Type In general, for constant rate traffic, the payload can be efficiently encoded using AAL1 (ATM Adaptation Layer 1, described in ITU-T Rec. I.363.1) format. Constant rate traffic is characterized by static timeslot allocation, and no activity detection. In the AAL1 mode, the TDMoIP payload consists of between 1 and octet subframes. The number of subframes must be preconfigured, and typically it is hosen according to latency and bandwidth constraints. AAL2 Payload Type The AAL2 (ATM Adaptation Layer 2, described in ITU-T Rec. I.363.2) format is especially suitable for compressed voice with activity detection, because it enables efficient utilization of PSN bandwidth. For TDMoIP applications, the basic AAL2 cells are concatenated in one packet, with user-configured maximum length and maximum interval for packet filling. HDLC Payload Type The HDLC format is used to efficiently transport CCS (common channel signaling such as Signaling Scheme 7 SS7), which is carried in specific timeslots of the E1 stream. The HDLC format is intended to operate in the port mode, transparently passing all HDLC data and control messages over a separate pseudowire connection. To transport HDLC, the sending gateway monitors the HDLC flags, until a meaningful frame is detected. The contents of the frame are then transferred to the receiving gateway, which reconstructs the original HDLC frame. 6 MPLS Environment
Introducing Basic MPLS Concepts
Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding
WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.
MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead
MPLS Concepts. Overview. Objectives
MPLS Concepts Overview This module explains the features of Multi-protocol Label Switching (MPLS) compared to traditional ATM and hop-by-hop IP routing. MPLS concepts and terminology as well as MPLS label
ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2
1 ISTANBUL 1.1 MPLS overview 1 1.1.1 Principle Use of a ATM core network 2 Overlay Network One Virtual Circuit per communication No routing protocol Scalability problem 2 1.1.1 Principle Weakness of overlay
Lesson 13: MPLS Networks
Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
Master Course Computer Networks IN2097
Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for
DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL
IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: [email protected]
MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport
MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies
Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS
Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,
Cisco Configuring Basic MPLS Using OSPF
Table of Contents Configuring Basic MPLS Using OSPF...1 Introduction...1 Mechanism...1 Hardware and Software Versions...2 Network Diagram...2 Configurations...2 Quick Configuration Guide...2 Configuration
MPLS L2VPN (VLL) Technology White Paper
MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
- Multiprotocol Label Switching -
1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can
Project Report on Traffic Engineering and QoS with MPLS and its applications
Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to
Internetworking II: VPNs, MPLS, and Traffic Engineering
Internetworking II: VPNs, MPLS, and Traffic Engineering 3035/GZ01 Networked Systems Kyle Jamieson Lecture 10 Department of Computer Science University College London Taxonomy of communica@on networks Virtual
MPLS. A Tutorial. Paresh Khatri. [email protected]
MPLS A Tutorial Paresh Khatri [email protected] Agenda 1. MPLS overview and LSP types 2. Distribution Protocol (LDP) 3. Questions Introduction Paresh Khatri ([email protected])
How Routers Forward Packets
Autumn 2010 [email protected] MULTIPROTOCOL LABEL SWITCHING (MPLS) AND MPLS VPNS How Routers Forward Packets Process switching Hardly ever used today Router lookinginside the packet, at the ipaddress,
MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs
A Silicon Valley Insider MPLS VPN Services PW, VPLS and BGP MPLS/IP VPNs Technology White Paper Serge-Paul Carrasco Abstract Organizations have been demanding virtual private networks (VPNs) instead of
MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture.
Multiprotocol Label Switching (), originating in IPv4, was initially proposed to improve forwarding speed. Its core technology can be extended to multiple network protocols, such as IPv6, Internet Packet
MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009
MikroTik RouterOS Introduction to MPLS Prague MUM Czech Republic 2009 Q : W h y h a v e n 't y o u h e a r d a b o u t M P LS b e fo re? A: Probably because of the availability and/or price range Q : W
RFC 2547bis: BGP/MPLS VPN Fundamentals
White Paper RFC 2547bis: BGP/MPLS VPN Fundamentals Chuck Semeria Marketing Engineer Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2001 or 888 JUNIPER www.juniper.net
Bandwidth Management in MPLS Networks
School of Electronic Engineering - DCU Broadband Switching and Systems Laboratory 1/17 Bandwidth Management in MPLS Networks Sanda Dragos & Radu Dragos Supervised by Dr. Martin Collier email: [email protected]
Enhancing Converged MPLS Data Networks with ATM, Frame Relay and Ethernet Interworking
TECHNOLOGY WHITE PAPER Enhancing Converged Data Networks with, Frame Relay and Ethernet Interworking Virtual Private Networks (VPN) are a popular way for enterprises to interconnect remote sites. Traditionally,
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India [email protected] 2 Department of Information Technolgy,
Introduction to MPLS-based VPNs
Introduction to MPLS-based VPNs Ferit Yegenoglu, Ph.D. ISOCORE [email protected] Outline Introduction BGP/MPLS VPNs Network Architecture Overview Main Features of BGP/MPLS VPNs Required Protocol Extensions
MP PLS VPN MPLS VPN. Prepared by Eng. Hussein M. Harb
MP PLS VPN MPLS VPN Prepared by Eng. Hussein M. Harb Agenda MP PLS VPN Why VPN VPN Definition VPN Categories VPN Implementations VPN Models MPLS VPN Types L3 MPLS VPN L2 MPLS VPN Why VPN? VPNs were developed
13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) 13.2 Layer 2/3/4 VPNs 13.3 Multi-Protocol Label Switching 13.4 IPsec Transport Mode
13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) PPP-based remote access using dial-in PPP encryption control protocol (ECP) PPP extensible authentication protocol (EAP) 13.2 Layer 2/3/4
TDM Transport over MPLS Using AAL1 Technical Specification. IP/MPLS Forum 4.1.0
TDM Transport over MPLS Using AAL1 Technical Specification IP/MPLS Forum 4.1.0 IP/MPLS Forum Technical Committee July 2008 Note: The user s attention is called to the possibility that implementation of
MPLS IN OPTICAL NETWORKS
MPLS IN OPTICAL NETWORKS An analysis of the features of MPLS and Generalized MPLS and their application to Optical Networks, with reference to the Link Management Protocol and Optical UNI. Version 2: October
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL
Performance Evaluation for VOIP over IP and MPLS
World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 2, No. 3, 110-114, 2012 Performance Evaluation for VOIP over IP and MPLS Dr. Reyadh Shaker Naoum Computer Information
MPLS in Optical Networks
MPLS in Optical Networks An analysis of the features of MPLS and Generalized MPLS and their application to Optical Networks, with reference to the Link Management Protocol and Optical UNI Neil Jerram,
Virtual Leased Lines - Martini
Virtual Lease Lines - Martini Virtual Leased Lines - Martini Martini Drafts draft -martini-l2circuit-encap-mpls -04.txt defines the handling and encapsulation of layer two packets. draft -martini-l2circuit-trans-mpls
Multi Protocol Label Switching (MPLS) is a core networking technology that
MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of
Comparative Analysis of Mpls and Non -Mpls Network
Comparative Analysis of Mpls and Non -Mpls Network Madhulika Bhandure 1, Gaurang Deshmukh 2, Prof. Varshapriya J N 3 1, 2, 3 (Department of Computer Science and IT, VJTI, Mumbai-19 ABSTRACT A new standard
MPLS is the enabling technology for the New Broadband (IP) Public Network
From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic [email protected] www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
RSVP- A Fault Tolerant Mechanism in MPLS Networks
RSVP- A Fault Tolerant Mechanism in MPLS Networks S.Ravi Kumar, M.Tech(NN) Assistant Professor Gokul Institute of Technology And Sciences Piridi, Bobbili, Vizianagaram, Andhrapradesh. Abstract: The data
QoS Strategy in DiffServ aware MPLS environment
QoS Strategy in DiffServ aware MPLS environment Teerapat Sanguankotchakorn, D.Eng. Telecommunications Program, School of Advanced Technologies Asian Institute of Technology P.O.Box 4, Klong Luang, Pathumthani,
A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman
A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline
For internal circulation of BSNLonly
E3-E4 E4 E&WS Overview of MPLS-VPN Overview Traditional Router-Based Networks Virtual Private Networks VPN Terminology MPLS VPN Architecture MPLS VPN Routing MPLS VPN Label Propagation Traditional Router-Based
Data Communication Networks and Converged Networks
Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous
International Civil Aviation Organization
ATNICG/8 WP/09 Agenda Item 04 18/03/13 International Civil Aviation Organization THE EIGHTH MEETING OF AERONAUTICAL TELECOMMUNICATION NETWORK (ATN) IMPLEMENTATION CO-ORDINATION GROUP OF APANPIRG (ATNICG/8)
Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility)
Internet, Part 2 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support 3) Mobility aspects (terminal vs. personal mobility) 4) Mobile IP Session Initiation Protocol (SIP) SIP is a protocol
MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service
Nowdays, most network engineers/specialists consider MPLS (MultiProtocol Label Switching) one of the most promising transport technologies. Then, what is MPLS? Multi Protocol Label Switching (MPLS) is
Link Failure Recovery. for MPLS Networks with Multicasting
Link Failure Recovery for MPLS Networks with Multicasting A Thesis Presented to the faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements
Expert Reference Series of White Papers. An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire
Expert Reference Series of White Papers An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire 1-800-COURSES www.globalknowledge.com An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire Al Friebe,
MPLS. Packet switching vs. circuit switching Virtual circuits
MPLS Circuit switching Packet switching vs. circuit switching Virtual circuits MPLS Labels and label-switching Forwarding Equivalence Classes Label distribution MPLS applications Packet switching vs. circuit
Removing Cell Demultiplexing Performance Bottleneck in ATM Pseudo Wire Emulation over MPLS Networks 1 Introduction
1 Removing Cell Demultiplexing Performance Bottleneck in ATM Pseudo Wire Emulation over MPLS Networks Puneet Konghot and Hao Che {[email protected], [email protected]} The Department of Computer Science
2. IP Networks, IP Hosts and IP Ports
1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3
How To Understand The Benefits Of An Mpls Network
NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 Introduction MPLS in the Enterprise Multi-Protocol Label Switching (MPLS) as a technology has been around for over a decade
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues.
5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5.1 LEGACY INTEGRATION In most cases, enterprises own legacy PBX systems,
Implementing VoIP support in a VSAT network based on SoftSwitch integration
Implementing VoIP support in a VSAT network based on SoftSwitch integration Abstract Satellite communications based on geo-synchronous satellites are characterized by a large delay, and high cost of resources.
Chapter 9. IP Secure
Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.
Implementing Multiprotocol Label Switching with Altera PLDs
Implementing Multiprotocol Label Switching with Altera PLDs January 2001, ver. 1.0 Application Note 132 Introduction Emerging Internet applications such as voice over Internet protocol (VoIP) and real-time
WAN Data Link Protocols
WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data
Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond
Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond Ananda Rajagopal Product Line Manager Service Provider Solutions Foundry Networks [email protected] Agenda 2 Why Load
Course Description. Students Will Learn
Course Description The next generation of telecommunications networks will deliver broadband data and multimedia services to users. The Ethernet interface is becoming the interface of preference for user
MPLS Based Recovery Mechanisms
MPLS Based Recovery Mechanisms Master Thesis Johan Martin Olof Petersson UNIVERSITY OF OSLO May 2005 2 Foreword This thesis is part of my Candidatus Scientiarum studies in communication systems at the
Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26
Broadband Networks Prof. Karandikar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Optical Network &MPLS So, as you were discussing in the previous lectures, next
Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. [email protected] http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand
How To Make A Network Secure
1 2 3 4 -Lower yellow line is graduate student enrollment -Red line is undergradate enrollment -Green line is total enrollment -2008 numbers are projected to be near 20,000 (on-campus) not including distance
VoIP over MPLS & Voice Services over MPLS. Jim McEachern [email protected]
VoIP over & Voice Services over Jim McEachern [email protected] Voice Services over Standards IETF RFC 3032 () draft-ietf-pwe3-requirements-08.txt draft-ietf-pwe3-arch-07.txt and Frame Relay Alliance
Experiences with Class of Service (CoS) Translations in IP/MPLS Networks
Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering
Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions
Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet.
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet. Petr Grygárek rek 1 Layer 2 VPNs 2 Usages of L2 VPNs Server farms/clusters and other L2- dependent applications redundancy and
DD2490 p4 2011. Routing and MPLS/IP. Olof Hagsand KTH CSC
DD2490 p4 2011 Routing and MPLS/IP Olof Hagsand KTH CSC 1 Literature Lecture slides and lecture notes (on web) Reference JunOS Cookbook: Chapter 14 2 Background MPLS - Multiprotocol Label Switching Originally
Protocol Architecture. ATM architecture
Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode: ATM 1990 s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated,
BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS
BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS Friday 2 nd October 2015 Morning Answer any FOUR questions out of SIX. All questions carry
Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone
International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq
Figure 1: Network Topology
Improving NGN with QoS Strategies Marcel C. Castro, Tatiana B. Pereira, Thiago L. Resende CPqD Telecom & IT Solutions Campinas, S.P., Brazil E-mail: {mcastro; tatibp; tresende}@cpqd.com.br Abstract Voice,
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department
Service Assurance Tools
Managing MPLS with Service Assurance Tools Whitepaper Prepared by www.infosim.net August 2006 Abstract MPLS provides the foundation for the offering of next-generation services and applications such as
Review on QoS Improvement with MPLS Mechanism in NGN
Review on QoS Improvement with MPLS Mechanism in NGN Kanchan Dhuri 1, Alam Shaikh 2 P.G. Student, Department of Electronics and Telecommunication, Saraswati College of Engineering, Kharghar, Navi Mumbai,
Addressing Inter Provider Connections With MPLS-ICI
Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol
PRASAD ATHUKURI Sreekavitha engineering info technology,kammam
Multiprotocol Label Switching Layer 3 Virtual Private Networks with Open ShortestPath First protocol PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Abstract This paper aims at implementing
Communication Networks. MAP-TELE 2011/12 José Ruela
Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)
OPNET simulation of voice over MPLS With Considering Traffic Engineering
Master Thesis Electrical Engineering Thesis no: MEE 10:51 June 2010 OPNET simulation of voice over MPLS With Considering Traffic Engineering KeerthiPramukh Jannu Radhakrishna Deekonda School of Computing
Testing Edge Services: VPLS over MPLS
Testing Edge Services: VPLS over MPLS White Paper Introduction Virtual Private LAN Services (VPLS) is an emerging technology for transparently connecting corporate LANs over the Internet so they appear
Performance Evaluation of Quality of Service Assurance in MPLS Networks
114 Performance Evaluation of Quality of Service Assurance in MPLS Networks Karol Molnar, Jiri Hosek, Lukas Rucka, Dan Komosny and Martin Vlcek Brno University of Technology, Communication, Purkynova 118,
Network Layer. Introduction Datagrams and Virtual Circuits Routing Traffic Control. Data delivery from source to destination.
Layer Introduction Datagrams and Virtual ircuits Routing Traffic ontrol Main Objective Data delivery from source to destination Node (Router) Application Presentation Session Transport Data Link Data Link
VoIP versus VoMPLS Performance Evaluation
www.ijcsi.org 194 VoIP versus VoMPLS Performance Evaluation M. Abdel-Azim 1, M.M.Awad 2 and H.A.Sakr 3 1 ' ECE Department, Mansoura University, Mansoura, Egypt 2 ' SCADA and Telecom General Manager, GASCO,
MPLS Multiprotocol Label Switching
MPLS Multiprotocol Label Switching José Ruela, Manuel Ricardo FEUP Fac. Eng. Univ. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans Contents Overview 1 1. L2 VPN Padding Verification Test 1 1.1 Objective 1 1.2 Setup 1 1.3 Input Parameters 2 1.4 Methodology 2 1.5
Multi-Protocol Label Switching To Support Quality of Service Needs
Technical Report, IDE1008, February 2010 Multi-Protocol Label Switching To Support Quality of Service Needs Master s Thesis in Computer Network Engineering - 15hp AMJAD IFTIKHAR AOON MUHAMMAD SHAH & FOWAD
MPLS in Private Networks Is It a Good Idea?
MPLS in Private Networks Is It a Good Idea? Jim Metzler Vice President Ashton, Metzler & Associates March 2005 Introduction The wide area network (WAN) brings indisputable value to organizations of all
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Protection Methods in Traffic Engineering MPLS Networks
Peter Njogu Kimani Protection Methods in Traffic Engineering MPLS Networks Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Information technology Thesis 16 th May 2013 Abstract
Frame Relay and Frame-Based ATM: A Comparison of Technologies
White Paper and -Based : A Comparison of Technologies Larry Greenstein Nuera Communications VP, Technology, Forum June 1995 June 27, 1995 i TABLE OF CONTENTS 1. PREFACE...1 2. INTRODUCTION...1 3. INTERWORKING
MPLS - A Choice of Signaling Protocol
www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall
Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007. Sanjay Khanna Foundry Networks skhanna@foundrynet.
Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007 Sanjay Khanna Foundry Networks [email protected] Agenda Why we need Load-Sharing Methods to boost capacity Trunks/Link
Requirements for VoIP Header Compression over Multiple-Hop Paths (draft-ash-e2e-voip-hdr-comp-rqmts-01.txt)
Requirements for VoIP Header Compression over Multiple-Hop Paths (draft-ash-e2e-voip-hdr-comp-rqmts-01.txt) Jerry Ash AT&T [email protected] Bur Goode AT&T [email protected] Jim Hand AT&T [email protected] Raymond
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
VegaStream Information Note Considerations for a VoIP installation
VegaStream Information Note Considerations for a VoIP installation To get the best out of a VoIP system, there are a number of items that need to be considered before and during installation. This document
IP/MPLS-Based VPNs Layer-3 vs. Layer-2
Table of Contents 1. Objective... 3 2. Target Audience... 3 3. Pre-Requisites... 3 4. Introduction...3 5. MPLS Layer-3 VPNs... 4 6. MPLS Layer-2 VPNs... 7 6.1. Point-to-Point Connectivity... 8 6.2. Multi-Point
Implementing Virtual Leased Lines Using MPLS
Lines Using MPLS able of Contents 1. Objective... 3 2. arget Audience... 3 3. Pre-Requisites... 3 4. Introduction: MPLS and IP-Based VPNs... 3 5. he Promise of MPLS Layer-2 VPNs... 5 6. unneling Layer-2
Investigation of different VPN Solutions And Comparison of MPLS, IPSec and SSL based VPN Solutions (Study Thesis)
MEE09:44 BLEKINGE INSTITUTE OF TECHNOLOGY School of Engineering Department of Telecommunication Systems Investigation of different VPN Solutions And Comparison of MPLS, IPSec and SSL based VPN Solutions
