Master Course Computer Networks IN2097
|
|
- Johnathan Lambert
- 5 years ago
- Views:
Transcription
1 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for Network Architectures and Services Institut für Informatik Technische Universität München
2 Outline q Project feedback q Internet Structure q Network virtualisation Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 2
3 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Network Architectures Link virtualization: ATM, MPLS
4 ATM Adaptation Layer (AAL) [more] Different versions of AAL layers, depending on ATM service class: q AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation q AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video q AAL5: for data (e.g., IP datagrams) User data AAL PDU ATM cell Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 4
5 ATM Layer Service: transport cells across ATM network q analogous to IP network layer q very different services than IP network layer q possible Quality of Service (QoS) Guarantees Network Architecture Service Model Bandwidth Guarantees? Loss Order Timing Congestion feedback Internet ATM ATM ATM ATM best effort CBR VBR ABR UBR none constant rate guaranteed rate guaranteed minimum none no yes yes no no no yes yes yes yes no yes yes no no no (inferred via loss) no congestion no congestion yes no Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 5
6 ATM VCs q q Advantages of ATM VC approach: QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter) Drawbacks of ATM VC approach: Inefficient support of datagram traffic one PVC between each source/destination pair does not scale SVC introduces call setup latency, processing overhead for short lived connections Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 6
7 ATM Layer: ATM cell q q 5-byte ATM cell header 48-byte payload (Why?) small payload short cell-creation delay for digitized voice halfway between 32 and 64 (compromise!) Cell header Cell format Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 7
8 ATM cell header q VCI: virtual channel ID may change from link to link through network q PT: Payload type: RM (resource management) vs. data cell q CLP: Cell Loss Priority bit CLP = 1 implies low priority cell, can be discarded if congestion q HEC: Header Error Checksum cyclic redundancy check Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 8
9 Virtual Circuit Switching Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/2012 9
10 Multiplexing of Variable vs. Fixed Size Packets q Multiplexing of variable size packets q ATM Multiplexing Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
11 ATM Identifiers q ATM Cell q Virtual Path Identifiers and Virtual Channel Identifiers (UNI: User-to-Network-Interface NNI: Network-to-Network-Interface) Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
12 ATM Virtual Connections Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
13 ATM Physical Layer Physical Medium Dependent (PMD) sublayer q SONET/SDH: transmission frame structure (like a container carrying bits); bit synchronization; bandwidth partitions (TDM); several speeds: OC3 = Mbps OC12 = Mbps OC48 = 2.45 Gbps OC192 = 9.6 Gbps q TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps q unstructured: just cells (busy/idle) transmission of idle cells when no data cells to send Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
14 IP-Over-ATM Classic IP only q 3 networks (e.g., LAN segments) q MAC (802.3) and IP addresses IP over ATM q replace network (e.g., LAN segment) with ATM network q ATM addresses, IP addresses ATM network Ethernet LANs Ethernet LANs Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
15 IP-Over-ATM app transport IP Eth phy Eth phy IP AAL ATM phy ATM phy ATM phy app transport IP AAL ATM phy Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
16 Datagram Journey in IP-over-ATM Network q at Source Host: IP layer maps between IP, ATM destination address (using ARP) passes datagram to AAL5 AAL5 encapsulates data, segments cells, passes to ATM layer q ATM network: moves cell along VC to destination q at Destination Host: AAL5 reassembles cells into original datagram if CRC OK, datagram is passed to IP Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
17 IP-Over-ATM Issues: q q IP datagrams into ATM AAL5 PDUs from IP addresses to ATM addresses just like IP addresses to MAC addresses! ARP server Ethernet LANs ATM network Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
18 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München MPLS Multi-Protocol Label Switching
19 Multiprotocol label switching (MPLS) q Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding borrowing ideas from Virtual Circuit (VC) approach IP datagram still keeps IP address RFC 3032 defines MPLS header Label: has role of Virtual Circuit Identifier Exp: experimental usage, may specify Class of Service (CoS) S: Bottom of Stack - end of series of stacked headers TTL: time to live PPP or Ethernet header MPLS header IP header remainder of link-layer frame label Exp. S TTL bit Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
20 MPLS capable routers q a.k.a. label-switched router q forwards packets to outgoing interface based only on label value (don t inspect IP address) MPLS forwarding table distinct from IP forwarding tables q signaling protocol needed to set up forwarding Label Distribution Protocol LDP (RFC 3036 obsoleted by RFC 5036) RSVP-TE (RFC 3209 updated by RFCs 3936, 4420, 4874, 5151, 5420, 5711) q forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) q MPLS supports traffic engineering q must co-exist with IP-only routers Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
21 MPLS forwarding tables in out out label label dest interface 10 A 0 12 D 0 8 A 1 in out out label label dest interface 10 6 A D 0 R6 R5 R4 0 R2 in out out label label dest interface A 0 R D 0 A in out R1 out label label dest interface 6 - A 0 Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
22 MPLS q Label Switched Path (LSP) set up by signalling protocol has sequence of labels q Forwarding Equivalence Class (FEC) specification of packets treated the same way by a router forwarded over same LSP can be specified by destination prefix, e.g. FEC /24 q Label Switching Router MPLS-capable IP router; may bind labels to FEC q MPLS node does not need IP stack q stacked labels label push; label pop Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
23 Benefits of MPLS q High Speed Switching facilitates construction of nodes with wire-line speed q Simplifying packet forwarding Routing decision can be limited to edge of AS q Traffic Engineering MPLS may control paths taken by different flows, e.g. to avoid congestion points for certain flows q Quality of Service (QoS) support resources may be specified for specific flows, isolation among flows q Network scalability label stacking allows to arrange MPLS domains in a hierarchy q Supporting VPNs tunneling of packets from an ingress point to an egress point Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
24 Traffic Engineering q Traffic engineering: process of mapping traffic demand onto a network B C Demand A D Network Topology q Purpose of traffic engineering: Maximize utilization of links and nodes throughout the network Engineer links to achieve required delay, grade-of-service Spread network traffic across network links, reduce impact of failure Ensure available spare link capacity for re-routing traffic on failure Meet policy requirements imposed by the network operator ð Traffic engineering key to optimizing cost/performance Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
25 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Virtual Private Networks
26 Virtual Private Networks (VPN) VPNs Networks perceived as being private networks by customers using them, but built over shared infrastructure owned by service provider (SP) q Service provider infrastructure: backbone provider edge devices q Customer: customer edge devices (communicating over shared backbone) Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
27 VPN Reference Architecture customer edge device provider edge device Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
28 q Privacy VPNs: Why? q Security q Works well with mobility (looks like you are always at home) q Cost many forms of newer VPNs are cheaper than leased line VPNs ability to share at lower layers even though logically separate means lower cost exploit multiple paths, redundancy, fault-recovery in lower layers need isolation mechanisms to ensure resources shared appropriately q Abstraction and manageability all machines with addresses that are in are trusted no matter where they are Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
29 VPN: logical view virtual private network customer edge device provider edge device Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
30 Leased-Line VPN customer sites interconnected via static virtual channels (e.g., ATM VCs), leased lines customer site connects to provider edge Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
31 Customer Premise VPN q all VPN functions implemented by customer customer sites interconnected via tunnels q tunnels typically encrypted q Service provider treats VPN packets like all other packets Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
32 Variants of VPNs q Leased-line VPN configuration costs and maintenance by service provider: long time to set up, manpower q CPE-based VPN expertise by customer to acquire, configure, manage VPN q Network-based VPN Customer routers connect to service provider routers Service provider routers maintain separate (independent) IP contexts for each VPN sites can use private addressing traffic from one VPN cannot be injected into another Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
33 Network-based Layer 3 VPNs multiple virtual routers in single provider edge device Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
34 Tunneling Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
35 MPLS-based VPN T-PE CE CE MPLS S-PE MPLS CE T-PE S-PE MPLS tunnel T-PE CE Terminating-PE MPLS Aggregation Network MPLS Backbone Network S-PE Switching-PE MPLS T-PE CE CE T-PE/S-PE MPLS Aggregation Networks CE Network IN Master Security, Course WS 2008/09, Computer Chapter Networks, 9 WS 2011/
Link Layer. 5.6 Hubs and switches 5.7 PPP 5.8 Link Virtualization: ATM and MPLS
Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5.5 Ethernet 5.6 Hubs and switches 5.7 PPP 5.8 Link Virtualization: and
Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)
Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport
ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2
1 ISTANBUL 1.1 MPLS overview 1 1.1.1 Principle Use of a ATM core network 2 Overlay Network One Virtual Circuit per communication No routing protocol Scalability problem 2 1.1.1 Principle Weakness of overlay
Lesson 13: MPLS Networks
Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP
Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS
Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,
Internetworking II: VPNs, MPLS, and Traffic Engineering
Internetworking II: VPNs, MPLS, and Traffic Engineering 3035/GZ01 Networked Systems Kyle Jamieson Lecture 10 Department of Computer Science University College London Taxonomy of communica@on networks Virtual
Frame Relay and Frame-Based ATM: A Comparison of Technologies
White Paper and -Based : A Comparison of Technologies Larry Greenstein Nuera Communications VP, Technology, Forum June 1995 June 27, 1995 i TABLE OF CONTENTS 1. PREFACE...1 2. INTRODUCTION...1 3. INTERWORKING
MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a
MPLS Environment Introduction to MPLS Multi-Protocol Label Switching (MPLS) is a highly efficient and flexible routing approach for forwarding packets over packet-switched networks, irrespective of the
MP PLS VPN MPLS VPN. Prepared by Eng. Hussein M. Harb
MP PLS VPN MPLS VPN Prepared by Eng. Hussein M. Harb Agenda MP PLS VPN Why VPN VPN Definition VPN Categories VPN Implementations VPN Models MPLS VPN Types L3 MPLS VPN L2 MPLS VPN Why VPN? VPNs were developed
MPLS and IPSec A Misunderstood Relationship
# 129 TECHNOLOGY WHITE PAPER Page: 1 of 5 MPLS and IPSec A Misunderstood Relationship Jon Ranger, Riverstone Networks ABSTRACT A large quantity of misinformation and misunderstanding exists about the place
ATM. Asynchronous Transfer Mode. Networks: ATM 1
ATM Asynchronous Transfer Mode Networks: ATM 1 Issues Driving LAN Changes Traffic Integration Voice, video and data traffic Multimedia became the buzz word One-way batch Two-way batch One-way interactive
MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs
A Silicon Valley Insider MPLS VPN Services PW, VPLS and BGP MPLS/IP VPNs Technology White Paper Serge-Paul Carrasco Abstract Organizations have been demanding virtual private networks (VPNs) instead of
MPLS L2VPN (VLL) Technology White Paper
MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
Introducing Basic MPLS Concepts
Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding
MPLS Concepts. Overview. Objectives
MPLS Concepts Overview This module explains the features of Multi-protocol Label Switching (MPLS) compared to traditional ATM and hop-by-hop IP routing. MPLS concepts and terminology as well as MPLS label
Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone
International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq
Bandwidth Management in MPLS Networks
School of Electronic Engineering - DCU Broadband Switching and Systems Laboratory 1/17 Bandwidth Management in MPLS Networks Sanda Dragos & Radu Dragos Supervised by Dr. Martin Collier email: dragoss@eeng.dcu.ie
Lecture Computer Networks
Lecture Computer Networks Prof. Dr. Hans Peter Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Asynchronous
In this lecture we will start our discussion on another very important technology, namely, Asynchronous Transfer Mode or ATM.
Computer networks Prof: Sujoy Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. 24 ATM: Asynchronous Transfer Mode In this lecture we will start
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India tinasatra@gmail.com 2 Department of Information Technolgy,
Blue 102. IP Service Architecture Futures. Geoff Huston May 2000
Blue 102 IP Service Architecture Futures Geoff Huston May 2000 Next Wave IP Services Service Requirements Connectivity service for customer-operated routers Service payload is IP packet High peak carriage
WAN Data Link Protocols
WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data
13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) 13.2 Layer 2/3/4 VPNs 13.3 Multi-Protocol Label Switching 13.4 IPsec Transport Mode
13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) PPP-based remote access using dial-in PPP encryption control protocol (ECP) PPP extensible authentication protocol (EAP) 13.2 Layer 2/3/4
Protocol Architecture. ATM architecture
Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode: ATM 1990 s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated,
WAN. Introduction. Services used by WAN. Circuit Switched Services. Architecture of Switch Services
WAN Introduction Wide area networks (WANs) Connect BNs and LANs across longer distances, often hundreds of miles or more Typically built by using leased circuits from common carriers such as AT&T Most
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet.
L2 VPNs. Pseudowires. Virtual Private LAN Services. Metro/Carrier Ethernet. Petr Grygárek rek 1 Layer 2 VPNs 2 Usages of L2 VPNs Server farms/clusters and other L2- dependent applications redundancy and
November 2013. Defining the Value of MPLS VPNs
November 2013 S P E C I A L R E P O R T Defining the Value of MPLS VPNs Table of Contents Introduction... 3 What Are VPNs?... 4 What Are MPLS VPNs?... 5 What Are the Benefits of MPLS VPNs?... 8 How Do
Introduction to MPLS-based VPNs
Introduction to MPLS-based VPNs Ferit Yegenoglu, Ph.D. ISOCORE ferit@isocore.com Outline Introduction BGP/MPLS VPNs Network Architecture Overview Main Features of BGP/MPLS VPNs Required Protocol Extensions
WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.
MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead
MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service
Nowdays, most network engineers/specialists consider MPLS (MultiProtocol Label Switching) one of the most promising transport technologies. Then, what is MPLS? Multi Protocol Label Switching (MPLS) is
Overview of Asynchronous Transfer Mode (ATM) and MPC860SAR. For More Information On This Product, Go to: www.freescale.com
Overview of Asynchronous Transfer Mode (ATM) and MPC860SAR nc. 2 What is ATM? o Protocol that applies primarily to layer 2 of the OSI protocol stack: Application Presentation Session Transport Network
MPLS Multiprotocol Label Switching
MPLS Multiprotocol Label Switching José Ruela, Manuel Ricardo FEUP Fac. Eng. Univ. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465
MPLS is the enabling technology for the New Broadband (IP) Public Network
From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic Mario.Baldi@polito.it www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public
MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009
MikroTik RouterOS Introduction to MPLS Prague MUM Czech Republic 2009 Q : W h y h a v e n 't y o u h e a r d a b o u t M P LS b e fo re? A: Probably because of the availability and/or price range Q : W
VLAN und MPLS, Firewall und NAT,
Internet-Technologien (CS262) VLAN und MPLS, Firewall und NAT, 15.4.2015 Christian Tschudin Departement Mathematik und Informatik, Universität Basel 6-1 Wiederholung Unterschied CSMA/CD und CSMA/CA? Was
Internetworking. Problem: There is more than one network (heterogeneity & scale)
Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication
CS 78 Computer Networks. Internet Protocol (IP) our focus. The Network Layer. Interplay between routing and forwarding
CS 78 Computer Networks Internet Protocol (IP) Andrew T. Campbell campbell@cs.dartmouth.edu our focus What we will lean What s inside a router IP forwarding Internet Control Message Protocol (ICMP) IP
Enhancing Converged MPLS Data Networks with ATM, Frame Relay and Ethernet Interworking
TECHNOLOGY WHITE PAPER Enhancing Converged Data Networks with, Frame Relay and Ethernet Interworking Virtual Private Networks (VPN) are a popular way for enterprises to interconnect remote sites. Traditionally,
Addressing Inter Provider Connections With MPLS-ICI
Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched
INTRODUCTION TO L2VPNS
INTRODUCTION TO L2VPNS 4 Introduction to Layer 2 and Layer 3 VPN Services CE Layer 3 VPN Link Comprised of IP Traffic Passed Over IP Backbone LEGEND Layer 3 VPN Layer 2 VPN CE CE PE IP Backbone PE CE Layer
Multi Protocol Label Switching (MPLS) is a core networking technology that
MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Introduction to Wide Area Network Protocols
1 Introduction to Wide Area Network Protocols Session 2 Agenda Wide Area Network (WAN) Environment Requirements Technologies Interface Signaling Protocols 3 Take-Away Message By selecting the right cache
QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)
QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p
Module 4. Switched Communication Networks. Version 2 CSE IIT, Kharagpur
Module 4 Switched Communication Networks Lesson 6 Asynchronous Transfer Mode Switching (ATM) Specific Instructional Objectives On completion on this lesson, the student will be able to: State the need
MPLS over IP-Tunnels. Mark Townsley Distinguished Engineer. 21 February 2005
MPLS over IP-Tunnels Mark Townsley Distinguished Engineer 21 February 2005 1 MPLS over IP The Basic Idea MPLS Tunnel Label Exp S TTL MPLS VPN Label Exp S TTL MPLS Payload (L3VPN, PWE3, etc) MPLS Tunnel
MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport
MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
Distributed Systems 3. Network Quality of Service (QoS)
Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski pxk@cs.rutgers.edu 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0 Introduction...2 Overview...2 1. Technology Background...2 2. MPLS PNT Offer Models...3
RFC 2547bis: BGP/MPLS VPN Fundamentals
White Paper RFC 2547bis: BGP/MPLS VPN Fundamentals Chuck Semeria Marketing Engineer Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2001 or 888 JUNIPER www.juniper.net
1.1. Abstract. 1.2. VPN Overview
1.1. Abstract Traditionally organizations have designed their VPN networks using layer 2 WANs that provide emulated leased lines. In the last years a great variety of VPN technologies has appeared, making
MPLS in Private Networks Is It a Good Idea?
MPLS in Private Networks Is It a Good Idea? Jim Metzler Vice President Ashton, Metzler & Associates March 2005 Introduction The wide area network (WAN) brings indisputable value to organizations of all
MPLS VPNs: Layer 2 or Layer 3? Understanding the Choice
#128 TECHNOLOGY WHITE PAPER Page: 1 of 6 MPLS VPNs: Layer 2 or Layer 3? Understanding the Choice Tim Wu, Riverstone Networks ABSTRACT Since there s been data networking, there s been a debate between switched
The Essential Guide to Deploying MPLS for Enterprise Networks
White Paper The Essential Guide to Deploying MPLS for Enterprise Networks Daniel Backman Systems Engineer Troy Herrera Sr. Field Solutions Manager Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale,
WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction...
Introduction WHITE PAPER Addressing Inter Provider Connections with MPLS-ICI The migration away from traditional multiple packet overlay networks towards a converged packet-switched MPLS system is now
Chapter 2 - The TCP/IP and OSI Networking Models
Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL
IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: suvarna_jadhav@rediffmail.com
IP/MPLS-Based VPNs Layer-3 vs. Layer-2
Table of Contents 1. Objective... 3 2. Target Audience... 3 3. Pre-Requisites... 3 4. Introduction...3 5. MPLS Layer-3 VPNs... 4 6. MPLS Layer-2 VPNs... 7 6.1. Point-to-Point Connectivity... 8 6.2. Multi-Point
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL
Implementing Virtual Leased Lines Using MPLS
Lines Using MPLS able of Contents 1. Objective... 3 2. arget Audience... 3 3. Pre-Requisites... 3 4. Introduction: MPLS and IP-Based VPNs... 3 5. he Promise of MPLS Layer-2 VPNs... 5 6. unneling Layer-2
MPLS. Packet switching vs. circuit switching Virtual circuits
MPLS Circuit switching Packet switching vs. circuit switching Virtual circuits MPLS Labels and label-switching Forwarding Equivalence Classes Label distribution MPLS applications Packet switching vs. circuit
Migrating to MPLS Technology and Applications
Migrating to MPLS Technology and Applications Serge-Paul Carrasco June 2003 asiliconvalleyinsider.com Table Of Content Why to migrate to MPLS? Congestion on the Internet Traffic Engineering MPLS Fundamentals
Introducción n a MPLS y MPLS VPN MPLS VPN
Introducción n a MPLS y MPLS VPN nemunoz@cisco.com Nelson Muñoz Presentation_ID 200, Cisco Systems, Inc. Agenda Introducción Que es una VPN? IP+ATM Conceptos básicos de MPLS MPLS VPN QoS en MPLS Ventajas
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification
Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. anan.p@ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand
CS419: Computer Networks. Lecture 9: Mar 30, 2005 VPNs
: Computer Networks Lecture 9: Mar 30, 2005 VPNs VPN Taxonomy VPN Client Network Provider-based Customer-based Provider-based Customer-based Compulsory Voluntary L2 L3 Secure Non-secure ATM Frame Relay
Asynchronous Transfer Mode
CHAPTER 15 Asynchronous Transfer Mode Background Asynchronous Transfer Mode (ATM) technology is based on the efforts of the International Telecommunication Union Telecommunication Standardization Sector
Virtualization of networks
Virtualization of networks Virtualization of resources: powerful abstraction in systems engineering Computing examples: Virtual memory, virtual devices Virtual machines: e.g., Java IBM VM OS from 1960
Based on Computer Networking, 4 th Edition by Kurose and Ross
Computer Networks Network Layer, Virtual Circuits and Datagram Networks Based on Computer Networking, 4 th Edition by Kurose and Ross Network layer segment from sending to receiving host on sending side
QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
MPLS: Key Factors to Consider When Selecting Your MPLS Provider Whitepaper
MPLS: Key Factors to Consider When Selecting Your MPLS Provider Whitepaper 2006-20011 EarthLink Business Page 1 EXECUTIVE SUMMARY Multiprotocol Label Switching (MPLS), once the sole domain of major corporations
Raj Jain. The Ohio State University Columbus, OH 43210 Jain@CIS.Ohio-State.Edu These slides are available on-line at:
IP Over SONET The Ohio State University Columbus, OH 43210 Jain@CIS.Ohio-State.Edu These slides are available on-line at: http://www.cis.ohio-state.edu/~jain/cis788-99/h_bipsn.htm 1 Overview IP over SONET:
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans
MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans Contents Overview 1 1. L2 VPN Padding Verification Test 1 1.1 Objective 1 1.2 Setup 1 1.3 Input Parameters 2 1.4 Methodology 2 1.5
Best Effort gets Better with MPLS. Superior network flexibility and resiliency at a lower cost with support for voice, video and future applications
Best Effort gets Better with MPLS Superior network flexibility and resiliency at a lower cost with support for voice, video and future applications A White Paper on Multiprotocol Label Switching October,
MPLS Implementation MPLS VPN
MPLS Implementation MPLS VPN Describing MPLS VPN Technology Objectives Describe VPN implementation models. Compare and contrast VPN overlay VPN models. Describe the benefits and disadvantages of the overlay
Data Link Protocols. TCP/IP Suite and OSI Reference Model
Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite
A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman
A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline
Jerry Ash AT&T gash@att.com Bur Goode AT&T bgoode@att.com. George Swallow Cisco Systems, Inc. swallow@cisco.com
Requirements for End-to-End VoIP Header Compression (draft-ash-e2e-voip-hdr-comp-rqmts-00.txt) End-to-End VoMPLS Header Compression (draft-ash-e2e-vompls-hdr-compress-01.txt) End-to-End VoIP Header Compression
Based on Computer Networking, 4 th Edition by Kurose and Ross
Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,
Ethernet, VLAN, Ethernet Carrier Grade
Ethernet, VLAN, Ethernet Carrier Grade Dr. Rami Langar LIP6/PHARE UPMC - University of Paris 6 Rami.langar@lip6.fr www-phare.lip6.fr/~langar RTEL 1 Point-to-Point vs. Broadcast Media Point-to-point PPP
Requirements for VoIP Header Compression over Multiple-Hop Paths (draft-ash-e2e-voip-hdr-comp-rqmts-01.txt)
Requirements for VoIP Header Compression over Multiple-Hop Paths (draft-ash-e2e-voip-hdr-comp-rqmts-01.txt) Jerry Ash AT&T gash@att.com Bur Goode AT&T bgoode@att.com Jim Hand AT&T jameshand@att.com Raymond
How To Understand The Benefits Of An Mpls Network
NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 Introduction MPLS in the Enterprise Multi-Protocol Label Switching (MPLS) as a technology has been around for over a decade
Rohde & Schwarz R&S SITLine ETH VLAN Encryption Device Functionality & Performance Tests
Rohde & Schwarz R&S Encryption Device Functionality & Performance Tests Introduction Following to our test of the Rohde & Schwarz ETH encryption device in April 28 the European Advanced Networking Test
IP Switching: Issues and Alternatives
IP Switching: Issues and Alternatives Professor of Computer and Information Sciences http://www.cis.ohio-state.edu/~jain/ 6-1 Overview LANE, IPOA, NHRP, MPOA IP Switch Cell Switched Router Tag Switching
How Routers Forward Packets
Autumn 2010 philip.heimer@hh.se MULTIPROTOCOL LABEL SWITCHING (MPLS) AND MPLS VPNS How Routers Forward Packets Process switching Hardly ever used today Router lookinginside the packet, at the ipaddress,
Comparative Analysis of Mpls and Non -Mpls Network
Comparative Analysis of Mpls and Non -Mpls Network Madhulika Bhandure 1, Gaurang Deshmukh 2, Prof. Varshapriya J N 3 1, 2, 3 (Department of Computer Science and IT, VJTI, Mumbai-19 ABSTRACT A new standard
Service Definition. Internet Service. Introduction. Product Overview. Service Specification
Service Definition Introduction This Service Definition describes Nexium s from the customer s perspective. In this document the product is described in terms of an overview, service specification, service
Overlay Networks and Tunneling Reading: 4.5, 9.4
Overlay Networks and Tunneling Reading: 4.5, 9.4 COS 461: Computer Networks Spring 2009 (MW 1:30 2:50 in COS 105) Mike Freedman Teaching Assistants: WyaN Lloyd and Jeff Terrace hnp://www.cs.princeton.edu/courses/archive/spring09/cos461/
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
Course Description. Students Will Learn
Course Description The next generation of telecommunications networks will deliver broadband data and multimedia services to users. The Ethernet interface is becoming the interface of preference for user
Protocol Architecture
Protocol Architecture ed Protocol Architectures OSI Reference Model TCP/IP Protocol Stack Need for Protocols The task of exchanging information between devices requires a high degree of cooperation between
Project Report on Traffic Engineering and QoS with MPLS and its applications
Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to
RA-MPLS VPN Services. Kapil Kumar Network Planning & Engineering Data. E-mail: Kapil.Kumar@relianceinfo.com
RA-MPLS VPN Services Kapil Kumar Network Planning & Engineering Data E-mail: Kapil.Kumar@relianceinfo.com Agenda Introduction Why RA MPLS VPNs? Overview of RA MPLS VPNs Architecture for RA MPLS VPNs Typical
Smart Solutions for Network IP Migration
for Network IP Migration Network Access Timing and Synchronization Test & Measurement Agenda: Architectures and Topologies Product life cycle Media and Protocol Conversion Application Cases Conclusion
Cisco Configuring Basic MPLS Using OSPF
Table of Contents Configuring Basic MPLS Using OSPF...1 Introduction...1 Mechanism...1 Hardware and Software Versions...2 Network Diagram...2 Configurations...2 Quick Configuration Guide...2 Configuration
Experiences with Class of Service (CoS) Translations in IP/MPLS Networks
Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering
Protocol Overhead in IP/ATM Networks
Protocol Overhead in IP/ATM Networks John David Cavanaugh * Minnesota Supercomputer Center, Inc. This paper discusses the sources of protocol overhead in an IP/ATM protocol stack. It quantifies the amount
WHITEPAPER MPLS: Key Factors to Consider When Selecting Your MPLS Provider
WHITEPAPER MPLS: Key Factors to Consider When Selecting Your MPLS Provider INTRODUCTION Multiprotocol Label Switching (MPLS), once the sole domain of major corporations and telecom carriers, has gone mainstream