THE STATISTICAL TREATMENT OF EXPERIMENTAL DATA 1
|
|
|
- Brianna Wheeler
- 10 years ago
- Views:
Transcription
1 THE STATISTICAL TREATMET OF EXPERIMETAL DATA Introduction The subject of statistical data analysis is regarded as crucial by most scientists, since error-free measurement is impossible in virtually all experimental sciences, natural or social. Experimentalists gather data with the aim of formulating a physically reasonable model to describe a particular phenomenon. But, given an experimental data set, how does one know whether it agrees with a theoretical prediction? There is no guarantee that a theory will describe the real situation -- the basis of science is the demand that any idea be validated experimentally. To know whether your measurement is consistent with theory or not, you need to know whether the uncertainty in the measurement is smaller or larger than the discrepancy between the measurement and the theoretical prediction. In symbols we would say that if v th denotes the theoretically predicted value of a given quantity, v ex denotes the experimental result, and v denotes the uncertainty expected in the measurement, then the theory is consistent with experiment only if v ex - Δv v th v ex + Δv (S-) The next question is how to determine v for a particular experiment and measurement apparatus. The candid truth is that v is often estimated from one's knowledge of the accuracy of the measuring device (sometimes this is called an external determination). For example in measuring the length of an object using a meter stick whose finest marks are mm apart, one should attempt to make measurements to a fraction of mm. Depending upon the object being measured, and the ability to clearly align the ruler with the object, one might estimate that v would be about 0.5 mm (for example). However, you should be aware that when scientists refer to experimental error, they usually mean the uncertainty in their measurement, which is a measure of precision and not accuracy. With this in mind, we realize that the spread observed in a series of repeated measurements allows us to determine uncertainties based upon statistics (sometimes called an internal determination). Some of this advice is based upon a handout that originated in the Physics Department at Haverford College, Haverford, PA. The title and some of the material is based upon the treatment found in H. D. Young, Statistical Treatment of Experimental Data (McGraw-Hill, ew York, 96), which is a fine reference to the subject in general.
2 The Statistical Treatment of Experimental Data It is important to keep in mind the distinction between systematic and statistical uncertainty. Imagine that because of the humidity in Central Illinois at this time of year, the meter stick you are using has swelled in length by a small amount. In that case, it will underestimate by a corresponding amount the length of any object it is used to measure. We call that sort of uncertainty systematic and try to design experiments to avoid it, because if it is overlooked, it will lead to an incorrect (inaccurate) result, despite a full statistical analysis which might give us a measure of the precision of our technique. You may end up finding some example of insidious systematic errors in this lab. Statistical uncertainty, on the other hand, is the uncertainty that is due to small random events beyond our control, that do not lead to bias in either direction. Statistical uncertainty can be reduced by repeating measurements, and it can be accurately determined from the spread of values that occur. Therefore we prefer it to systematic error. ;) The following material is devoted mostly to determination of statistical uncertainty and something called the propagation of uncertainty. The theoretical results you will learn below are mathematically exactly true for a certain, commonly encountered type of statistical uncertainty (i.e., based on a Gaussian distribution). [See note at end of write-up] Dealing with Systematic Error Generally speaking, a series of independent measurements allow us to reduce random errors, but independent experiments are required to gauge systematic errors. Still there are often simple checks that allow you to subtract offsets or drift which might otherwise be included in your dataset. Imagine you have been assigned to determine whether a particular radiation source represents a health hazard. To determine the health hazard, you might use a radiation detector called a Geiger counter to measure incoming high-energy particles given off by atomic nuclei as they undergo radioactive decay. However, if you turned on your detector, even with no source of radioactivity nearby, you would detect background radiation. This is because high-energy particles, mostly electrons and gamma rays, arrive at the earth from space every moment. These cosmic rays set off your detector, and they cannot be eliminated. In addition, there are some radioactive nuclei in building materials, so that the bricks and mortar of our lab building are emitting radiation, too Even our bodies contain unstable 40 K nuclei that contribute slightly to the background radiation level. This background intensity (number of counts per unit time) represents a source of systematic uncertainty, since it adds to any measurement of radiation we make in the room. We would need to subtract off this background intensity from our
3 The Statistical Treatment of Experimental Data 3 measurement of any extra intensity caused by our radioactive source. The quantity of interest, the source intensity, is Is = It - Ib (S-) where Is indicates the source intensity, It the total intensity, and Ib the background intensity. The uncertainty in our measurement of Is still needs to be determined. Determining Statistical Uncertainty It stands to reason that repeating measurements is a good way to increase the accuracy of the overall process. (You would never poll only three people to establish an approval rating for the President.) It turns out that from a reasonably large sample of measured values we can also accurately estimate the uncertainty Given measurements (here, is the number of groups reporting measurements){i, I, I }, of some quantity I (such as the background radiation intensity), the best estimate of the actual value of I is the mean or average of the values. I = " I i. (S-3) We also want to deduce I, the uncertainty associated with this measured value. We can estimate this quantity from the spread of individual values of the I i s that occurred. It should also depend on how many measurements were made, but we ll deal with that after we decide how to characterize the spread of values obtained. Statisticians and physicists have devised an accepted measure of the spread of values that occur in a distribution and call it the standard deviation, σ. It is defined in terms of an average of the deviation of the individual measurements from the average value I. (If we just averaged the deviations, we would get roughly zero, since the measurements above and below the mean would almost cancel out. Therefore we average the square of the deviations and take the square root at the end.) The definition of σ will be " = $ ( I i # I ). (S-4) Eq. (S-4) is a bit of a pain even on a calculator and it can be shown that the following expression is totally equivalent, so we usually use it: " = I i # $ ' $ I i * (S-5) & )
4 4 The Statistical Treatment of Experimental Data The second term under the square root sign is just I, so that part is easy to obtain. The only real new punching of calculator buttons is the accumulation of the sum of the squares of the I i s in the first term. OTE: If is a relatively small number, the uncertainty estimated from (S-4) or (S- 5) is slightly underestimated. (After all, if =, you would get σ = 0 erroneously.) To approximately correct for this underestimate, use (-) instead of in equations S-4 and S-5 if is less than 0 or so. One might be tempted to assume that σ is also a good estimate of I. That is, if you took many identical data sets and used them to compute I, one might suppose that the standard deviation of I would be σ. This is not the case. Particularly for large we will know I considerably more accurately than I ± σ. In fact you would find that if we all did another measurement thereby doubling, we would find that σ would not change appreciably since it is just a measure of the natural spread in values resulting from our measuring procedure, and yet the measurement of I would be improved. It can be shown that a better estimate for the error bar is the so-called standard deviation of the mean, σ m, given by " m = " (S-6) Thus we would typically say we have determined I to be I = I ± " m. The exact meaning of this statement is discussed in statistics texts; the following interpretation is good enough for most purposes: there is about a /3 chance that the actual value of I lies in the interval [ I "# m,i + # m ], a 95% chance that it is in the interval [ I " # m,i + # m ], and a 99.7% chance that it is in the interval [ I " 3# m,i + 3# m ], etc. Most scientists are rather conservative, and would report the uncertainty, "I, as being larger than σ m, e.g. σ m. Propagation of Uncertainties It frequently happens in experimental science that the desired quantity depends on several other quantities, each of which has an associated uncertainty. In that case we need to know how to compute the uncertainty in the final quantity from those of the measured quantities. This process is called propagation of uncertainty. This topic is treated in numerous texts, such as Experimentation: An Introduction to Measurement Theory and Experiment Design, by D.C. Baird or Data Reduction and Error Analysis for the Physical Sciences, by P.R. Bevington and D.K. Robinson. We will simply summarize several simple results that will be useful to you in this course. First, suppose that you have measured two quantities, a and b, that are added or subtracted to produce a final result. If we may presume that there are no correlations between the fluctuations in our measurements of a
5 The Statistical Treatment of Experimental Data 5 and the fluctuations in our measurement of b, then the best estimate of the uncertainty of the sum or difference is "( a ± b) = ("a) + ("b). (S-7) We say that the uncertainties are added in quadrature. ote that if the two uncertainties are equal, the resultant uncertainty is larger than either one alone by a factor. Also, if the uncertainty in one is less than about /4 of the other, its contribution to the overall uncertainty is negligible. In other experiments, you may be multiplying or dividing two quantities. In that case, the relative or fractional uncertainties that are added in quadrature: "( ab) ab = #"a& $ a ' # + "b & $ b '. (S-8) This implies, for example, that if a is.0% of a and b is 4.0% of b, then ab is [(0.00) + (0.040) ] /, or 4.5%, of ab. There are more complicated rules for other manipulations. For example, if you raise a measured value to a power the relative uncertainty is scaled by that power "( a n ) = n "a a n a summarized as follows. For function of two independent variables, z = f(x,y), (S-9) where it has been assumed that there is no uncertainty in n, only in a. Such rules can be "z = $ #z ' & ) "x + #z $ ' & ) "y (S-0) %#x( %#y ( If z is a function of more than two variables the equation is extended by adding similar terms. OTE: These results are mathematically exact only for Gaussian distributions. Some sorts of data, radioactive counting measurements for example, actually follow "Poisson" distributions, which are slightly different. However, the error introduced by this fact is often relatively small.
INTRODUCTION TO ERRORS AND ERROR ANALYSIS
INTRODUCTION TO ERRORS AND ERROR ANALYSIS To many students and to the public in general, an error is something they have done wrong. However, in science, the word error means the uncertainty which accompanies
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Welcome to Physics 40!
Welcome to Physics 40! Physics for Scientists and Engineers Lab 1: Introduction to Measurement SI Quantities & Units In mechanics, three basic quantities are used Length, Mass, Time Will also use derived
EXPERIMENTAL ERROR AND DATA ANALYSIS
EXPERIMENTAL ERROR AND DATA ANALYSIS 1. INTRODUCTION: Laboratory experiments involve taking measurements of physical quantities. No measurement of any physical quantity is ever perfectly accurate, except
99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm
Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.
ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated
Experimental Uncertainties (Errors)
Experimental Uncertainties (Errors) Sources of Experimental Uncertainties (Experimental Errors): All measurements are subject to some uncertainty as a wide range of errors and inaccuracies can and do happen.
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
Experiment #1, Analyze Data using Excel, Calculator and Graphs.
Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring
An Innovative Method for Dead Time Correction in Nuclear Spectroscopy
An Innovative Method for Dead Time Correction in Nuclear Spectroscopy Upp, Daniel L.; Keyser, Ronald M.; Gedcke, Dale A.; Twomey, Timothy R.; and Bingham, Russell D. PerkinElmer Instruments, Inc. ORTEC,
Introduction to Error Analysis
UNIVERSITÄT BASEL DEPARTEMENT CHEMIE Introduction to Error Analysis Physikalisch Chemisches Praktikum Dr. Nico Bruns, Dr. Katarzyna Kita, Dr. Corinne Vebert 2012 1. Why is error analysis important? First
Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10
Carbon Dioxide and an Argon + Nitrogen Mixture Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Measurement of C p /C v for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado
1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Introduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true
71M6521 Energy Meter IC. Real Time Clock Compensation. The Challenge. The RTC in the 71M6521D/F. Theory of Operation APPLICATION NOTE
71M6521 Energy Meter IC A Maxim Integrated Products Brand APPLICATION NOTE AN_6521_035 MAY 2007 This document describes how to use software to compensate the real time clock (RTC) in Teridian meter chips.
Balance Accuracy. FlexiWeigh
FlexiWeigh The balance is an integral part of the FlexiWeigh workstation. The role and limitations of the balance are important to understand in this environment. This technical note describes the different
Northumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
Physics 40 Lab 1: Tests of Newton s Second Law
Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity
Physics Lab Report Guidelines
Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Problem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
Evaluation of Quantitative Data (errors/statistical analysis/propagation of error)
Evaluation of Quantitative Data (errors/statistical analysis/propagation of error) 1. INTRODUCTION Laboratory work in chemistry can be divided into the general categories of qualitative studies and quantitative
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
PS Chapter 1 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A PS Chapter 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The two main branches of science are a. physics and chemistry.
Chi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
Statistics 104: Section 6!
Page 1 Statistics 104: Section 6! TF: Deirdre (say: Dear-dra) Bloome Email: [email protected] Section Times Thursday 2pm-3pm in SC 109, Thursday 5pm-6pm in SC 705 Office Hours: Thursday 6pm-7pm SC
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
Radioactivity III: Measurement of Half Life.
PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function
The accurate calibration of all detectors is crucial for the subsequent data
Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved
Data Acquisition And Analysis
Data Acquisition And Analysis Objective: To gain familiarity with some of the measurement tools you will use in lab this semester. To learn how to measure distance with a motion sensor and force with a
Tutorial 4.6 Gamma Spectrum Analysis
Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning
MEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
On Correlating Performance Metrics
On Correlating Performance Metrics Yiping Ding and Chris Thornley BMC Software, Inc. Kenneth Newman BMC Software, Inc. University of Massachusetts, Boston Performance metrics and their measurements are
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is
UNCERTAINTY AND CONFIDENCE IN MEASUREMENT
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.44-449 UNCERTAINTY AND CONFIDENCE IN MEASUREMENT Ioannis Kechagioglou Dept. of Applied Informatics, University
Chapter 1 Units, Physical Quantities, and Vectors
Chapter 1 Units, Physical Quantities, and Vectors 1 The Nature of Physics Physics is an experimental science. Physicists make observations of physical phenomena. They try to find patterns and principles
Descriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
Implementing the combing method in the dynamic Monte Carlo. Fedde Kuilman PNR_131_2012_008
Implementing the combing method in the dynamic Monte Carlo Fedde Kuilman PNR_131_2012_008 Faculteit Technische Natuurwetenschappen Implementing the combing method in the dynamic Monte Carlo. Bachelor End
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
A Short Guide to Significant Figures
A Short Guide to Significant Figures Quick Reference Section Here are the basic rules for significant figures - read the full text of this guide to gain a complete understanding of what these rules really
Measurement. Stephanie Bell. Issue 2
No. 11 Measurement Good Practice Guide A Beginner's Guide to Uncertainty of Measurement Stephanie Bell Issue 2 The National Physical Laboratory is operated on behalf of the DTI by NPL Management Limited,
Measuring Line Edge Roughness: Fluctuations in Uncertainty
Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded
The Method of Least Squares
The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the
3 More on Accumulation and Discount Functions
3 More on Accumulation and Discount Functions 3.1 Introduction In previous section, we used 1.03) # of years as the accumulation factor. This section looks at other accumulation factors, including various
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
Chapter 20: chance error in sampling
Chapter 20: chance error in sampling Context 2 Overview................................................................ 3 Population and parameter..................................................... 4
Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results
Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance)
Concepts in Investments Risks and Returns (Relevant to PBE Paper II Management Accounting and Finance) Mr. Eric Y.W. Leung, CUHK Business School, The Chinese University of Hong Kong In PBE Paper II, students
Chapter 3 Review Math 1030
Section A.1: Three Ways of Using Percentages Using percentages We can use percentages in three different ways: To express a fraction of something. For example, A total of 10, 000 newspaper employees, 2.6%
S-Parameters and Related Quantities Sam Wetterlin 10/20/09
S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
AN_6521_035 APRIL 2009
71M6521 Energy Meter IC A Maxim Integrated Products Brand APPLICATION NOTE AN_6521_035 APRIL 2009 This document describes how to use software to compensate the real time clock (RTC) in Teridian meter chips.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
Lies My Calculator and Computer Told Me
Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing
Introduction to CCDs and CCD Data Calibration
Introduction to CCDs and CCD Data Calibration Dr. William Welsh San Diego State University CCD: charge coupled devices integrated circuit silicon chips that can record optical (and X-ray) light pixel =
Antoine Henri Becquerel was born in Paris on December 15, 1852
Discovery Antoine Henri Becquerel was born in Paris on December 15, 1852 Summit Environmental Technologies, Inc. Analytical Laboratories 3310 Win Street Cuyahoga Falls, Ohio 44223 Fax: 1-330-253-4489 Call
Measurement of Length, Mass, Volume and Density
Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will
Numerical Matrix Analysis
Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research
Using simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain
Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain Casey Blood, PhD Professor Emeritus of Physics, Rutgers University www.quantummechanicsandreality.com [email protected]
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
H. The Study Design. William S. Cash and Abigail J. Moss National Center for Health Statistics
METHODOLOGY STUDY FOR DETERMINING THE OPTIMUM RECALL PERIOD FOR THE REPORTING OF MOTOR VEHICLE ACCIDENTAL INJURIES William S. Cash and Abigail J. Moss National Center for Health Statistics I. Introduction
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
Conservation of Energy Physics Lab VI
Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a
Profit Forecast Model Using Monte Carlo Simulation in Excel
Profit Forecast Model Using Monte Carlo Simulation in Excel Petru BALOGH Pompiliu GOLEA Valentin INCEU Dimitrie Cantemir Christian University Abstract Profit forecast is very important for any company.
Theory versus Experiment. Prof. Jorgen D Hondt Vrije Universiteit Brussel [email protected]
Theory versus Experiment Prof. Jorgen D Hondt Vrije Universiteit Brussel [email protected] Theory versus Experiment Pag. 2 Dangerous cocktail!!! Pag. 3 The basics in these lectures Part1 : Theory meets
Estimation and Confidence Intervals
Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
Probability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
The Deadly Sins of Algebra
The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
Toothpick Squares: An Introduction to Formulas
Unit IX Activity 1 Toothpick Squares: An Introduction to Formulas O V E R V I E W Rows of squares are formed with toothpicks. The relationship between the number of squares in a row and the number of toothpicks
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
ARTIFICIAL RADIOACTIVITY
Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Atomic and Nuclear Physics Experiment No. 8 ARTIFICIAL RADIOACTIVITY by Andrius Poškus (e-mail: [email protected])
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt
Prelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
OPTIONS TRADING AS A BUSINESS UPDATE: Using ODDS Online to Find A Straddle s Exit Point
This is an update to the Exit Strategy in Don Fishback s Options Trading As A Business course. We re going to use the same example as in the course. That is, the AMZN trade: Buy the AMZN July 22.50 straddle
Local Sidereal Time is the hour angle of the First Point of Aries, and is equal to the hour angle plus right ascension of any star.
1 CHAPTER 7 TIME In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar Time, Ephemeris Time, Terrestrial Dynamical Time, and the several
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.
OBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS
OBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS CLARKE, Stephen R. Swinburne University of Technology Australia One way of examining forecasting methods via assignments
