*UDYLW\)LHOG7XWRULDO

Size: px
Start display at page:

Download "*UDYLW\)LHOG7XWRULDO"

Transcription

1 % *UDYLW\)LHOG7XWRULDO The formulae and derivations in the following Chapters 1 to 3 are based on Heiskanen and Moritz (1967) and Lambeck (1990). ([SDQVLRQRIWKHJUDYLWDWLRQDOSRWHQWLDOLQWRVSKHULFDOKDUPRQLFV The stationary part of the (DUWK VJUDYLWDWLRQDOSRWHQWLDO8DWDQ\SRLQW3UMO on and above the Earth s surface is expressed on a global scale conveniently by summing up over degree and order of a spherical harmonic expansion. The spherical harmonic (or Stokes ) coefficients represent in the spectral domain the global structure and irregularities of the geopotential field or, more generally spoken, of the gravity field of the Earth. The equation relating the spatial and spectral domain of the geopotential is as follows: Uϕ U U + ( FRVP + 6 VLQP) VLQϕ where Uϕ - spherical geocentric coordinates of computation point (radius, latitude, longitude) - reference length (mean semi-major axis of Earth) - gravitational constant times mass of Earth OP - degree, order of spherical harmonic 3 - fully normalized Lengendre functions 6 - Stokes'coefficients (fully normalized) (1.1) The 00 -term is close to 1 and scales the value. The degree 1 spherical harmonic coefficients 6 are related to the geocentre coordinates and zero if the coordinate systems origin coincides with the geocentre. The coefficients connected to the mean rotational pole position that is a function of time. 6 are Subtracting from the low-degree zonal coefficients (order 0) the corresponding Stokes coefficients of an HOOLSVRLGDOQRUPDOSRWHQWLDO 9UM leads to the mathematical representations of the GLVWXUELQJSRWHQWLDO7UMOin spherical harmonics, related to a conventional ellipsoid of revolution that approximates the Earth s parameters. At the Earth surface with U (in spherical approximation) the disturbing potential reads: 7 ϕ 8 ϕ 9 ϕ (1.2a) ( FRV P + 6 VLQ P)! " 7 ϕ 3 VLQ + ϕ (1.2b) with #$ $ and T defined on the geoid. Note, that '' is close to zero. 1

2 The maximum degree O(*) + of the expansion in Equation (1.1) correlates to the spatial resolution at the Earth surface by (*, - NPO(.) + (1.3) where (*, - is the minimum wavelength (or twice the pixel side length) of gravity field features that are resolved by the O(/) + O(.)0+ O(/) + 1 parameters Equation (1.1) contains the upward-continuation of the gravitational potential at the Earth s surface for U > and reflects the attenuation of the signal with altitude through the factor (U) 4 6. Figure 1.1 gives examples for the three different kinds of spherical harmonics 37 8 VLQϕ FRV P : (a) zonal with O P (b) tesseral with O P Oand (c) sectorial harmonic with O P Amplitudes and phase of the individual spherical harmonics then are determined by multiplication with the 9 : and 6 ; < coefficients. zonal: l6, m0 tesseral: l16, m9 sectorial: l9, m9 )LJXUH ([DPSOHV IRU VSKHULFDO KDUPRQLFV YLROHW@ 3 OP VLQϕ FRV P >IURP ± EOXH WR )XQFWLRQDOVRIWKHGLVWXUELQJJUDYLWDWLRQDOSRWHQWLDO The JHRLG XQGXODWLRQ 1 (Figure 2.1) is the distance between the special equipotential surface U(ϕ) const that is close to the mean sea level and the surface of the conventional ellipsoid of revolution. As such the geoid is derived from the disturbing potential 7 applying %UXQVIRUPXOD 7 1 (2.1) γ where γ is 'normal'gravity on the surface of the ellipsoid. With γ 1 in spherical approximation, the geoid undulations (or geoid heights) can be computed from the spherical harmonic coefficients in Equation (1.2) by 1 ϕ 7 ϕ (2.2a) 2

3 _ ] K V H [ > > Q B F F Y Y? J > O ^ A V Z Y \ G F I P O R W W Y H ] Q [ ( >? FRV P + 6 VLQ P) C D E AA 1 ϕ 3>? VLQ >? + ϕ (2.2b) 7 The negative of the vertical derivative of the disturbing potential δ J is called U JUDYLW\ GLVWXUEDQFH GJ (Figure 2.2) that is equal to gravity at a point 3 (negative of vertical derivative of 8) minus normal gravity at point 3 (negative of vertical derivative of 9). On the geoid and in spherical approximation U the gravity disturbance then is expressed by ( F G FRV P + 6F G VLQ P) L M N II δ J ϕ O 3F G + + VLQϕ (2.3) The difference between gravity at a point 3 on the geoid and normal gravity at the corresponding point 4 on the ellipsoid is called JUDYLW\ DQRPDO\ 'J (Figure 2.3) and related to the disturbing potential by 7 J 7 (2.4) U U On the geoid this becomes (note: no degree 1 terms appear in Equation 2.) ( O P FRV P + 6O P VLQ P) O O P PTSU RR J ϕ + O 3 VLQϕ (2.a) thus J δj 7 (2.b) The second derivatives of the disturbing potential leads to the JUDYLW\JUDGLHQW WHQVRU. The most important vertical gradient represented as J 7 of the tensor component can be U J U \\ + ` a b O + O + U + 3Y Z VLQϕ ( Y Z FRV P + 6Y Z VLQ P) (2.6) Once the spherical harmonic coefficients c d 6c d of a global gravity field model are given, the quantities of the various functionals described above can be computed in its geographical distribution. If computed in terms of gravity disturbances or anomalies and gravity gradients, the higher frequency regional to local content is emphasised through the degree-dependent factors OO and OO respectively, whereas the potential 3

4 )LJXUH *HRLG XQGXODWLRQV 1 >P@ UHVROXWLRQ NP UPV 1 FRV ϕ P )LJXUH *UDYLW\ GLVWXUEDQFHV δj >PJDO@ UHVROXWLRQ NP UPV δj )LJXUH *UDYLW\ DQRPDOLHV J >PJDO@ UHVROXWLRQ NP UPV J FRV ϕ PJDO FRV ϕ PJDO 4

5 and geoid representations of the gravity field show the broad and generalized features of the gravity field. Vice versa, a gradiometer measuring gravity gradients is capable to better resolve detailed structures of the gravity field rather than the long wavelength part. The fully normalized spherical harmonic coefficients in Equation (1.1) are related to the mass distribution within the Earth by O + e f e 0 g* h ikj l U 3e f VLQ ϕ FRV PG0 (2.7a) O + 6 m n m 0 o* p qkr s U 3m n VLQ ϕ VLQ PG0 (2.7b) e m with the mass element G0 G0 U ϕ Figure 2.4 depicts the geopotential distribution of gravity anomalies over Europe derived from spherical harmonic coefficients complete to Ot.u v equal to 10, 0, 100, 300, respectively, in order to demonstrate the relation between spectral and spatial resolution according to Equation (1.1). )LJXUH *HRJUDSKLFDO GLVWULEXWLRQ RI JUDYLW\ DQRPDOLHV >PJDO@ RYHU (XURSH ZLWK GLIIHUHQW VSHFWUDO Owyx z DQG VSDWLDO UHVROXWLRQ SL[HO VL]H w { }

6 ƒ Š Ž Œ ˆ 7KHSRZHUVSHFWUXPRIWKH(DUWK VJUDYLW\ILHOG Given the fully normalized Stokes coefficients ~ 6~ of a specific degree O over orders m P O the VLJQDO GHJUHH DPSOLWXGHV V (or square root of power per degree O) of functions of the disturbing potential 7ϕ at the Earth s surface are readily computed by ƒ ƒ σ ƒ + 6 in terms of unitless coefficients (3.1a) σ 7 σ in terms of disturbing potential values (m 2 /s 2 ) (3.1b) σ ˆ 1 σ in terms of geoid heights (m) (3.1c) σ δj O + σ in terms of gravity disturbances (m/s 2 ) (3.1d) σ J O σ in terms of gravity anomalies (m/s 2 ) (3.1e) σ J O + O + σ in terms of vertical gravity gradients (1/s 2 ) (3.1f) where the 6 are related to the normal potential. The SI units of the physical gravitational quantities are given in parenthesis. Following Kaula s 'rule of thumb' (Kaula, 1966) the power law follows approximately σ 2O + 1. (3.2) 4 O Examples for signal degree amplitudes are given in Figure 3.1. If the estimation errors of the Stokes coefficients in a global gravity field model are known, the HUURUGHJUHHDPSOLWXGHV (error spectrum) are computed accordingly replacing the coefficients in Equation (3.1) by their standard deviations. 'LIIHUHQFH GHJUHH DPSOLWXGHV, representing the agreement of two different gravity field models per degree, are readily computed replacing the coefficients in Equation (3.1) by the coefficients differences between the two models. Examples for difference degree amplitudes are given in Figure

7 )LJXUH 6LJQDO GHJUHH DPSOLWXGHV IRU JHRLG XQGXODWLRQV UHG JUDYLW\ GLVWXUEDQFHV EOXH DQG JUDYLW\ DQRPDOLHV JUHHQ LQ PHWHU DQG PJDO UHVSHFWLYHO\ The GHJUHH DPSOLWXGHV DV D IXQFWLRQ RI PLQLPXP DQG PD[LPXP GHJUHH O displays the power (signal, error, difference) spectrum accumulated over a spectral band from O to O : σ DFFXPXODWHG σ (3.3) Usually O 0 or 2 is taken to display the increase in overall power with increasing degree O. Recall that the spectral degree O is related to the spatial extension or wavelength of features in the gravity field according to Equation (1.3). Examples for difference amplitudes as a function of maximum degree l (successive accumulation of the curves in Figure 3.1) are given in Figure 3.2. Equations (3.1) again demonstrate that the higher degree terms, i.e. the shorter wavelengths in the signal spectra, are enhanced by factors proportional to degree O for gravity anomalies and disturbances and proportional to O for gravity gradients compared to the signals in the geoid and gravitational potential. )LJXUH 'LIIHUHQFH GHJUHH DPSOLWXGHV *$( 6 YV ( LQ WHUPV RI JHRLG XQGXODWLRQV UHG JUDYLW\ GLVWXUEDQFHV EOXH DQG JUDYLW\ DQRPDOLHV JUHHQ LQ PHWHU DQG PJDO UHVSHFWLYHO\ 7

8 )LJXUH 'LIIHUHQFH GHJUHH DPSOLWXGHV *$(6 YV ( DV D IXQFWLRQ RI PD[LPXP GHJUHH LQ WHUPV RI JHRLG XQGXODWLRQV UHG JUDYLW\ GLVWXUEDQFHV EOXH DQG JUDYLW\ DQRPDOLHV JUHHQLQPHWHUDQGPJDOUHVSHFWLYHO\ HIHUHQFHV Heiskanen, W.A. and H. Moritz, Physical Geodesy, W.H. Freeman and Co., San Francisco. Kaula, W.M., Theory of Satellite Geodesy, Blaisdell Publ. Company, Waltham, Mass. Lambeck, K., Aristoteles An ESA Mission to Study the Earth s Gravity Field, ESA Journal 14:

Gravitational potential

Gravitational potential Gravitational potential Let s assume: A particle of unit mass moving freely A body of mass M The particle is attracted by M and moves toward it by a small quantity dr. This displacement is the result of

More information

SIO 229 Gravity and Geomagnetism: Class Description and Goals

SIO 229 Gravity and Geomagnetism: Class Description and Goals SIO 229 Gravity and Geomagnetism: Class Description and Goals This graduate class provides an introduction to gravity and geomagnetism at a level suitable for advanced non-specialists in geophysics. Topics

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sun-synchronous orbit: used for a variety of earth-observing

More information

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice

More information

Contents. 1 Introduction 2

Contents. 1 Introduction 2 Contents 1 Introduction 2 2 Definitions 2 2.1 The Potential and the Geoid.................................. 2 2.2 The Height Anomaly....................................... 5 2.3 The Gravity Disturbance....................................

More information

Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Gravity Field and Dynamics of the Earth

Gravity Field and Dynamics of the Earth Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

More information

gloser og kommentarer til Macbeth ( sidetal henviser til "Illustrated Shakespeare") GS 96

gloser og kommentarer til Macbeth ( sidetal henviser til Illustrated Shakespeare) GS 96 side 1! " # $ % &! " '! ( $ ) *! " & +! '!, $ #! "! - % " "! &. / 0 1 & +! '! ' & ( ' 2 ) % $ 2 3 % # 2! &. 2! ' 2! '! $ $! " 2! $ ( ' 4! " 3 & % / ( / ( ' 5! * ( 2 & )! 2 5! 2 &! # '! " & +! '! ' & &!

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

REeal data AnaLysis GOCE Gravity field determination from GOCE

REeal data AnaLysis GOCE Gravity field determination from GOCE REeal data AnaLysis GOCE Gravity field determination from GOCE J.M. Brockmann 1, O. Baur 3, J. Cai 3, A. Eicker 2, B. Kargoll 1, I. Krasbutter 1, J. Kusche 2, T. Mayer-Gürr 2, J. Schall 2, W.-D. Schuh

More information

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

More information

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem Due Thursday March 1, 2012 NAME(S): Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem 0.1 Introduction The age old question, Where in the world am I? can easily be solved nowadays by

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Maintaining High Accuracy in Modern Geospatial Data

Maintaining High Accuracy in Modern Geospatial Data Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President info@bluemarblegeo.com www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -

More information

The Gravitational Field

The Gravitational Field The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Coverage Characteristics of Earth Satellites

Coverage Characteristics of Earth Satellites Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite

More information

Waves. Wave Parameters. Krauss Chapter Nine

Waves. Wave Parameters. Krauss Chapter Nine Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

FITTING ASTRONOMICAL DATA

FITTING ASTRONOMICAL DATA 1 01/02/2011 André Le Floch Fitting astronomical data FITTING ASTRONOMICAL DATA André Le Floch University of Tours, Department of Physics 37200 Tours, France Abstract Deming s method is applied for calculating

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas

More information

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

More information

EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5

EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5 European Petroleum Survey Group EPSG Guidance Note Number 5 Coordinate Reference System Definition - Recommended Practice Revision history: Version Date Amendments 1.0 April 1997 First release. 1.1 June

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

Vertical Datums: An Introduction and Software Review

Vertical Datums: An Introduction and Software Review Vertical Datums: An Introduction and Software Review Areas to Cover Theoretical Introduction Representation in EPSG Representation in OGC WKT Incorporation in PROJ.4 Incorporation in GDAL Future Work Introduction

More information

Geodätische Woche 2015, Stuttgart

Geodätische Woche 2015, Stuttgart Geodätische Woche 2015, Stuttgart Spheroidal and Ellipsoidal Harmonic Expansions of the Gravitational Potential of Small Solar System Bodies Stefan Reimond and Oliver Baur Space Research Institute (IWF)

More information

Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas

Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Algorithm Description Technical Document TD-1205-a Version 1.1 23.10.2012 In Co-operation with 1 Objective Many SatCom

More information

Astromechanics Two-Body Problem (Cont)

Astromechanics Two-Body Problem (Cont) 5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

More information

2. Simple Linear Regression

2. Simple Linear Regression Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

REaldatenAnaLyse GOCE (REAL GOCE) 5. Projekttreffen

REaldatenAnaLyse GOCE (REAL GOCE) 5. Projekttreffen REaldatenAnaLyse GOCE (REAL GOCE) 5. Projettreffen Michael Murböc, Claudia Stummer Institut für Astronomische und Physialische Geodäsie, TU München Stuttgart, 10/10/2011 REAL GOCE Projettreffen: Stuttgart,

More information

3.1 State Space Models

3.1 State Space Models 31 State Space Models In this section we study state space models of continuous-time linear systems The corresponding results for discrete-time systems, obtained via duality with the continuous-time models,

More information

Barometric Effects on Transducer Data and Groundwater Levels in Monitoring Wells D.A. Wardwell, October 2007

Barometric Effects on Transducer Data and Groundwater Levels in Monitoring Wells D.A. Wardwell, October 2007 Barometric Effects on Transducer Data and Groundwater Levels in Monitoring Wells D.A. Wardwell, October 2007 Barometric Effects on Transducer Data Barometric Fluctuations can Severely Alter Water Level

More information

Supporting Information

Supporting Information S1 Supporting Information GFT NMR, a New Approach to Rapidly Obtain Precise High Dimensional NMR Spectral Information Seho Kim and Thomas Szyperski * Department of Chemistry, University at Buffalo, The

More information

A guide to coordinate systems in Great Britain

A guide to coordinate systems in Great Britain A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions

Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Terrain-Related Gravimetric Quantities Computed for the Next EGM

Terrain-Related Gravimetric Quantities Computed for the Next EGM Terrain-Related Gravimetric Quantities Computed for the Next EGM Nikolaos K. Pavlis 1, John K. Factor 2, and Simon A. Holmes 1 1 SGT, Inc., 7701 Greenbelt Road, Suite 400, Greenbelt, Maryland 20770, USA,

More information

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI Development of new hybrid geoid model for Japan, GSIGEO2011 11 Development of new hybrid geoid model for Japan, GSIGEO2011 Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI (Published online: 26 December 2014)

More information

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF. Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

GPS ALIGNMENT SURVEYS AND MERIDIAN CONVERGENCE

GPS ALIGNMENT SURVEYS AND MERIDIAN CONVERGENCE GPS ALIGNMENT SURVEYS AND MERIDIAN CONVERGENCE By Tomás Soler, 1 Member, ASCE, and Rudolf J. Fury 2 ABSTRACT: Since the advent of the Global Positioning System (GPS), geodetic azimuths can be accurately

More information

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz

RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering

More information

Acceleration levels of dropped objects

Acceleration levels of dropped objects Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

4 The Rhumb Line and the Great Circle in Navigation

4 The Rhumb Line and the Great Circle in Navigation 4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between

More information

Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa

Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

量 說 Explanatory Notes on Geodetic Datums in Hong Kong

量 說 Explanatory Notes on Geodetic Datums in Hong Kong 量 說 Explanatory Notes on Geodetic Datums in Hong Kong Survey & Mapping Office Lands Department 1995 All Right Reserved by Hong Kong Government 留 CONTENTS INTRODUCTION............... A1 HISTORICAL BACKGROUND............

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Satellites and Space Stations

Satellites and Space Stations Satellites and Space Stations A satellite is an object or a body that revolves around another object, which is usually much larger in mass. Natural satellites include the planets, which revolve around

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

ESTIMATION USABILITY OF THE FREE SOFTWARE FOR TRANSFORMATION OF GEODETIC COORDINATES BETWEEB LOCAL AND GLOBAL DATUMS-EXAMPLE OF THE ADRIATIC SEA

ESTIMATION USABILITY OF THE FREE SOFTWARE FOR TRANSFORMATION OF GEODETIC COORDINATES BETWEEB LOCAL AND GLOBAL DATUMS-EXAMPLE OF THE ADRIATIC SEA ESTIMATION USABILITY OF THE FREE SOFTWARE FOR TRANSFORMATION OF GEODETIC COORDINATES BETWEEB LOCAL AND GLOBAL DATUMS-EXAMPLE OF THE ADRIATIC SEA Duplančić Leder, Tea; Faculty of Civil Engineering and Architecture,

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

ATM 316: Dynamic Meteorology I Final Review, December 2014

ATM 316: Dynamic Meteorology I Final Review, December 2014 ATM 316: Dynamic Meteorology I Final Review, December 2014 Scalars and Vectors Scalar: magnitude, without reference to coordinate system Vector: magnitude + direction, with reference to coordinate system

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

More information

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Frequency-domain and stochastic model for an articulated wave power device

Frequency-domain and stochastic model for an articulated wave power device Frequency-domain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço

More information

Binary Stars. Kepler s Laws of Orbital Motion

Binary Stars. Kepler s Laws of Orbital Motion Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.

More information

Artificial Satellites Earth & Sky

Artificial Satellites Earth & Sky Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,

More information

An Introduction to the MTG-IRS Mission

An Introduction to the MTG-IRS Mission An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products

More information