GnRH Based Estrus Synchronization Systems for Beef Cows
|
|
|
- Ashley Porter
- 10 years ago
- Views:
Transcription
1 GnRH Based Estrus Synchronization Systems for Beef Cows John B. Hall, Extension Animal Scientist, Beef, Virginia Tech W. Dee Whittier, Extension Specialist and Professor, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech Jim Myers, Extension Veterinarian; Senior Extension Agent, ANR, Virginia Tech Mark Cline, Graduate Student, Virginia Tech David Cuddy, Graduate Student, Virginia Tech New systems of synchronizing estrus (heat) in cows for artificial insemination (AI) have been developed using commercially available Gonadotropin Releasing Hormone (GnRH). These systems allow producers to artificially inseminate cows with little or no heat detection. For the first time, producers have a reliable system that results in acceptable pregnancy rates to timed AI. Adoption of AI in the U.S. beef industry remains relatively low at 3 to % of the cows in the US bred AI annually. Until recently, the rewards of engaging in an estrus synchronization and AI program, for most commercial producers, were not sufficient to offset the time and labor involved. Purebred breeders, producers of commercial replacement heifers, or producers that retained ownership through the feedlot obtained the benefits of an AI program with significantly higher prices for their products. However, for the average beef producer, the rewards of AI from better genetics in the cowherd or higher weaning weights were not easily recognized and AI pregnancy rates with existing synchronization systems were sometimes disappointing. Changes in the beef industry demand reevaluation of AI in commercial herds. Feeders and packers want large groups of uniform calves and are willing to pay a premium for superior performance and carcass characteristics. Herd bulls possessing superior EPD s with high accuracy in several traits are often difficult for commercial producers to locate or afford. However, estrus synchronization and AI allows commercial producers affordable access to these bulls. In Virginia, programs like those of the Buckingham Cattlemen s Association or Central Virginia Cattlemen s Association, where large numbers of cows are synchronized and artificially inseminated by a technician, are examples of effective use of AI in commercial cows. The resulting calf crops are grouped and sold in truckload lots at a considerable price advantage. A portion of this advantage is due to AI with the remainder from sorting, health programs, and numbers of calves. In addition, these groups are building a favorable reputation for uniform high-quality calves. Recent advances in estrous synchronization using GnRH are allowing these groups to take advantage of AI. What does GnRH do? GnRH is a hormone naturally produced in cows that causes the cow to release another hormone luteinizing hormone (LH). Luteinizing hormone, in conjunction with follicle stimulating hormone (FSH), enhances the growth of ovarian follicles that contain the developing egg. Large amounts of LH also cause ovulation (egg release). After ovulation, a corpus luteum (CL) forms on the ovary and produces progesterone which prepares the uterus for pregnancy and prevents return to heat. During a natural estrous cycle, GnRH through FSH and LH causes follicles to form and grow in small groups or waves on the ovary (Figure 1). The largest (dominant) follicle (A) of the wave keeps new follicles (B) from growing. However, the dominant follicle must ovulate (C) in a few days or it will regress (D) and a new wave of follicles will start to grow. As long as the CL produces progesterone, the cow will not release enough GnRH and LH to cause ovulation. The CL will regress and stop producing progesterone if the cow does not become pregnant. Once the CL regresses, GnRH and LH release increase and the dominant follicle grows large and produces estrogen that causes the signs of heat. A surge of LH is then released and the cow ovulates. Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, 2009 Virginia Cooperative Extension programs and employment are open to all, regardless of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. An equal opportunity/affirmative action employer. Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperating. Mark A. McCann, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg; Alma C. Hobbs, Administrator, 1890 Extension Program, Virginia State, Petersburg. publication
2 How are GnRH systems different from other estrus synchronization systems? Traditional estrus synchronization systems only synchronized heat, not ovulation. For example, the two shot Lutalyse system results in cows ovulating at various times over to 7 days. In order to achieve acceptable pregnancy rates, producers had to check heat for to 7 days and breed cows 12 hours after heat. That meant gathering cows 2 to 3 times to synchronize heats and then pulling groups of cows in heat out of the herd to be bred. Since cows didn t all come in heat on one day, groups of cows had to be pulled and bred over a day period. This equals 10 round-ups, which involves considerable effort for a smaller operation (< 7 cows) with limited labor and facilities. In addition, the AI technician s availability and expense becomes a factor with only a few cows to breed each trip. The new GnRH systems synchronize follicular growth and ovulation so all cows ovulate within a few hours of one another. Another advantage of the GnRH systems is that they induce ovulation and estrous cycles in noncycling cows. If cows are given an injection of GnRH (See insert for a list of commercial products), then enough LH is released to cause the largest follicle on the ovary to ovulate and form a CL. A new wave of follicles will start to grow since GnRH removed the dominant follicle (Figure 2). Now, the follicular growth of the cows is synchronized. Seven days later an injection of an analog of prostaglandin PGF2a is given which regresses the CL to synchronize final follicular growth and heat. Two days after PGF2a injection, a second injection of GnRH is given to cause all cows to ovulate at approximately the same time. Since ovulation is now synchronized, all the cows in the herd can be bred by timed-ai in one or two groups. GnRH Products Available Cystorelin Merial Factrel Fort Dodge Fertygyl Intervet Remember these are prescription products and must be purchased through a licensed veterinarian with whom you have a veterinary/client relationship. How the GnRH systems work The GnRH based synchronization systems are illustrated in Figure 3. Ovsynch and CO-Synch are timed AI systems whereas Select-Synch requires heat checking. All systems start with an injection of GnRH (100µg) to synchronize follicular growth, followed 7 days later by an injection of a prostaglandin product (PGF) (i.e. Lutalyse, Estrumate, In-Synch, or Prostamate ) to bring the cows into heat. The dosage of PGF varies with the product, so read and follow label directions carefully. With Ovsynch and CO-Synch, a second shot of GnRH causes ovulation. Many cows in these programs will never show heat. With Select- Synch, cows will show heat and ovulate naturally, but over 2 or 3 days. Pregnancy rates with the GnRH synchronization systems can be maximized by incorporating additional strategies. First, cows on the Ovsynch program should be insemi- mm 10 A C A D B Days Figure 1. Follicular waves and follicular structures during the estrous cycle of the cow. Day 0 = day of heat. Dominate follicles A; Subordinate follicles, B; Ovulating follicle, C; and regressing follicle D. 2
3 GnRH mm 10 GnRH PGF 2a Days Figure 2. Synchronization of follicular growth and ovulation by GnRH and PGF2a. GnRH eliminates the dominate follicle resulting in a new wave of follicles approximately 2 days later. Prostaglandin (PGF2a) lyses (kills) the corpus luteum which allows the new follicle to ovulate. nated 16 to 18 hours after the second GnRH. This means the second GnRH injection should be given in the late afternoon with breeding occurring the next morning. Also, 80 to 90% of the cows on Ovsynch or CO-Synch will not be observed in heat. The GnRH will actually cause ovulation before the cow begins to show heat. With all these systems, about 8 to 1% of the cows are in heat between the PGF injection and the second GnRH injection (or 48 hours). These cows should be inseminated 12 hours after the beginning of standing heat. Therefore, some heat detection is necessary to insure maximum pregnancy rates. CO-Synch works best when the second GnRH injection and breeding are delayed until 64 hours after prostaglandin injection. Once again, any cows that come into Example of Schedule for Ovsynch May Inject GnRH May 12 Inject PGF May 14 (pm) Inject GnRH May 1(am) Breed cows heat early need to be bred in response to that heat. Often many of these early cows will be inseminated at the same time as the cows that are timed bred. Proper pre-breeding nutrition is essential to success of the systems. Cows must be in body condition score or better to achieve maximum pregnancy rates. Separation of calves from cows for 48 hours after PGF injection may improve reproductive response in cows of body condition score 3 or 4. Finally, these systems do not work well in virgin heifers. The GnRH systems should only be used on mature cows. It appears that heifers have a different pattern of follicular waves which lowers the effectiveness of GnRH in young females. Example of Schedule for CO-Synch May Inject GnRH May 12 (pm) Inject PGF Figure 3. Timelines for GnRH based synchronization systems May 1(am) Breed cows and inject GnRH 3
4 Cost of GnRH Systems The pharmaceutical cost of these systems has moderated in the past few years due to several companies producing these products and the willingness of veterinarians to promote these systems as a reproductive management tool. A 100µg dose of GnRH will cost from $3.0 to $6.00 and a single dose of prostaglandin F2? is $2.00 to $3.0. Within this range of prices, pharmaceuticals for OvSynch or CO-Synch will cost $9.00 to $1.0 (average $10 to $12/cow) and Select-Synch will cost $.0 to $9.0 (average $6 to $7) per cow. Remember, cost of the pharmaceuticals will vary with the number of cows synchronized as larger herds or groups of producers may be able to get a volume discount. Other costs for the AI program include semen, AI supplies, inseminator fees, and labor. These costs will vary considerably from farm to farm depending on facilities, number of cows, location, and bulls selected. Results with GnRH Systems in VA From 1999 to 2001, Extension specialists, agents, and veterinarians conducted trials with the GnRH synchronization systems in over 1000 cows in Virginia (Table 1). Some of these cows were given older synchronization systems like Syncro-Mate-B or two shots of Lutalyse. A few of the non-gnrh systems are not shown because there were too few cows in the system or only one farm used the system, so the results were not meaningful. In all cases, the GnRH systems out performed the older systems in cows nursing calves by increasing AI pregnancy rates to a single insemination. CO-Synch and Ovsynch were the most consistent systems. Herds with low pregnancy rates, in the CO-Synch and Ovsynch groups, resulted from problems with body condition of cows or semen handling. However, these low pregnancy rate herds were included in the average and presented as a reminder of other factors that affect AI pregnancy rates. In contrast, poor performance with Synchro-Mate-B is a result of its ineffectiveness in cows late in the estrous cycle. Table 1. Results from On-Farm Synchronization Trials in Virginia * System Number of Cows Average % Pregnant to Range in % Pregnant to Synchronized Single AI Single AI Syncro-Mate-B CO-Synch Ovsynch Select-Synch *Note Select-Synch and Syncro-Mate-B cows were bred 12 hours after heat. Hall and Whittier, 2001 Estrus synchronization and AI can increase uniformity of calf colors. 4
5 Another advantage of the GnRH systems is a reduction in the length of the calving season. Producers with cows in good body condition report that 7% to 90% of the cows calve in the first 30 days of the calving season after GnRH synchronization. Many of the cows that did not conceive to AI became pregnant to their first service by the clean-up bull. Also, producers report overall pregnancy rates of 8% to 98% in a 60 day breeding season. Recently, research at Virginia Tech and Colorado State University demonstrated that reducing the dose of GnRH to 0µg did not alter pregnancy rates (Table 2). However, producers must be careful to accurately and completely deliver this small dose into the cow. Smaller gauge needles and reduced syringe size are required to accurately administer the 0µg dose. Extreme care needs to be taken with the 0µg dose so producers don t reduce pharmaceutical cost only to compromise pregnancy rates. This research also indicates that using the 100µg dose may compensate for injection errors. For more information about GnRH-based synchronization systems, talk to your AI breeding representative, veterinarian, or Extension animal science agent about these systems. Summary Gonadotropin Releasing Hormone (GnRH) based synchronization systems are effective in synchronizing ovulation in beef cows. Pregnancy rates to artificial insemination with these systems average 0 to 60%. Although these systems require cows to be handled 3 to 4 times, they minimize or eliminate heat detection. Artificial insemination of large numbers of cows can occur over a 1 to 3 day period. These GnRH-based synchronization systems make artificial insemination of beef cows more practical and economically feasible for commercial producers. In addition, use of the synchronization systems increases the number of cows calving in the first days of the calving season. References Geary, T.W. and J.C. Whittier Effects of a timed insemination following synchronization of ovulation using the Ovsynch or Co-Synch protocol in beef cows. The Professional Animal Scientist 14: Foster, H., J.C. Whittier, P.D. Burns, J. Breummer, T. Field, and T.W. Geary Half dose GnRH does not affect pregnancy rates with the Co-Synch synchronization protocol. J. Anim. Sci. 79(Suppl. 2):132. Geary, T.W., J.C. Whittier, E.R. Downing, D.G. LeFever, R.W. Silcox, M.D. Holland, T.M. Nett, and G.D. Niswender Pregnancy rates of postpartum beef cows that were synchronized using Syncro- Mate-B or the Ovsynch protocol. J. Anim. Sci. 76: Whittier, W.D., J. B. Hall, Amanda Britt, Mark Cline Effect of dose GnRH used in the Ovsynch system on AI pregnancy rates in beef cows. Annual Meeting of the American Association of Bovine Practitioners, Madison, Wisconsin. Disclaimer Commercial products are named in this publication for informational purposes only. Virginia Cooperative Extension does not endorse these products and does not intend discrimination against other products which also may be suitable. Table 2. Effect of reduced dosage of GnRH in the OV-Synch or CO-Synch system on pregnancy rates in postpartum cows Dose of GnRH Percentage (proportion) of Cows Pregnant by Research Location First injection Second Injection Virginia OV-Synch Colorado CO-Synch (860 cows) (404 cows) 0 µg 0 µg 1. % (119/231) 0.7 % 0 µg 100 µg 0. % (97/192) 49.3 % 100 µg 0 µg 1.0 % (98/192) 0.3 % 100µg 100µg 1.4% (126/24) 44.6% Foster et al., 2001; Whittier et al., 2002
licle by expressing estrus (heat) and producing an LH surge. The LH surge causes ovulation, which begins the heifer s first cycle.
publication 400-02 Estrus Synchronization for Heifers John B. Hall, Department of Animal and Poultry Sciences, Virginia Tech Amanda Liles, Department of Animal and Poultry Sciences, Virginia Tech W. Dee
Animal Sciences. Timed-Artificial Insemination in Beef Cows: What are the Options?
Purdue Extension Animal Sciences AS-575-W Timed-Artificial Insemination in Beef Cows: What are the Options? Allen Bridges, Scott Lake, Ron Lemenager, and Matt Claeys, Purdue Beef Team, Department of Animal
Getting It Right With A.I. and Estrus Synchronization Willie Altenburg, Fort Collins Colorado
Getting It Right With A.I. and Estrus Synchronization Willie Altenburg, Fort Collins Colorado Wear Two Hats US Beef Cow Inventory http://www.nass.usda.gov US Beef Semen Sales and Custom Collected Semen
G. Cliff Lamb. North Florida Research and Education Center, Marianna, Florida University of Florida. Introduction
COST ANALYSIS OF IMPLEMENTING A SYNCHRONIZATION OR AI PROGRAM-USING DECISION-AID TOOLS G. Cliff Lamb North Florida Research and Education Center, Marianna, Florida University of Florida Introduction Estrous
SYNCHRONIZATION OF CATTLE
UNDER ESTRUS SYNCHRONIZATION OF CATTLE FS921C Robin Salverson, Extension Livestock Educator, Harding County, and George Perry, Extension Beef Reproduction and Management Specialist Reproductive failure
Four Systematic Breeding Programs with Timed Artificial Insemination for Lactating Dairy Cows: A Revisit
Four Systematic Breeding Programs with Timed Artificial Insemination for Lactating Dairy Cows: A Revisit Amin Ahmadzadeh Animal and Veterinary Science Department University of Idaho Why Should We Consider
Ovarian Cysts in Dairy Cattle
AS-451-W Reviewed 2001 Purdue University Cooperative Extension Service West Lafayette, IN 47907 Ovarian Cysts in Dairy Cattle R. D. Allrich, Department of Animal Sciences Purdue University, West Lafayette,
Economics of Estrus Synchronization and Artificial Insemination. Dr. Les Anderson and Paul Deaton University of Kentucky
Economics of Estrus Synchronization and Artificial Insemination Dr. Les Anderson and Paul Deaton University of Kentucky Introduction Few beef producers would disagree that the genetic potential available
2016 Protocols for Synchronization of Estrus and Ovulation in Beef Cows and Heifers
2016 Protocols for Synchronization of Estrus and Ovulation in Beef Cows and Heifers Biotechnology presents beef producers with an unprecedented opportunity to improve herd genetics. Producers have more
Pregnancy Rates Per Artificial Insemination for Cows and Heifers Inseminated at a Synchronized Ovulation or Synchronized Estrus 1
Pregnancy Rates Per Artificial Insemination for Cows and Heifers Inseminated at a Synchronized Ovulation or Synchronized Estrus 1 J. R. PURSLEY,*,2 M. C. WILTBANK,*,3 J. S. STEVENSON, J. S. OTTOBRE, H.
Artificial Insemination (AI) and Oestrus Synchronisation of Beef Cattle
Artificial Insemination (AI) and Oestrus Synchronisation of Beef Cattle Information compiled by Endell Veterinary Group, Paragon Veterinary Group and RAFT Solutions/Bishopton Cattle Breeding Services.
ESTRUS SYNCHRONIZATION: A REPRODUCTIVE MANAGEMENT TOOL by Mel DeJarnette, reproduction specialist Revised February 2004
SELECT INC. SIRES ESTRUS SYNCHRONIZATION: A REPRODUCTIVE MANAGEMENT TOOL by Mel DeJarnette, reproduction specialist Revised February 2004 Historically, estrus synchronization has been promoted as a labor
Estrus Synchronization Protocols for Cows
Estrus Synchronization Protocols for Cows Cliff Lamb University of Florida Applied Reproductive Strategies in Beef Cattle NCBA Convention January 28, 2010 Estrous Synchronization Protocols Hybrid Synch
THE WHY, HOW-TO, AND COST OF PROGRAMED AI BREEDING OF DAIRY COWS. J. S. Stevenson
Dairy Day 1998 THE WHY, HOW-TO, AND COST OF PROGRAMED AI BREEDING OF DAIRY COWS J. S. Stevenson Summary Management of the estrous cycle is now more practical than it was a decade ago because of our understanding
Comparison of progestin-based protocols to synchronize estrus and ovulation before fixed-time artificial insemination in postpartum beef cows 1
Comparison of progestin-based protocols to synchronize estrus and ovulation before fixed-time artificial insemination in postpartum beef cows 1 D. J. Schafer,* J. F. Bader,* J. P. Meyer,* J. K. Haden,
PRODUCERS can choose to use natural
Artificial Insemination PRODUCERS can choose to use natural or artificial means of breeding their animals. Technology has advanced in the last 30 to 40 years to allow animal producers to use means other
COMPARISON OF FIXED-TIME ARTIFICIAL INSEMINATION VS. NATURAL SERVICE IN BEEF COWS: REPRODUCTIVE EFFICIENCY AND SYSTEM COST
FACT SHEET #2015.02 COMPARISON OF FIXED-TIME ARTIFICIAL INSEMINATION VS. NATURAL SERVICE IN BEEF COWS: REPRODUCTIVE EFFICIENCY AND SYSTEM COST By: Dr. Bart Lardner, Kathy Larson MSc, and Dr. Daalkhaijav
STRATEGIES TO OPTIMIZE USE OF AI IN COW/CALF PRODUCTION SYSTEMS: FOCUS ON FIXED-TIME AI PROTOCOLS FOR COWS 1
Proceedings, Applied Reproductive Strategies in Beef Cattle - Northwest September 30 October 1, 2011; Boise, ID STRATEGIES TO OPTIMIZE USE OF AI IN COW/CALF PRODUCTION SYSTEMS: FOCUS ON FIXED-TIME AI PROTOCOLS
Beef Cattle Breeds and Biological Types Scott P. Greiner, Extension Animal Scientist, Virginia Tech
publication 400-803 Beef Cattle Breeds and Biological Types Scott P. Greiner, Extension Animal Scientist, Virginia Tech Worldwide there are more than 250 breeds of beef cattle. Over 60 of these breeds
Artificial Insemination in Cattle
Artificial Insemination in Cattle Introduction This slide show is designed to introduce students to artificial insemination in cattle. However, it is only a brief overview and further training is necessary
A POWERFUL IN VITRO FERTILIZATION
A POWERFUL During the past 50 years technological advances in the field of bovine reproduction have led to some dramatic changes in the way cattle look, reproduce, perform, and even taste. Artificial Insemination
Value of Managing Beef Cattle Genetics
Value of Managing Beef Cattle Genetics Lisa Rees University of Missouri Department of Agricultural and Applied Economics Contact Information: 803 E. Green Meadows, Apt. 102 Columbia, MO 65201 Profile-
New product approval for Fixed-Time AI. John Lee, DVM Zoetis Dairy Technical Services
New product approval for Fixed-Time AI John Lee, DVM Zoetis Dairy Technical Services 1 More than two years in the making 2 FACTREL (gonadorelin hydrochloride) Sterile Solution is now approved by the Food
Artificial Insemination
AS1749 Maximizing Pregnancy Rates When Using Artificial Insemination Carl Dahlen, Beef Cattle Specialist, NDSU Extension Service Dani Black, Graduate Student, NDSU Animal Sciences Department Mellissa Crosswhite,
reprodaction Technical Publications Basic guidelines to select the right synchronization protocol for Timed Artificial Insemination in cattle
reprodaction Technical Publications Basic guidelines to select the right synchronization protocol for Timed Artificial Insemination in cattle This short review will cover basic aspects to be taken into
Summary of Product Characteristics
Summary of Product Characteristics 1 NAME OF THE VETERINARY MEDICINAL PRODUCT ACEGON, 50 microgram/ml, solution for injection for cattle. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each ml contains: Active
Successful Timed AI Programs: Using Timed AI to Improve Reproductive Efficiency in High Producing Dairy Cattle
Successful Timed Programs: Using Timed to Improve Reproductive Efficiency in High Producing Dairy Cattle Milo C. Wiltbank, Ph.D. Department of Dairy Science University of Wisconsin, Madison Introduction
Unit B: Understanding Animal Reproduction. Lesson 3: Understanding Animal Reproduction Technology
Unit B: Understanding Animal Reproduction Lesson 3: Understanding Animal Reproduction Technology Student Learning Objectives: Instruction in this lesson should result in students achieving the following
EFFICIENCY OF TREATMENT OF FOLLICULAR CYSTS IN COWS
2012 CVŽV ISSN 1337-9984 EFFICIENCY OF TREATMENT OF FOLLICULAR CYSTS IN COWS D. ŠŤASTNÁ, P. ŠŤASTNÝ Slovak University of Agriculture, Nitra, Slovak Republic ABSTRACT The aim of the work was to compare
Replacement Heifers Costs and Return on Investment Calculation Decision Aids
Replacement Heifers Costs and Return on Investment Calculation Decision Aids The purpose of this replacement heifer cost decision aid is to calculate total production costs and return on investment (ROI)
Setting up Cows for First Postpartum Artificial Insemination. Paul M. Fricke, Ph.D. Professor of Dairy Science, University of Wisconsin Madison
Setting up Cows for First Postpartum Artificial Insemination Paul M. Fricke, Ph.D. Professor of Dairy Science, University of Wisconsin Madison Introduction A long standing goal of reproductive physiologists
Overview of Artificial Insemination of Kentucky Meat and Dairy Goats Terry Hutchens, Extension Associate University of Kentucky (G10307)
Overview of Artificial Insemination of Kentucky Meat and Dairy Goats Terry Hutchens, Extension Associate University of Kentucky (G10307) General Prospective Kentucky goat producers can make great strides
THE STIMULATION OF OVULATION DURING HIGH TEMPERATURE, AN TECHNIQUE OF FERTILITY INCREASING IN COWS
THE STIMULATION OF OVULATION DURING HIGH TEMPERATURE, AN TECHNIQUE OF FERTILITY INCREASING IN COWS TURMALAJ L.*; RAPTI DH.*; LIKA E.*; GRIZELJ J.**; VINCE S.** * Veterinary Medicine Faculty, Tirane, Albania.
Herd Navigator and reproduction management
Herd Navigator and reproduction management 1. Reproductive management Efficient and profitable reproduction management in a dairy herd requires routine and time-consuming manual heat detection and proper
Headquarters in Sioux Center, IA 1
Nicholas Lemmel Cornfields, soybeans, and cows, I had finally arrived at Trans Ova Genetics Headquarters in Sioux Center, Iowa. I pulled into the drive of the intern house located on the corner of the
Replacement Heifers Costs and Return Calculation Decision Aids
Replacement Heifers Costs and Return Calculation Decision Aids The purpose of these replacement heifer cost decision aids is to calculate total production costs and return on investment (ROI) to evaluate
Using estrus-detection patches to optimally time artificial insemination (AI) and improve pregnancy rates in suckled beef cows in a timed AI program
Using estrus-detection patches to optimally time artificial insemination (AI) and improve pregnancy rates in suckled beef cows in a timed AI program Hill, S. L., D. M. Grieger, K. C. Olson, J. R. Jaeger,
Getting Cows Pregnant: Are Problem Cows Really the Problem?
Getting Cows Pregnant: Are Problem Cows Really the Problem? Paul M. Fricke, PhD Associate Professor, Department of Dairy Science, University of Wisconsin, Madison, Wisconsin Phone: 608-263-4596 Email:
MINISTRY OF LIVESTOCK DEVELOPMENT SMALLHOLDER DAIRY COMMERCIALIZATION PROGRAMME. Artificial Insemination (AI) Service
MINISTRY OF LIVESTOCK DEVELOPMENT SMALLHOLDER DAIRY COMMERCIALIZATION PROGRAMME Artificial Insemination (AI) Service 1 1.0 Introduction The fertility of a dairy cattle is very important for a dairy farmer
REPRODUCTION AND BREEDING Crossbreeding Systems for Beef Cattle
Beef Cattle REPRODUCTION AND BREEDING Crossbreeding Systems for Beef Cattle Pete Anderson University of Minnesota Beef Team It has been well documented that crossbreeding improves performance of beef cattle.
Natural Breeding vs. Artificial Insemination: A Cost Comparison Analysis. By Patrick Jacobsen
Natural Breeding vs. Artificial Insemination: A Cost Comparison Analysis By Patrick Jacobsen Table of Contents Introduction Problem Study Assumptions Natural Breeding Costs Artificial Insemination Costs
BOER GOAT EMBRYO TRANSFER
BOER GOAT EMBRYO TRANSFER Good management No shortcuts PLAN AHEAD AVOID STRESS Some examples of how stress is induced are: Mixing groups or individual animals together that have not previously been together.
Understanding Animal Reproduction Technology
Lesson 251c Understanding Animal Reproduction Technology Core Area. Animal Science Unit 250. Genetics and Breeding Topic 251. Fertilization California Academic Standard. Science Grades 9 through 12 Biology/Life
SYNCHRONIZATION OF BOS INDICUS-INFLUENCED CATTLE FOR TIMED ARTIFICIAL INSEMINATION
Proceedings, Applied Reproductive Strategies in Beef Cattle November 12 and 13, 2005, Texas A&M University, College Station SYNCHRONIZATION OF BOS INDICUS-INFLUENCED CATTLE FOR TIMED ARTIFICIAL INSEMINATION
Evaluations for service-sire conception rate for heifer and cow inseminations with conventional and sexed semen
J. Dairy Sci. 94 :6135 6142 doi: 10.3168/jds.2010-3875 American Dairy Science Association, 2011. Evaluations for service-sire conception rate for heifer and cow inseminations with conventional and sexed
Artificial insemination:
NAFU FARMER TECHNOLOGY Artificial insemination: The best technique to improve your herd by Joel Nkuna, AI technician, Taurus The practice of AI (artificial insemination) with cattle, is one of the few
A COMPARISON OF SEMEN THAWING FOR ARTIFICIAL INSEMINATION IN CATTLE MIR CENTER, ANGELO STATE UNIVERSITY, SAN ANGELO, TEXAS
A COMPARISON OF SEMEN THAWING FOR ARTIFICIAL INSEMINATION IN CATTLE MIR CENTER, ANGELO STATE UNIVERSITY, SAN ANGELO, TEXAS A Thesis Presented to the Faculty of the Graduate School of Angelo State University
Beef Cattle Frame Scores
Beef Cattle Frame Scores AS-1091, May 1995 John Dhuyvetter, Area Livestock Specialist Frame scores are an objective, numerical description of cattle skeletal size which reflect the growth pattern and potential
ANS 3319C Reproductive Physiology and Endocrinology Artificial Insemination in Cattle. Objectives. What are the advantages and disadvantages of AI?
ANS 3319C Reproductive Physiology and Endocrinology Artificial Insemination in Cattle Objectives 1) To provide an overview of the process of artificial insemination (AI) in cattle. 2) To gain an understanding
Reproductive Anatomy and Fertility
Describe the functions of the parts of the male and female reproductive systems. Analyze factors that affect male and female fertility. Outline the process of estrous and estrus. UNIT Objectives 4 Discuss
REPRODUCTION AND BREEDING Influence of Nutrition on Reproduction in the Beef Cow Herd
Beef Cattle REPRODUCTION AND BREEDING Influence of Nutrition on Reproduction in the Beef Cow Herd G. Cliff Lamb University of Minnesota Beef Team INTRODUCTION The primary goal for cow/calf producers is
Reproductive Performance in Dairy Cows Synchronized with the Ovsynch Protocol at Different Stages of the Estrus Cycle
Reproductive Performance in Dairy Cows Synchronized with the Ovsynch Protocol at Different Stages of the Estrus Cycle Goshen, T.,, 2 * Tsitrin, K. and van Straten, M., 2 The Koret School of Veterinary
Relationship between weight at puberty and mature weight in beef cattle
Relationship between weight at puberty and mature weight in beef cattle M.P. Davis and R.P. Wettemann STORY IN BRIEF The relationship between weight at puberty and mature weight was evaluated in Angus
1. AMOUNT OF FSH PRESENT
The Menstrual Cycle Name Date Period PRE-LAB 1. Write down three facts you know about the menstrual cycle. A. B. C. FOLLICULAR PHASE Within the ovaries are located many egg cells. Each egg is enclosed
The Costs of Raising Replacement Heifers and the Value of a Purchased Versus Raised Replacement
Managing for Today s Cattle Market and Beyond March 2002 The Costs of Raising Replacement Heifers and the Value of a Purchased Versus Raised Replacement By Dillon M. Feuz, University of Nebraska Numerous
BREEDING SOUNDNESS EVALUATION OF BULLS
Proceedings, Applied Reproductive Strategies in Beef Cattle November 12 and 13, 2005, Texas A&M University, College Station BREEDING SOUNDNESS EVALUATION OF BULLS Derry Magee Clinical Associate Professor
The Menstrual Cycle. Model 1: Ovarian Cycle follicular cells
The Menstrual Cycle REVIEW questions to complete before starting this POGIL activity 1. Gonads produce both gametes and sex steroid hormones. For the female, name the: A. gonads ovaries B. gametes oocyte/ovum/egg
Proceedings, Applied Reproductive Strategies in Beef Cattle September 11 and 12, 2007, Billings, Montana NEW TECHNOLOGIES FOR REPRODUCTION IN CATTLE
Proceedings, Applied Reproductive Strategies in Beef Cattle September 11 and 12, 2007, Billings, Montana NEW TECHNOLOGIES FOR REPRODUCTION IN CATTLE George E. Seidel, Jr. Animal Reproduction and Biotechnology
Artificial Insemination (AI) in Cattle
Artificial Insemination (AI) in Cattle Most dairy cows are bred by AI Less common in beef cattle Commonly, bulls are used for all breeding under pasture conditions Less commonly, bulls are used as clean-up
Creep Feeding Beef Calves Dan E. Eversole, Extension Animal Scientist, Virginia Tech
publication 400-003 Creep Feeding Beef Calves Dan E. Eversole, Extension Animal Scientist, Virginia Tech OVERVIEW Creep feeding is the managerial practice of supplying supplemental feed (usually concentrates)
Course: AG 534 Zoology - Science of Animal Reproduction
Course: AG 53 Zoology - Science of Animal Reproduction Unit Objective CAERT Lesson Plan Library Unit Problem Area Les son Animal. Plant & Soil Science 1 1,2, 3 Introduction to Animal Science Match terms
BREAK-EVEN COSTS FOR COW/CALF PRODUCERS
L-5220 9/98 BREAK-EVEN COSTS FOR COW/CALF PRODUCERS L.R. Sprott* CALCULATING BREAK-EVEN COSTS of production can help cow/calf producers make better management decisions for the current year or for the
Impact of reproductive technologies on improved genetics in beef cattle
Impact of reproductive technologies on improved genetics in beef cattle JE Kinder 1, JM Osborne 1, ME Davis 1, ML Day 1 1 The Ohio State University, Department of Animal Sciences, Columbus, Ohio 43210,
RATES OF CONCEPTION BY ARTIFICIAL INSEMINATION OF. 1 Miss. Rohini Paramsothy Faculty of Agriculture University of Jaffna
RATES OF CONCEPTION BY ARTIFICIAL INSEMINATION OF DAIRY COWS IN JAFFNA DISTRICT 1 Miss. Rohini Paramsothy Faculty of Agriculture University of Jaffna INTRODUCTION Conception rates of dairy cows are influenced
TECHNICAL BULLETIN FAC-00025. February 2015. Zoetis 100 Campus Drive Florham Park, New Jersey 07932 KEY POINTS
FAC-00025 TECHNICAL BULLETIN February 2015 KEY POINTS Fixed-time artificial insemination (FTAI) is an important, successful and widely accepted practice to improve pregnancy rates (PRs) on dairy operations.
Vaccination Programs for the Cow/Calf Operation
Vaccination Programs for the Cow/Calf Operation Disease prevention is of utmost importance in a cow-calf operation because it is a low profit margin enterprise. Adequate nutrition, strategic deworming,
Timed Artificial Insemination with Estradiol Cypionate or Insemination at Estrus in High-Producing Dairy Cows
J. Dairy Sci. 87:3704 3715 American Dairy Science Association, 2004. Timed Artificial Insemination with Estradiol Cypionate or Insemination at Estrus in High-Producing Dairy Cows R. L. A. Cerri, J. E.
Cattlemen s Corner Beef Newsletter
Owyhee County Cattlemen s Corner Beef Newsletter May, 2013 Inside this issue: Transferring Cattle to the Next Generation Gestation and Dystocia Lost Rivers Grazing Academy Southwest Idaho Beef Producers
SOME PROBLEMS ASSOCIATED WITH ARTIFICIAL INSEMINATION OF BEEF CATTLE
SOME PROBLEMS ASSOCIATED WITH ARTIFICIAL INSEMINATION OF BEEF CATTLE D. R. LAMOND* and A. TAKKEN* Summary In October, 1964, beef cows were divided into three groups. One group was run with bulls for four
Dr. G van der Veen (BVSc) Technical manager: Ruminants [email protected]
Dr. G van der Veen (BVSc) Technical manager: Ruminants [email protected] GENETICS NUTRITION MANAGEMENT Improved productivity and quality GENETICS Breeding programs are: Optimize genetic progress
Artificial Insemination in Dairy Cattle 1
Whole Document Navigator (Click Here) Artificial Insemination in Dairy Cattle 1 D. W. Webb 2 Artificial insemination (AI) is a process by which sperm are collected from the male, processed, stored and
Hormonal Oral Contraceptives: An Overview By Kelsie Court. A variety of methods of contraception are currently available, giving men and
Hormonal Oral Contraceptives: An Overview By Kelsie Court A variety of methods of contraception are currently available, giving men and women plenty of options in choosing a method suitable to his or her
Arizona Ranchers Management Guide
Arizona Ranchers Management Guide Edited by Russell Tronstad Department of Agricultural and Resource Economics Jim Sprinkle Area Extension Agent, Animal Science George Ruyle School of Renewable Natural
Hormonal treatment and estrus synchronization in cows: A mini-review
OPEN ACCESS MINI-REVIEW DOI: 10.5455/javar.2015.b45 J. Adv. Vet. Anim. Res., 2(1): 10-17. Available at- http://bdvets.org/javar Volume 2 Issue 1 (March 2015) Hormonal treatment and estrus synchronization
Section 6: Cow-Calf Cash Flow Enterprise Budget Analysis 101
Section 6: Cow-Calf Cash Flow Enterprise Budget Analysis 101 Lets get started with some basics the Cow Calf Profit Equation The Cow Calf Profit Equation There is no single goal that will satisfy every
The Menstrual Cycle, Hormones and Fertility Treatment
The Menstrual Cycle, Hormones and Fertility Treatment How many of us understand how our monthly cycle works? Every 28 days (or thereabouts), between the ages of around 13 and 51, a woman will release a
The applications of timed artificial insemination and timed embryo transfer in reproductive management of dairy cattle
Revista Brasileira de Zootecnia 2010 Sociedade Brasileira de Zootecnia ISSN 1806-9290 www.sbz.org.br The applications of timed artificial insemination and timed embryo transfer in reproductive management
It s time to take control of your breeding program.
17 16 15 18 FSH 14 It s time to take control of your breeding program. 19 PITUITARY ESTROGEN LH FOLLICLE MATURATION REGRESSION 13 20 PRODUCTION AND GROWTH OF THE OF FOLLICULAR PHASE NO Introducing MATRIX
Reproductive technologies. Lecture 15 Introduction to Breeding and Genetics GENE 251/351 School of Environment and Rural Science (Genetics)
Reproductive technologies Lecture 15 Introduction to Breeding and Genetics GENE 251/351 School of Environment and Rural Science (Genetics) Animal Breeding in a nutshell Breeding objectives Trait measurement
Artificial Insemination Technique. Dairy Integrated Reproductive Management. Dr. M.L. O Connor The Pennsylvania State University. Reproductive Anatomy
Artificial Insemination Technique IRM-12 Dairy Integrated Reproductive Management Dr. M.L. O Connor The Pennsylvania State University Many dairy producers are artificially breeding their own cattle. A
