Dortmund Data Bank (DDB) DDB Software Package (DDBSP)

Size: px
Start display at page:

Download "Dortmund Data Bank (DDB) DDB Software Package (DDBSP)"

Transcription

1 Showcase on Technology Dortmund Data Bank (DDB) DDB Software Package (DDBSP) Practical Application of Distillation Synthesis for NOx Reduction, Energy Cost Savings, & Improved Environmental Compliance Dr. Juergen Rarey, Managing Director, DDBST, Oldenburg Germany, Todd J. Willman PE, ChemE, MBA, EPCON International, Houston, TX, 1

2 Aspects to be Considered During the Synthesis of Separation Processes sepproc5_e.cdr Benzene (2)?? T 12 = x 1 Distillation? Crystallization? Ethanol (1) Water (3) Residue Curve Construction 1 2 P1 s P2 s 1? Suitable Solvent for Extractive or Azeotropic Distillation? y 1 x 1? Separation Problems? AB A C Separation Process? N th =? Column Height?? ABCD? S = n [2(n-1)]! n! (n-1)! T n Bedeutung CD B D Sequence? 2

3 Advantages of Distillation Compared to Other Separation Processes scheme of a separation process energy/entrainer to generate different streams Feed Stage i Streams of different composition Advantages of distillation processes compared to other separation processes a) Energy as "entrainer" b) Simple phase separation due to large difference in density between liquid and vapor phase c) Simple transport of fluid phases helps to realize large number of stages d) Long time experience (estimated throughput in 1992: 5.2*10 9 t/a) Disadvantages of distillation High energy consumption In 1989 approx. 3% of the total US energy consumption was required to operate distillation columns Synthese Due to these advantages distillation is also used for the separation of azeotropic mixtures 3

4 Residual Curves intermediate boiling component Vapor Liquid x (t) Simple Distillation Boundary Acetone T b= 56.1 C P = 1 atm 54.2 C x 0 = x (t=0) x 0 x 0 x 0 x (t) x (t) x (t) low boiling component high boiling component Benzene T b= 80.1 C 77.5 C Cyclohexane T b= 80.7 C _e AZD 4

5 Residual and Boundary Residual Curves C NMP 56.1 C Acetone 79.6 C 2-Butanone A) B) C) 54.2 C 78.4 C 71.2 C Benzene 77.5 C Cyclohexane Benzene 77.5 C Cyclohexane 80.1 C 80.7 C 80.1 C 80.7 C Benzene 77.5 C Cyclohexane 80.1 C 80.7 C AZD 5

6 Heteroazeotropic Distillation HeteroazeotropicDistillation.cdr Benzene (2) C C C C B C Ethanol Water A B B C D Benzene D Water Ethanol E Ethanol (1) C A C E Water (3) C Synthese 6

7 Residue Curves and Border Planes in the System Acetone(1) Chloroform(2) Methanol(3) - Ethanol(4) at 1 atm mod. UNIFAC (Do.), 1 atm stable node unstable saddle unstable node ResidueCurves+BorderPlane s.ppt (1) 56.4 C (2) 61.1 C (3) 64.9 C (4) 78.3 C (1)-(2) 64.3 C (1)-(3) 55.4 C (2)-(3) 53.7 C (2)-(4) 59.9 C (1)-(2)-(3) 57.6 C (1)-(2)-(4) 63.2 C 7

8 Product Regions in the System Water (1) + Ethanol (2) + Benzene (3) for Different Feed Compositions P = 1 atm Modified UNIFAC (Dortmund) Ethanol (2) C B ideal vapor phase (1)-(2)-(3) C (1)-(2) C (1)-(3) C (2)-(3) C F D c AZD Water (1) C B F D D F B Benzene (3) C 8

9 Azeotropic und Extractive Distillation Synthese 9

10 Coworkers of DDBST Ltd. 10

11 Scope of DDB 1 - Basic Data 2 - Experimental Data (from Literature) 3 Molecular Structures (ChemDB) 4 Model Parameters (ParamDB) 5 Literature Sources and Documents (LEAR) 6 COSMO -Profiles... 11

12 Status of the Dortmund Data Bank* (Sept. 2006) References, 1800 Journals, Compounds plus Salts, Adsorbents and Polymers (VLE) (HPV) VLE** 5920 (ELE) (total: data sets) data sets data sets for data points for pure solvents non-electrolytes Polymers new (E)SLE data sets 1120 data sets KOW data sets for solvent mixtures KOW for electrolytes 7250 data points he LLE DDB data sets 2150 data sets azeotr. data cpe data sets data points ve CRI Pure Component Properties ADS 1320 data sets 3500 data sets cp Pi S data sets data sets for non-electrolytes (E)GLE 1100 data sets for electrolytes * detailed information is available via internet ( ** including unpublished VLE data of companies from the former German Democratic Republic 12

13 Dortmund Data Bank Software Package (DDBSP) DDBSP_jumpstart.cdr; DDB - Mixture Data VLE h E ACT GLE LLE AZD SLE... Prediction UNIFAC Mod. UNIFAC (Do) ASOG PSRK... Recommended Values Wilson NRTL UNIQUAC SRK PR... Calculation Programs Phase Equilibria Simulation Programs Flash Points Process Synthesis DDB - Pure Component Data Pis c P crit. Tm h fus... Prediction Recommended Values Parameter Fitting UNIFAC Mod. UNIFAC (Do) PSRK LIQUAC PCP Presentation Programs Diagrams Tables experimental correlated predicted 13

14 Experimental and Predicted Azeotropic Data for the Quaternary System at P = kpa Benzene (1) - Cyclohexane (2) Acetone (3) - Ethanol (4) predicted (mod. UNIFAC (Do)) system type of azeotrope hompmax none hompmax hompmax hompmax none none hompmax none none none / C experimental* type of / C azeotrope hompmax 77.6 none hompmax hompmax hompmax 64.8 none none hompmax 64.9 none none n.a. y1,az y2,az y1,az y2,az * mean values of the experimental data stored in the Dortmund Data Bank n.a.: not available a AZD 14

15 Residual Curves in the System Ethanol (1) - Benzene (2) Water (3) at P=1atm HeteroazeotropicDistillation.cdr Benzene (2) C C C C C B D Ethanol (1)A C C AZD E Water (3) C 15

16 Entrainer Selection and Contour Lines separation factor of 1 up to 22 mol% of NMP < 0.65 properties along this line or parallel typically shown on solvent free basis <

17 Selection of Selective Solvents with the Help of Thermodynamic Models or DDB Selective_Solvent_Models_DDB.cdr Input: Examination of the binary VLE behavior Preselection of potential solvents with the help of predicted values i Output: List with selective solvents a) extractive distillation b) azeotropic distillation 1)... 2)... 3)... Recommendation of alternative distillation processes the case of: 1) Zeotropy 2) Heteroazeotropy 3) Strong pressure dependence of y az 4) Zeotropy at low (high) pressure Prediction of ternary azeotropic data ( solvent) Are solvents suitable? Input: Components Pressure (Temperature) Distillation Process Examination of the binary VLE behavior Search of binary data (azeotropic data, ) for component 1 and 2 DDB-MIX azeotropic data (45100 values) (36700 values) Output: List of suitable solvents including experimental information Recommendation of alternative distillation processes in case of: 1. Zeotropy 2. Heteroazeotropy 3. Strong pressure dependence of y az 4. Zeotropy at low (high) pressure Search of ternary data with component 1 and 2 Determination of 12 and Taz (Paz ) for given P(T) Selection criterion fulfilled? 17

18 Selection of Selective Solvents for Extractive Distillation Components to be separated: (1) Cyclohexane C6H12 Tb(2) = K (2) Benzene C6H6 Tb(1) = K DDB - access P = kpa azeotropic data for system (1) - (2): type of azeotrope : homogeneous pressure maximum, Tb = K modified UNIFAC (Dortmund) selective solvent (3) (1,2), inf. (T [K]) selective solvent (3) (1,2), inf. (T [K]) [EMIM] ethylsulfate N-Butylpyridinium BF4 [EdMIM] bis(cf 3SO2)imide [EMIM] bis(cf3so2)imide 4-Methyl-N-butylpyridinium BF4 Tetrahydrofurfuryl alcohol N-Formyl-morpholine Nitrobenzene N-Methyl-2-pyrrolidone Cyclohexanone Furfural Aniline Anisole (303.15K) (298.00K) (298.00K) (298.00K) (353.56K) 4.05 (300.15K) 3.80 (408.73K) 3.48 (397.02K) 3.45 (394.07K) 3.41 (293.15K) 3.29 (380.59K) 3.13 (387.94K) 3.05 (293.15K) Adipodinitrile 2,5-Hexanedione N-Methyl-2-pyrrolidone Furfural Aniline Acetophenone Triethylene glycol Nitrobenzene Cyclohexylamine 3-Methylphenol Tetrahydrofurfuryl alcohol Cyclohexanone Anisole 8.70 (353.56K) 4.95 (353.56K) 4.93 (353.56K) 4.11 (353.56K) 4.02 (353.56K) 3.83 (353.56K) 3.03 (353.56K) 2.88 (353.56K) 2.80 (353.56K) 2.10 (353.56K) 2.07 (353.56K) 2.06 (353.56K) 1.72 (353.56K) Synthese 18

19 Typical Result for the Search of Suitable Solvents by DDB Access Synthese

20 Typical Result for the Search of Selective Solvents with the Help of a Thermodynamic Model Synthese

21 Software Demonstration DDBSP Jumpstart 21

22 Conclusion Azeotropic conditions can be overcome (and energy reduced) by selecting a suitable solvent for azeotropic or extractive distillation, extraction this can be best accomplished using a large, highly accurate experimental data bank or powerful predictive models. The action of an entrainer for extractive distillation results from the different activity coefficients of the components to be separated in the entrainer. The greatest effect is usually observed when the components are infinitely diluted in the entrainer. The effect of the entrainer on the activity coefficients can result in an azeotropic point of one of the components with the entrainer. Solvent Selection either uses the DDB or the results of predictive models (UNIFAC, ) as a source for activity coefficients (ACT) or azeotropic data (AZD). The program is very powerful and has many important options, only very simple example were shown here. Running distillation separation processes under azeotropic conditions means that purity cannot be improved no matter what additional energy is added to the process. A column analyzed and optimized with Distillation Synthesis can have significantly reduced overall energy demands directly, positively impacting NOX reduction and environmental compliance. 22

Dynamic Models Towards Operator and Engineer Training: Virtual Environment

Dynamic Models Towards Operator and Engineer Training: Virtual Environment European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Dynamic Models Towards Operator and Engineer Training:

More information

Practical Thermodynamics Used in Simulations

Practical Thermodynamics Used in Simulations Practical Thermodynamics Used in Simulations Fred C. Justice, P.E. Chemstations Inc. 1 Outline Basic thermodynamics Selecting a [decent] VLE model Validating a model selection The basics of Thermo Models

More information

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation

More information

Predicting Phase Equilibria of Oxygenated Compounds Using Molecular Models Results from the MEMOBIOL Project.

Predicting Phase Equilibria of Oxygenated Compounds Using Molecular Models Results from the MEMOBIOL Project. Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources Predicting Phase Equilibria of Oxygenated Compounds Using Molecular Models Results from the

More information

Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy b

Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy b A publication of 1897 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

MOLECULAR WEIGHT BY BOILING POINT ELEVATION

MOLECULAR WEIGHT BY BOILING POINT ELEVATION MOLECULAR WEIGHT BY BOILING POINT ELEVATION BACKGROUND This experiment demonstrates the use of colligative properties. The goal is to measure the molecular weight of a non-volatile solute by determining

More information

Sample Test 1 SAMPLE TEST 1. CHAPTER 12

Sample Test 1 SAMPLE TEST 1. CHAPTER 12 13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Simulation of Multistage Countercurrent Liquid-Liquid Extraction

Simulation of Multistage Countercurrent Liquid-Liquid Extraction Leonardo Journal of Sciences ISSN 1583-0233 Issue 20, January-June 2011 p. 79-94 Simulation of Multistage Countercurrent Liquid-Liquid Extraction Annasaheb WARADE 1*, Ravindra GAIKWAD 1, Rajiv SAPKAL 2

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

Distillation vaporization sublimation. vapor pressure normal boiling point.

Distillation vaporization sublimation. vapor pressure normal boiling point. Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be

More information

2. Why does the solubility of alcohols decrease with increased carbon chain length?

2. Why does the solubility of alcohols decrease with increased carbon chain length? Colligative properties 1 1. What does the phrase like dissolves like mean. 2. Why does the solubility of alcohols decrease with increased carbon chain length? Alcohol in water (mol/100g water) Methanol

More information

Figure 56. Simple mixing process with process specification for the outlet stream.

Figure 56. Simple mixing process with process specification for the outlet stream. Flowsheet Analysis One of the most useful functions of process simulators is the ability to manipulate and analyze the different design variables to determine the required value or study its effect on

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation

More information

[Elliot and Lira, introduction to Chemical EngineeringThermodynamics, Prentice Hall, 1999].

[Elliot and Lira, introduction to Chemical EngineeringThermodynamics, Prentice Hall, 1999]. ASPEN HYSYS- fluid package selection Δένδπο Αποθάζεων για επιλογή θεπμοδςναμικού μονηέλος BIP: mean binary interaction parameters [Elliot and Lira, introduction to Chemical EngineeringThermodynamics, Prentice

More information

RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS

RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS By Daniel R. Summers, P.E. SULZER CHEMTECH USA, Inc. Presented at the AIChE Annual Meeting Advances in Distillation Equipment and Applications Paper 264b November

More information

Acetaldehyde Production by Ethanol Dehydrogenation

Acetaldehyde Production by Ethanol Dehydrogenation Acetaldehyde Production by Ethanol Dehydrogenation Background Acetaldehyde is a colorless liquid with a pungent, fruity odor. It is primarily used as a chemical intermediate, principally for the production

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( ) Phase Diagrams 1 Gibbs Phase Rule The Gibbs phase rule describes the degrees of freedom available to describe a particular system with various phases and substances. To derive the phase rule, let us begin

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2

More information

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 2 Phase equilibria Many industrial processes involve several phases in equilibrium gases, liquids, solids and even different crystalline forms of the solid state. Predicting the number of phases present

More information

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/pc Petroleum & Coal 51 (2) 100-109, 2009 STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

Calorimetry: Heat of Vaporization

Calorimetry: Heat of Vaporization Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular

More information

Romanian International Conference on Chemistry and Chemical Engineering RICCCE XIV

Romanian International Conference on Chemistry and Chemical Engineering RICCCE XIV Phase Equilibria Database and Calculation Program for Pure Component Systems and Mixtures Dan Geană, Liviu Rus Department of Applied Physical Chemistry and Electrochemistry, Polytechnic University of Bucharest,

More information

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

Production of R-134a

Production of R-134a Production of R-134a Background In the 1930 s, chlorofluorocarbons (CFC s) were developed as a supposedly safe alternative to ammonia and sulfur dioxide refrigerants. While sulfur dioxide is toxic and

More information

Minimum Reflux in Liquid Liquid Extraction

Minimum Reflux in Liquid Liquid Extraction 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Minimum Reflux in Liquid Liquid Extraction Santanu Bandyopadhyay

More information

Phase Equilibria & Phase Diagrams

Phase Equilibria & Phase Diagrams Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what

More information

Liquid-Liquid Extraction (LLX)

Liquid-Liquid Extraction (LLX) Liquid-Liquid Extraction (LLX) Extraction is a liquid-liquid operation. It is a process of transferring a solute from one liquid phase to another immiscible or partially miscible liquid in contact with

More information

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING Andrea Carolina Machado Miguens 1, Even Solbraa 1, Anita Bersås Hansen 1, Torbjørn Vegard Løkken 1, Toril Haugum 1, Svein Solvang 2 Statoil ASA

More information

Solvents: Theory and Application

Solvents: Theory and Application Solvents: Theory and Application Revised: 20131107 Source: www.microchemicals.com/downloads/application_notes.html Dissolving While etching breaks the intramolecular bonds of a solid state, solving describes

More information

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures 4870 Ind. Eng. Chem. Res. 1998, 37, 4870-4875 Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures João A. P. Coutinho Centro de Investigagão

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of are homogeneous mixtures of two or more pure substances. In a solution,

More information

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6 Chem 420/523 Chemical hermodynamics Homework Assignment # 6 1. * Solid monoclinic sulfur (S α ) spontaneously converts to solid rhombic sulfur (S β ) at 298.15 K and 0.101 MPa pressure. For the conversion

More information

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation Lecture Presentation Chapter 13 Properties of Yonsei University homogeneous mixtures of two or more pure substances: may be gases, liquids, or solids In a solution, the solute is dispersed uniformly throughout

More information

DOWEX Resins as Organic Solvent Desiccants

DOWEX Resins as Organic Solvent Desiccants Product Information DOWEX Resins as Organic Solvent Desiccants DOWEX* ion exchange resins can be used as desiccants for organic solvents, after having been dried to a low moisture level, in a manner similar

More information

Use of Ionic Liquids in Produced Water Clean Up

Use of Ionic Liquids in Produced Water Clean Up Use of Ionic Liquids in Produced Water Clean Up NGOTP Upstream Environmental Technology Review Wednesday, February 25, 2004 Houston, TX David DePaoli Joe Birdwell, Sheng Dai, Huimin Luo, Joanna McFarlane

More information

Applications of Organic Solvent Nanofiltration in the Process Development of Active Pharmaceutical Ingredients. Dominic Ormerod

Applications of Organic Solvent Nanofiltration in the Process Development of Active Pharmaceutical Ingredients. Dominic Ormerod Applications of rganic Solvent Nanofiltration in the Process Development of Active Pharmaceutical Ingredients Dominic rmerod Introduction A non-thermal solvent exchange. Removal of Excess reagents via

More information

Emission Testing February 2015 LMS Energy Pty Ltd - Jilliby Plant

Emission Testing February 2015 LMS Energy Pty Ltd - Jilliby Plant Page: 1 of 6 1/132 Ross Court Cleveland QLD 4163 Emission Testing February 2015 - Jilliby Plant Dear Nathan McClelland, Tests were performed 11 February 2015 to determine emissions to air from Unit 1 at

More information

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775.

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775. Chapter 3 Example 3.2-5. ---------------------------------------------------------------------------------- Sulfur dioxide produced by the combustion of sulfur in air is absorbed in water. Pure SO 2 is

More information

Chapter 13: Properties of Solutions

Chapter 13: Properties of Solutions Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)

More information

Everest. Leaders in Vacuum Booster Technology

Everest. Leaders in Vacuum Booster Technology This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high

More information

ADU 5. Automatic Distillation Unit

ADU 5. Automatic Distillation Unit ADU 5 Automatic Distillation Unit Atmospheric Distillation Distillation tests are used to characterize the volatility of petrochemical products. These volatility characteristics are a critical measurement

More information

1) What is the overall order of the following reaction, given the rate law?

1) What is the overall order of the following reaction, given the rate law? PRACTICE PROBLEMS FOR TEST 2 (March 11, 2009) 1) What is the overall order of the following reaction, given the rate law? A) 1st order B) 2nd order C) 3rd order D) 4th order E) 0th order 2NO(g) + H 2(g)

More information

PhD Theses STUDY OF THE SOLVENT GRADIENT SIMULATED MOVING BED PREPARATIVE LIQUID CHROMATOGRAPHIC PROCESS. Written by Melinda Nagy

PhD Theses STUDY OF THE SOLVENT GRADIENT SIMULATED MOVING BED PREPARATIVE LIQUID CHROMATOGRAPHIC PROCESS. Written by Melinda Nagy PhD Theses STUDY OF THE SOLVENT GRADIENT SIMULATED MOVING BED PREPARATIVE LIQUID CHROMATOGRAPHIC PROCESS Written by Melinda Nagy Consultants Tibor Szánya Géza Horváth University of Pannonia Department

More information

Distillation of Alcohol

Distillation of Alcohol CHEM 121L General Chemistry Laboratory Revision 1.6 Distillation of Alcohol To learn about the separation of substances. To learn about the separation technique of distillation. To learn how to characterize

More information

Chemical Process Simulation

Chemical Process Simulation Chemical Process Simulation The objective of this course is to provide the background needed by the chemical engineers to carry out computer-aided analyses of large-scale chemical processes. Major concern

More information

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance.

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance. Colligative Properties of Solutions: A Study of Boiling Point Elevation Amina El-Ashmawy, Collin County Community College (With contributions by Timm Pschigoda, St. Joseph High School, St. Joseph, MI)

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

9130 Kallo (Kieldrecht) Houston, TX 77015-6544 Phone: +32 3 570 28 78 Phone : 281-452-5951 Email : [email protected] Fax : 281-457-1128

9130 Kallo (Kieldrecht) Houston, TX 77015-6544 Phone: +32 3 570 28 78 Phone : 281-452-5951 Email : info@monumentchemical.com Fax : 281-457-1128 Monument Chemical bvba Johann Haltermann Ltd. Haven 1972, Ketenislaan 3 16717 Jacintoport Blvd. 9130 Kallo (Kieldrecht) Houston, TX 77015-6544 Phone: +32 3 570 28 78 Phone : 281-452-5951 Email : [email protected]

More information

Tiangang TM BW-10LD (622)

Tiangang TM BW-10LD (622) Tiangang TM BW-10LD Oligomeric Hindered Amine Light Stabilizer (HALS) Poly-(N-β-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl-succinate) CAS number 65447-77-0 BW-10LD BW-10LD is a highly effective

More information

Isotope effects on selected physicochemical properties of nitromethane and 1-pentanol

Isotope effects on selected physicochemical properties of nitromethane and 1-pentanol NUKLEONIKA 2006;51(Supplement 2):S81 S85 PROCEEDINGS Isotope effects on selected physicochemical properties of nitromethane and 1-pentanol Anna Makowska, Jerzy Szydłowski Abstract Densities, kinematic

More information

k 2f, k 2r C 2 H 5 + H C 2 H 6

k 2f, k 2r C 2 H 5 + H C 2 H 6 hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Aspen Plus. Getting Started Building and Running a Process Model

Aspen Plus. Getting Started Building and Running a Process Model Aspen Plus Getting Started Building and Running a Process Model Version Number: V8.4 November 2013 Copyright (c) 1981-2013 by Aspen Technology, Inc. All rights reserved. Aspen Plus, aspenone, the aspen

More information

ISANE Isoparaffin Products

ISANE Isoparaffin Products ISANE Isoparaffin Products High Product Purity The Isane range is a unique range of products that is characterized by a high purity level, low odor, low surface tension, and relative chemical inertness.

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Distillation Principles

Distillation Principles Distillation Principles Definition of distillation, Types of columns, Simple Distillation methods (Flash, batch, Steam), Basic distillation Equipment and operation, Column internal, Reboilers, Distillation

More information

Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude

Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude 1 P age Module 3: Liquid Fossil Fuel (Petroleum) Lecture 17: Evaluation of crude 2 P age Keywords: Evaluation, characterization factor, TBP, ASTM, EFV 3.2 Evaluation of crude The assessment of a crude

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 -

THE BASICS Q: What is VOC? Q: What are flashing losses/voc emissions from hydrocarbon storage tanks? - 1 - Calculation of Flashing Losses/VOC Emissions from Hydrocarbon Storage Tanks THE BASICS Q: What is VOC? A: VOC is an acronym that stands for Volatile Organic Compounds. VOC are components of hydrocarbon

More information

Determination of Molar Mass by Freezing-Point Depression

Determination of Molar Mass by Freezing-Point Depression DETERMINATION OF MOLAR MASS BY FREEZING-POINT DEPRESSION 141 Determination of Molar Mass by Freezing-Point Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

How To Make A High Co 2 Gas Blend

How To Make A High Co 2 Gas Blend ECONOMICAL OPTION FOR CO 2 / METHANE SEPARATION IN PRODUCED GAS CONTAINING A HIGH CO 2 FRACTION F. Patrick Ross, P.E. TPR Consulting 9907 Sagecourt Drive Houston, Texas 77089 (713) 870-9208 [email protected]

More information

Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual

Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual 1. Predict the sign of entropy change in the following processes a) The process of carbonating water to make a soda

More information

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) I. INTRODUCTION It is sometimes necessary to know the mutual solubilities of liquids in a two-phase system. For example,

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Fractional Distillation and Gas Chromatography

Fractional Distillation and Gas Chromatography Fractional Distillation and Gas Chromatography Background Distillation The previous lab used distillation to separate a mixture of hexane and toluene based on a difference in boiling points. Hexane boils

More information

Chapter 7 : Simple Mixtures

Chapter 7 : Simple Mixtures Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials

More information

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen

Aldehydes can react with alcohols to form hemiacetals. 340 14. Nucleophilic substitution at C=O with loss of carbonyl oxygen 340 14. Nucleophilic substitution at C= with loss of carbonyl oxygen Ph In Chapter 13 we saw this way of making a reaction go faster by raising the energy of the starting material. We also saw that the

More information

A simple and unified algorithm to solve fluid phase. equilibria using either the gamma-phi or the phi-phi. approach for binary and ternary mixtures

A simple and unified algorithm to solve fluid phase. equilibria using either the gamma-phi or the phi-phi. approach for binary and ternary mixtures A simple and unified algorithm to solve fluid phase equilibria using either the gamma-phi or the phi-phi approach for binary and ternary mixtures Romain PRIVAT,a, Jean-Noël JAUBERT a and Yannick PRIVAT

More information

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills Comparison of Emission Calculation Methodologies for the Oil and Gas Industry Presented by: Leanne Sills Trinity Consultants, Inc. Founded 1974 30+ offices nationwide with over 400 employees Environmental

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

EXAMINATION Luleå University of Technology

EXAMINATION Luleå University of Technology EXAMINATION Luleå University of Technology Course: B0004K Course name: Unit Operations Date: 2013-01-14 Time: 9.00 15.00 Aid: Del A: Inga hjälpmedel (no help materials) Del B: Christie J Geankoplis, Transport

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

Safe Method of Use 7 HSNO Class 3.1 - Flammable Liquids

Safe Method of Use 7 HSNO Class 3.1 - Flammable Liquids Safe Method of Use 7 HSNO Class 3.1 - Flammable Liquids A. Classification HSNO Class 3.1 flammable liquids are categorised according to their flashpoints: HSNO Category 3.1A Flammable Liquids with a flashpoint

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

molecular aggregates would then be present in the water: e.g., linear chains containing

molecular aggregates would then be present in the water: e.g., linear chains containing VISCOSITY MEASUREMENTS OF ALCOHOL-WATER MIXTURES AND THE STRUCTURE OF WATER BY M. AGENO AND C. FRONTALI PHYSICS LABORATORY, ISTITUTO SUPERIORE DI SANITA, ROME, ITALY Communicated by Emilio Segr', February

More information

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal? Crystal Growth How do single crystals differ from polycrystalline samples? Single crystal specimens maintain translational symmetry over macroscopic distances (crystal dimensions are typically 0.1 mm 10

More information

AN INTRODUCTION TO HEADSPACE SAMPLING IN GAS CHROMATOGRAPHY FUNDAMENTALS AND THEORY. Andrew Tipler

AN INTRODUCTION TO HEADSPACE SAMPLING IN GAS CHROMATOGRAPHY FUNDAMENTALS AND THEORY. Andrew Tipler AN INTRODUCTION TO HEADSPACE SAMPLING IN GAS CHROMATOGRAPHY FUNDAMENTALS AND THEORY Andrew Tipler Chromatography Research and Technology Manager PerkinElmer, Inc. Table of Contents Introduction 3 Fundamental

More information

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

More information

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables. Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Modeling, Simulation & Experimentation of Separation Processes for CO2 Removal from Natural Gas

Modeling, Simulation & Experimentation of Separation Processes for CO2 Removal from Natural Gas 1 Modeling, Simulation & Experimentation of Separation Processes for CO2 Removal from Natural Gas High Pressure Membrane Units High Pressure Membrane Contactors High Pressure Absorption with Amines José

More information