Distillation of Alcohol
|
|
|
- Regina McLaughlin
- 10 years ago
- Views:
Transcription
1 CHEM 121L General Chemistry Laboratory Revision 1.6 Distillation of Alcohol To learn about the separation of substances. To learn about the separation technique of distillation. To learn how to characterize a substance using its density. To learn about fermentation. In this laboratory exercise, we will distill the Alcohol from Wine to form Brandy. We will characterize the resulting Brandy by its density, its combustibility and its boiling point. The density measurement will then allow us to determine the Volume Percentage Alcohol in the Brandy, which will in turn allow us to determine its Proof. The simple distillation process we will employ typically produces a Brandy of approximately Proof. Alcohols are important industrial materials and solvents. These include Methanol, Ethanol, Isopropanol and Ethylene Glycol. Ethanol, or Ethyl Alcohol, is used as a solvent, fuel additive, and in lotions, tinctures and medicines. It is probably most familiar as the alcohol of alcoholic beverages and is referred to generically as Alcohol, Common Alcohol or Grain Alcohol. For this last purpose, Ethanol (CH 3 CH 2 OH; or EtOH for short) is produced by fermentation of sugars. Fermentation alone does not produce beverages with an Alcohol content greater than 12 to 15% because the fermenting yeast is destroyed at high Alcohol concentrations. To produce beverages of higher Alcohol content the aqueous solution must be distilled. The fermentation of carbohydrates into Alcohol is one of the oldest known chemical processes. Fermentation can be represented as: Sugar Alcohol + Carbon Dioxide (Eq. 1) The reaction is catalyzed by yeast enzymes called zymases. A balanced chemical reaction for this process, assuming the sugar is Table Sugar or Sucrose, is: C12H22O11 + H2O 4 CH3CH2OH + 4 CO2 (Eq. 2) The fermentation process is started by mixing a source of sugar, water and yeast and allowing the yeast to act in an oxygen free environment. This anaerobic environment forces the yeast to shut down the burning of sugar and allows them to, instead, ferment Alcohol.
2 P a g e 2 We will concentrate the Alcohol, produced by this fermentation, from the aqueous solution in which the fermentation takes place, by distillation. Our fermentation product will be wine, which is about 12% Ethanol. Distillation is a separation process for a mixture of liquids or oils. It relies on differences in the boiling points of the component liquids to be separated. The mixture to be separated is added to a Distilling Pot where it is heated to the boiling point. Lower boiling components will preferentially vaporize first. This vapor passes into a Distilling Head and then into a Condensor. Within the Condensor the vapor is cooled and it liquifies. The resulting liquid is then collected in a Receiving Flask. Initially, low boiling components are collected in the Receiving Flask. As the distillation proceeds, these components are depleted from the Distilling Pot and higher boiling components begin to distil over. Switching out the Receiving Flask at the appropriate point allows for the separation of the component liquids of the mixture. The particular type of distillation we will be employing in this laboratory is known as Simple Distillation. Simple distillation works particularly well on mixtures of two liquids in which the liquids have a very large boiling point difference. The lower boiling component distills off first and can be collected. A downside of simple distillation is that the purity of the distillate is rarely 100%. This is because the distillation vapor is only enriched in the lower boiling component. Some of the higher boiling component will be present as well. So the condensed distillate will be a mixture enriched in the lower boiling component, but still containing some of the higher boiling component. To make matters worse, as the distillation proceeds, the liquid in the distilling pot will have a greater, and greater percentage of higher boiling component. Hence, the distillate, over time, will wind-up containing more, and more of the higher boiling component.
3 P a g e 3 Mixtures of a large number of similarly boiling liquids can be separated by a technique called Fractional Distillation. In fractional distillation, a distilling column allows the vapor arising from the distillation pot to be repeatedly recondensed and revaporized. After a number of these recondensation/revaporization steps, the lower boiling component will be relatively free of any higher boiling components. This allows for a more thorough separation of the liquids. This method of distillation is employed during the Oil Refining process. Distillation was one of the earliest separation techniques used by alchemists and pharmacists. And, generally, distillation, along with chromatography and filtration, is still considered to be a key method of separating and purifying substances. In our distillation, Ethyl Alcohol has a boiling point of 78.5 o C and that of Water is 100 o C. Hence, initially the distillation will be relatively efficient in enriching the Alcohol. But, because the simple distillation process is not 100 % efficient, we will have to determine the Alcohol content of our distillate. This can be achieved by measuring its density, which depends heavily on the percentage alcohol. The density of a substance, be it a pure substance or a mixture, is given by: density = mass volume (Eq. 3) We can compare our measured density with tabulated values of the density of known mixtures of alcohol and water to determine its Alcohol content; typically given as a Volume Percentage. Most manufacturers of liquor report the Alcohol content by its Proof. In the US system, the Proof is double the Vol. Percentage Alcohol: Proof = 2 x Volume Percentage (Eq. 4) Historically, the term Proof derives from a method of measuring the Alcohol content of liquors so as to prove they were not diluted. If gunpowder mixed with liquor would still ignite after the Alcohol burnt off, then the Alcohol was not considered to be diluted. The minimum Vol. Percentage Alcohol required for ignition is 57%; which, historically, was assigned a value of 100 degrees Proof. Levels of Alcohol in liquor are still measured by Proof, for tax purposes, but the scale is different in different countries. In addition to the distillate s density, we will also test the quality of our distillate by combustion. Mixtures high in Alcohol content will combust readily, and with a light blue color. Those that are high in water content will not combust at all. Finally, noting the boiling temperature of our distillate also gives us a qualitative feel for its composition. The closer the boiling temperature is to 100 o C, the boiling point of Water, the less Alcohol it contains. Thus, we will distill our Wine, collecting the distillate in fractions of about 15 ml each. We will measure the density of the first fraction, which we expect to be the most enriched in Alcohol, to determine its Alcohol content or Proof. This, and subsequent fractions, will also be tested for
4 combustibility. And, the temperature at which each distillate is collected will be noted; a final qualitative measure of the composition of the distillate. P a g e 4
5 P a g e 5 Pre-Lab Safety Questions 1. Do a short internet search for an NFPA 704 Fire Diamond for Ethanol. What is the Degree of Hazard for Ethanol's flammability? What does this rating mean? 2. What is the definition of the flashpoint for a substance? Specifically, what is the flashpoint for pure Ethanol? 3. Why are Steam burns more damaging than those of boiling Water?
6 P a g e 6 Procedure 1. Obtain a distillation apparatus as pictured below. Use a small Bunsen burner flame as the heat source. Be sure the distillation apparatus is thoroughly clean. Use a 500 ml Round- Bottom flask as a distilling pot. Use a 25 ml Round-Bottom flask as a receiver Add your wine to the distilling flask until it is between one quarter and one half full. 3. Add a few boiling chips to the ferment. Set-up the distillation apparatus. (You must have your apparatus inspected by your lab instructor.) Now, heat slowly to maintain a steady distillation rate. 4. Collect four distillate fractions, of about 15 ml each. Note the temperature range, the beginning and ending temperature, over which each distillate is collected. As each fraction is collected, place the distillate into a large, stoppered test tube. 5. To determine the density of the distillate (Only done for the first fraction.): a) Pre-weigh a 25 ml Erlenmeyer flask with stopper. b) Using a volumetric pipet, transfer 5 ml of distillate into the 25 ml Erlenmeyer flask.
7 P a g e 7 c) Weigh the flask plus distillate. Determine the density of the first distillate fraction. 6. Place approximately half a milliliter of each distillate fraction onto a watch glass. Try lighting it with a match. Note the color and quality of the flame. 7. You may want to determine the Proof of your fraction #1 distillate before you leave the lab. Tabulated density data for aqueous alcohol solutions is available below; see step 4 of the Data Analysis. A crude computer program to carry-out a Lagrange Interpolation of this data is available on the laptop computer in the laboratory.
8 P a g e 8 Data Analysis 1. Calculate the Density of Fraction #1 of the Distillate. 2. Comment on the Combustibility of each Fraction of the Distillate. 3. Comment of the Boiling Point of each Fraction of the Distillate. 4. Use the data below to determine the Percentage by Volume Alcohol content for Fraction #1 of the Distillate. Interpolate as needed. Report this result. % by Volume Density [g/ml] Determine the Proof of Fraction #1 of the Distillate. You must do this using a Lagrange Interpolation method on a subset of this data set. A crude program to do this will be available on the computers in the Lavender Lounge.
9 P a g e 9 Post Lab Questions 1. The boiling points of heptane and octane, two components of petroleum, are o C and o C respectively. Would Simple Distillation be an effective method for completely separating a mixture of these two hydrocarbons? Explain. 2. Would it be worth our time to calibrate the 5 ml pipette we used in Procedure step 5 (c) when measuring the density of our first distillate fraction? Explain. 3. What is the highest proof to which an aqueous Alcohol solution be boosted to using distillation? (You may need to use external sources.) 4. What is the boiling point of the alcohol Methanol? How is Methanol typically removed from Moonshine?
10 P a g e 10 Appendix - Interpolation Interpolation is a method whereby a new data point is generated from a set of data points that are already tabulated. How do we best perform an interpolation? We will illustrate two methods for interpolating tabulated data in the following examples. Suppose we have a series of solutions of Fuming Sulfuric Acid, Sulfuric Acid (H 2 SO 4 ) infused with Sulfur Trioxide (SO 3 ), for which the density has been measured. Fuming Sulfuric Acid % H 2 SO 4 Density [g/ml] Now suppose we have measured the density of a Fuming Sulfuric Acid solution whose composition is not known. Take this measurement to be g/ml. From the tabulated results we can see the composition of the mixture is between 85 and 90% Sulfuric Acid. Interpolation will allow us to hone in on a prediction of the composition that is more accurate by generating a new data point between these two compositions. If the data is perfectly linear, interpolation is particularly easy. A simple plot of the data shows it to indeed be linear. Linear interpolation can be illustrated rather easily as below:
11 P a g e 11 We simply determine how much the slope of the line moves us up the y-axis over an increment of (x m x 1 ). Then, the new data point y m, based on our measurement x m, can be determined via: y m = y 1 + [(y 2 y 1 )/(x 2 x 1 )] (x m x 1 ) For our Fuming Sulfuring Acid example, we have: y m = 90 + [(85 90)/( )] ( ) = Unfortunately, much data exhibits significant curvature. In this case a polynomial fit to the data might be more appropriate. And, more than two tabulated data points will be required for the interpolation. Afterall, n data points are required to define a polynomial of degree n 1. Consider the density of Water as a function of temperature: Temp. ( o C) Density (g/ml) A quick plot of this data illustrates its curvature. This is particularly true at lower temperatures.
12 P a g e 12 So, if we attempt to use a linear interpolation scheme to determine the density at 15 o C, we obtain the following result: y m = [( )/(20-10)] (15-10) = g/ml Experimentally, the density of Water at 15 o C is found to be g/ml. The interpolated value is in error by 0.045%. Another interpolation method, that of Lagrange, takes into account changes in the slope between neighboring pairs of points and therefore accounts for, to some degree, curvature in the data. Using this method and data at 10 o C, 20 o C and 30 o C gives an interpolated result of g/ml. The error has now been reduced to 0.015%. The interpolation method of Lagrange is encoded in a number of software packages. A simple DOS program encoding this algorithm is available on the computer in the Lavender Lounge of Jones Hall.
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
Experiment 5 Preparation of Cyclohexene
Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our
Return to Lab Menu. Fermentation and Distillation
Return to Lab Menu Fermentation and Distillation Objectives -to use yeast and sugar to effect a fermentation -to purify the alcohol obtained by fermentation through simple distillation -to compare densities
ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.
ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation
CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid
EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum
Physical and Chemical Properties and Changes
Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you
PREPARATION FOR CHEMISTRY LAB: COMBUSTION
1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What
PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION
PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PURPOSE: To identify the products of yeast cultures grown under aerobic and anaerobic conditions STUDENTS' ENTERING COMPETENCIES: Before doing this lab, students
Mixtures and Pure Substances
Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They
Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle
EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination
Density Determinations
CHEM 121L General Chemistry Laboratory Revision 3.1 Density Determinations To learn about intensive physical properties. To learn how to measure the density of substances. To learn how to characterize
OFM-TG-01-2011. Office of the Fire Marshal F M. Handling Flammable and Combustible Liquids in School Laboratories GUIDELINE
Office of the Fire Marshal O Handling Flammable and Combustible Liquids in School Laboratories F M March 2011 GUIDELINE Acknowledgements The Office of the Fire Marshal would like to acknowledge the contribution
The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride
CHEM 122L General Chemistry Laboratory Revision 2.0 The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride To learn about Coordination Compounds and Complex Ions. To learn about Isomerism.
EXPERIMENT 12: Empirical Formula of a Compound
EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound
Calibration of Volumetric Glassware
Chemistry 119: Experiment 2 Calibration of Volumetric Glassware For making accurate measurements in analytical procedures, next in importance to the balance is volumetric equipment. In this section volumetric
Recrystallization II 23
Recrystallization II 23 Chem 355 Jasperse RECRYSTALLIZATIN-Week 2 1. Mixed Recrystallization of Acetanilide 2. Mixed Recrystallization of Dibenzylacetone 3. Recrystallization of an Unknown Background Review:
Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS
TESTING FOR ORGANIC FUNCTIONAL GROUPS Caution: Chromic acid is hazardous as are many of the organic substances in today s experiment. Treat all unknowns with extreme care. Many organic substances are flammable.
PHYSICAL SEPARATION TECHNIQUES. Introduction
PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual
Determination of Molar Mass by Boiling Point Elevation of Urea Solution
Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling
CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY
CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus
Synthesis of Isopentyl Acetate
Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of
experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.
81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum
SEPARATION OF A MIXTURE OF SUBSTANCES LAB
SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present
CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*
CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction
Investigation M3: Separating Mixtures into Component Parts
Investigation M3: Separating Mixtures into Component Parts Goals: Use various methods to separate mixtures, make inferences from temperature/time graphs, and identify substances. 81 Activity M3.3: What
Standard Operating Procedure
Standard Operating Procedure FLAMMABLE LIQUIDS This standard operating procedure (SOP) is intended to provide general guidance on how to safely work with flammable liquids. This SOP is generic in nature
Balancing chemical reaction equations (stoichiometry)
Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit
Physical Properties of a Pure Substance, Water
Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to
Fractional Distillation and Gas Chromatography
Fractional Distillation and Gas Chromatography Background Distillation The previous lab used distillation to separate a mixture of hexane and toluene based on a difference in boiling points. Hexane boils
Compounds vs mixtures. Physics and Chemistry IES Jaume Salvador i Pedrol February 2009
Compounds vs mixtures Physics and Chemistry IES Jaume Salvador i Pedrol February 2009 Compounds Remember that a compound is a substance made up from two or more elements, chemically joined together. This
Experiment 12- Classification of Matter Experiment
Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.
Phase Diagram of tert-butyl Alcohol
Phase Diagram of tert-butyl Alcohol Bill Ponder Department of Chemistry Collin College Phase diagrams are plots illustrating the relationship of temperature and pressure relative to the phase (or state
COMMON LABORATORY APPARATUS
COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen
Calibration of Volumetric Glassware
CHEM 311L Quantitative Analysis Laboratory Revision 2.3 Calibration of Volumetric Glassware In this laboratory exercise, we will calibrate the three types of glassware typically used by an analytical chemist;
Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS
Lab #9 Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Name: Purpose: In this laboratory we will investigate how indicators can be used to test for the presence of acids or bases in a number of common
Distillation Experiment
Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure
The Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
Isolation of Caffeine from Tea
Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require
Determination of calcium by Standardized EDTA Solution
Determination of calcium by Standardized EDTA Solution Introduction The classic method of determining calcium and other suitable cations is titration with a standardized solution of ethylenediaminetetraacetic
Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1
Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
Desalination of Sea Water E7-1
Experiment 7 Desalination of Sea Water E7-1 E7-2 The Task The goal of this experiment is to investigate the nature and some properties of sea water. Skills At the end of the laboratory session you should
Synthesis of Aspirin and Oil of Wintergreen
Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol
Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes. Elements, Compounds and Mixtures
Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes Day Page # Description IC/HW All 2 Warm-up IC 1 3 5 Matter Notes IC 1 6 Nuts & Bolts IC 1 7 Elements, Compounds
EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.
PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms
Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.
The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By
MOLECULAR WEIGHT BY BOILING POINT ELEVATION
MOLECULAR WEIGHT BY BOILING POINT ELEVATION BACKGROUND This experiment demonstrates the use of colligative properties. The goal is to measure the molecular weight of a non-volatile solute by determining
Apparatus error for each piece of equipment = 100 x margin of error quantity measured
1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus
A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)
A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics
MOLAR AND PARTIAL MOLAR VOLUMES IN AQUEOUS SOLUTIONS (10/21/03)
MOLAR AND PARTIAL MOLAR OLUMES IN AQUEOUS SOLUTIONS (10/1/03) QUANTITATIE TECHNIQUES Use of an Analytical Balance Your assignment is to determine the partial molar volumes of solutions of water with an
Sugar or Salt? Ionic and Covalent Bonds
Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened
EXAMPLE EXERCISE 4.1 Change of Physical State
EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid
Taking Apart the Pieces
Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and
Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids
Willamette University Chemistry Department 2013 Project 5: HPLC Analysis of Capsaicinoids LABORATORY REPORT: Formal Writing Exercises PRE-LAB ASSIGNMENT Read the entire laboratory project and section 28C
Experiment 8 Synthesis of Aspirin
Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The
Chapter 14 Solutions
Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute
ACETALDEHYDE and ISOVALERALDEHYDE (Gas Chromatography)
ACETA.02-1 ACETALDEHYDE and ISOVALERALDEHYDE (Gas Chromatography) PRINCIPLE Isovaleraldehyde (IVA) and acetaldehyde are released from the syrup with the aid of dilute phosphoric acid and heat. The liberated
Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution
Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Purpose: The purpose of this experiment is to investigate the relationship between the concentration of an aqueous salt
Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.
Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY I. BACKGROUND (VERSION 1.0) Atomic absorption spectroscopy (AAS) is a widely used
Metabolism: Cellular Respiration, Fermentation and Photosynthesis
Metabolism: Cellular Respiration, Fermentation and Photosynthesis Introduction: All organisms require a supply of energy and matter to build themselves and to continue to function. To get that supply of
Calculation of Molar Masses. Molar Mass. Solutions. Solutions
Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements
Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction
Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine
Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.
Warm-Up 9/9 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/16 1. List the three most important rules of lab safety. 2. Would you classify jello as a solid or a
Acetaldehyde Production by Ethanol Dehydrogenation
Acetaldehyde Production by Ethanol Dehydrogenation Background Acetaldehyde is a colorless liquid with a pungent, fruity odor. It is primarily used as a chemical intermediate, principally for the production
Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1
Experiment 13H FV 1/25/2011(2-run) THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:
Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.
Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic
Separation by Solvent Extraction
Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic
Determination of the Percentage Oxygen in Air
CHEM 121L General Chemistry Laboratory Revision 1.1 Determination of the Percentage Oxygen in Air In this laboratory exercise we will determine the percentage by volume of Oxygen in Air. We will do this
H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a.
Lab 6: Organic hemistry hemistry 100 1. Define the following: a. ydrocarbon Pre-Lab Exercises Lab 6: Organic hemistry Name Date Section b. Saturated hydrocarbon c. Unsaturated hydrocarbon 2. The formula
DETERMINING THE MOLAR MASS OF CARBON DIOXIDE
DETERMINING THE MOLAR MASS OF CARBON DIOXIDE PURPOSE: The goal of the experiment is to determine the molar mass of carbon dioxide and compare the experimentally determined value to the theoretical value.
PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS
PECTINS SYNONYMS INS No. 440 Prepared at the 71 st JECFA (2009) and published in FAO JECFA Monographs 7 (2009), superseding specifications prepared at the 68 th JECFA (2007) and published in FAO JECFA
Consider next the behavior of a mixture of two liquid compounds. The example shown below is for a 1:1 mixture of cyclohexane (C) and toluene (T).
Distillation Distillation is a commonly used method for purifying liquids and separating mixtures of liquids into their individual components. Familiar examples include the distillation of crude fermentation
Experiment #7: Esterification
Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific
PREPARATION AND PROPERTIES OF A SOAP
(adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.
Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation
Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that
SODIUM CARBOXYMETHYL CELLULOSE
SODIUM CARBOXYMETHYL CELLULOSE Prepared at the 28th JECFA (1984), published in FNP 31/2 (1984) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55 th JECFA (2000). An ADI not specified
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate
EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity
9. Analysis of an Acid-Base Titration Curve: The Gran Plot
9. Analysis of an Acid-Base Titration Curve: The Gran Plot In this experiment, you will titrate a sample of pure potassium hydrogen phthalate (Table 10-4) with standard NaOH. A Gran plot will be used to
A.17. OXIDIZING PROPERTIES (SOLIDS)
A.17. OXIDIZING PROPERTIES (SOLIDS) 1. METHOD 1.1. INTRODUCTION It is useful to have preliminary information on any potentially explosive properties of the substance before performing this test. This test
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic
Recovery of Elemental Copper from Copper (II) Nitrate
Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield
EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry
What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available?
Cellular Respiration in Yeast Adapted from Alcoholic Fermentation in Yeast Investigation in the School District of Philadelphia Biology Core Curriculum 2009 by Dr. Jennifer Doherty and Dr. Ingrid Waldron,
SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER
Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated
Hands-On Labs SM-1 Lab Manual
EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.
POLYVINYL ALCOHOL. SYNONYMS Vinyl alcohol polymer, PVOH, INS No. 1203 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS
POLYVINYL ALCOHOL Prepared at the 68 th JECFA (2007) and published in FAO JECFA Monographs 4 (2007), superseding specifications prepared at the 63 rd JECFA (2004) and published in the Combined Compendium
Biology for Science Majors
Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy
Neutralizing an Acid and a Base
Balancing Act Teacher Information Objectives In this activity, students neutralize a base with an acid. Students determine the point of neutralization of an acid mixed with a base while they: Recognize
CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)
CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26
The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.
Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
Factors Affecting Enzyme Activity
INTRODUCTION Factors Affecting Enzyme Activity The chemical reactions occurring in living things are controlled by enzymes. An enzyme is a protein in the cell which lowers the activation energy of a catalyzed
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample
Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.
1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict
Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy
Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,
IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved
IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved David A. Katz Chemist, Educator, Science Communicator, and Consultant 133 N. Desert Stream Dr., Tucson, AZ 85745 Voice/Fax: 520-624-2207
PURIFICATION TECHNIQUES
DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) PURIFICATION TECHNIQUES Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia
THE ACTIVITY OF LACTASE
THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the
Molar Mass and the Ideal Gas Law Prelab
Molar Mass and the Ideal Gas Law Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the mass (in grams) of magnesium metal required to produce
SUCRALOSE. White to off-white, practically odourless crystalline powder
SUCRALOSE Prepared at the 41st JECFA (1993), published in FNP 52 Add 2 (1993). Metals and arsenic specifications revised at the 63rd JECFA (2004). An ADI of 0-15 mg/kg bw was established at the 37th JECFA
