SWC 211 Soil and Water Conservation Engineering PLANE TABLE SURVEY
|
|
|
- Hope West
- 10 years ago
- Views:
Transcription
1 PLANE TABLE SURVEY General: In case of plane table survey, the measurements of survey lines of the traverse and their plotting to a suitable scale are done simultaneously on the field. Following are the cases in which the plane table survey is found to be useful: (1) Compass survey cannot be carried out with success in industrial areas of the town. Plane table survey will be the best alternative in such cases. (2) For preparing plans on a small scale, plane table survey proves to be speedy, easy and accurate. (3) The city or town has expanded within two or three decades and it is required to plot the developed area on the previously plotted plan of the existing area. Instruments required: Alidade, Drawing board, Plumbing fork, Spirit level and Trough compass Temporary adjustments of plane table: Following three distinct operations at each survey station are carried out for the temporary adjustments of a plane table. (1) Centering (2) Leveling (3) Orientation (1) Centering The legs of tripod are well spread out to get the convenient height for working on the board. Then, the operation of centering is carried out by means of plumbing fork or U-frame and plumb bob. This process ascertains the fact that the point on paper represents the station point on ground. The pointed end of the plumbing fork is kept on point on paper and at the other end, a plumb bob is fixed. The table or board is shifted bodily till the plumb bob hangs exactly over the peg of the station. (2) Leveling The process of leveling is carried out with the help of spirit level and it consists of making the table level either by ordinary tilting the board or by ball and socket arrangement or by adjusting the legs of tripod. (3) Orientation
2 The process by which the position occupied by the board at various survey stations are kept parallel is known as the orientation. Thus, when a plane table is properly oriented, the lines on the board are parallel to the lined on ground which they represent. The methods of orientation are: (i) Orientation by magnetic needle: In this method, the magnetic north is drawn on paper at a particular station. At the next station, the trough compass is placed along the line of magnetic north and then the table is turned in such a way that the ends of magnetic needle are opposite to the zeros of the scale. The board is then fixed in position by clamps. This method is inaccurate in the sense that the results are likely to be affected by the local attraction. (ii) Orientation by back sighting: In this method, the orientation is carried out by the back sighting of a particular line. Suppose a line is drawn from station A on paper representing line AB on ground. The table is centered and leveled at station B and then the alidade is placed along the line ba. The table is turned till the line of sight bisects the ranging rod at A. The board is then clamped in this position. This method is better than the previous one and it gives perfect orientation. Methods of plane table survey: Following are the four methods by which an object might be located on paper by plane table: (1) Radiation (2) Intersection (3) Traversing (4) Resection
3 RADIATION This is the simplest method and it is useful only when the whole traverse can be commanded from a single station. The procedure is as follows: (i) Select a point P so that all the corners of the traverse ABCD are seen. (ii) Carry out the usual temporary adjustments of centering and leveling. Mark the north line on paper. (iii) Put the alidade on point P and dram a line of sight for station A. (iv) Measure the distance PA on ground and put this length to a suitable scale on paper which will give point a. (v) Similarly, obtain points b, c and d on paper by drawing lines of sight for stations B, C and D and measuring the distances PB, PC and PD on ground respectively. (vi) Join points a, b, c and d on paper, as shown in figure. (vii) For checking the accuracy of work, measure the distances AB, BC, CD and DA on ground and compare them with the lengths ab, bc, cd and da respectively on paper.
4 A B b a c d D C Radiation method
5 INTERSECTION This method is useful where it is not possible to measure the distances on ground as in case of a mountainous country. Hence, this method is employed for locating inaccessible points, the broken boundaries, rivers, fixing survey stations, etc. The procedure is as follows: (i) Select two stations P and Q so that the points to be located on paper are easily seen from them. (ii) Plot the line pq, which is known as the base line, on paper. This can be done in one of the two ways: a. The table can be centered and leveled at station P and then after orienting at station Q, the distance PQ can be accurately measured and put up to some scale on the paper. b. The line pq can be drawn to some scale on the paper and then the board can be adjusted from station P by back sighting at station Q. (iii) From station P, draw rays for stations A, B, etc. (iv) Shift the table to station Q and after proper orientation, take rays of stations A, B etc., (v) The intersection of rays from stations P and Q will give points a, b etc. on paper, as shown in figure. (vi) For checking the accuracy of work, measure the distance AB on ground and compare it with its corresponding length ab on paper.
6 B A Plane Table a b p q p q Base line Intersection method
INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check.
INDEX SR NO NAME OF THE PRACTICALS Page No 1 Measuring the bearing of traverse lines, calculation of included angles and check. 1 2 To study the essential parts of dumpy level & reduction of levels 3 To
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
A. The answer as per this document is No, it cannot exist keeping all distances rational.
Rational Distance [email protected] www.unsolvedproblems.org: Q. Given a unit square, can you find any point in the same plane, either inside or outside the square, that is a rational distance from
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION
CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION A traverse is a series of straight lines called traverse legs. The surveyor uses them to connect a series of selected points called traverse
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
FEDERAL UNIVERSITY OYE-EKITI FACULTY OF ENGINEERING AND TECHNOLOGY
FEDERAL UNIVERSITY OYE-EKITI FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING 300 LEVEL LABORATORY MANUAL TABLE OF CONTENTS 1. PREPARING LABORATORY REPORTS 5 2. INTRODUCTION TO SURVEY
5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete
STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS Now Obsolete Caution: This document has been prepared by scanning the original Specifications for Primary Control Surveys - 1984 and using
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
SURVEY PRACTICAL- I CIVIL ENGINEERING SUB: CODE-302
SURVEY PRACTICAL- I CIVIL ENGINEERING SUB: CODE-302 CONTENTS S.NO. TITLE PG.NO 1. TRAVERSING 2. INTERSECTION METHODE. 3. TWO POINT PROBLEM 4. THREE POINT PROBLEM 5. STUDY OF LEVELLING 6.DIFFRENTIAL LEVELING
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.
Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø
Plane Table. The Last. Surveyor? >> By Norman G. Sloan, PS, PE, MS
The Last Plane Table Surveyor? ohn Sanford, 83, of Lakewood, Colorado, may be the Last, or almost last, plane table surveyor in the central U.S.A. John purchased his alidade and plane table for $70 in
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
Mathematics (Project Maths Phase 1)
2012. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination, 2012 Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours, 30
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
Spring Term. Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN. Department of Geomatics Engineering e-mail : [email protected]
Spring Term Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN Department of Geomatics Engineering e-mail : [email protected] THEODOLITE What is Theodolite? Use of Theodoite Theodolite Terminology THEODOLITE Types
Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions
Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.
http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
CURVES Section I. SIMPLE HORIZONTAL CURVES
CHAPTER 3 CURVES Section I. SIMPLE HORIZONTAL CURVES CURVE POINTS By studying TM 5-232, the surveyor learns to locate points using angles and distances. In construction surveying, the surveyor must often
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1
47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
With Alidade and Tape. Graphical and plane table survey of archaeological earthworks
2002 02 With lidade and Tape Graphical and plane table survey of archaeological earthworks Introduction This paper is designed to assist anyone who wishes to undertake a large-scale (1:1000 or 1:500),
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1
Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point
Mathematics (Project Maths Phase 3)
2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300
Total Program's Units
Associate Degree Program Department of Civil and Architectural Technology Major : Survey Technology First Semester NO 5 6 Code SRV 0 SRV 0 SRV 0 ENG 0 MTH 7 CMT 0 Course Title Land survey Survey drawing
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
For Environmental Health Science Students. Surveying. Wuttiet Tafesse, Tesfaye Gobena. Haramaya University
LECTURE NOTES For Environmental Health Science Students Surveying Wuttiet Tafesse, Tesfaye Gobena Haramaya University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center,
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
Surveying made easy. Karl Zeiske
Surveying made easy Karl Zeiske Introduction This booklet will tell you about the basic principles of surveying. The most important instruments for surveying are levels and total stations; they are intended
Lesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
POINT OF INTERSECTION OF TWO STRAIGHT LINES
POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel
Converting an AutoCAD Drawing into PDF File
Tutorial Created by Brijesh Bhatha, 2004. Updated 2006 by Corinne Stewart ([email protected]) CP-208 Plan Preparation Studio - Prof. Elizabeth Macdonald 2 In this tutorial we will learn to create
CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
CHAPTER FIVE. 5. Equations of Lines in R 3
118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a
INTRODUCTION TO EUCLID S GEOMETRY
78 MATHEMATICS INTRODUCTION TO EUCLID S GEOMETRY CHAPTER 5 5.1 Introduction The word geometry comes form the Greek words geo, meaning the earth, and metrein, meaning to measure. Geometry appears to have
Mathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
Elfring Fonts, Inc. PCL MICR Fonts
Elfring Fonts, Inc. PCL MICR Fonts This package contains five MICR fonts (also known as E-13B), to print magnetic encoding on checks, and six Secure Number fonts, to print check amounts. These fonts come
Irrigation Water Management: Training Manual No. 2 - Elements of Topographic Surveying
Table of Contents Irrigation Water Management: Training Manual No. 2 - Elements of Topographic Surveying by C. Brouwer International Institute for Land Reclamation and Improvement and A. Goffeau J. Plusjé
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
3 LEVELLING & SURVEYING
3 LEVELLING & SURVEYING 3.1 General The primary reference at water-level recording stations is a set of stable bench-marks, installed in locations where their level should not change. Upon initial set-up
explain your reasoning
I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,
C relative to O being abc,, respectively, then b a c.
2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip [email protected] http://home.kku.ac.th/wattou 2. Vectors A
The Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Total Station Setup and Operation. Sokkia SET Total Station
Total Station Setup and Operation Sokkia SET Total Station Parts of the SET Total Station Parts of the SET Total Station Sokkia SET 550 Total Station Keys/Screen SET 550 Menu Pages SET 550 Menu Pages Leveling
Mathematics (Project Maths)
2010. M130 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Higher Level Time: 2 hours, 30 minutes 300 marks
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
CIRCLE THEOREMS. Edexcel GCSE Mathematics (Linear) 1MA0
Edexcel GCSE Mathematics (Linear) 1MA0 CIRCLE THEOREMS Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may
POTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
CHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is
Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
The Basics of Navigation
The Basics of Navigation Knowledge of map reading and the use of the compass is an indispensable skill of bushcraft. Without this skill, a walker is a passenger and mere follower on a trip. To become a
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
H.Calculating Normal Vectors
Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter
Standard Surveying Terms
Standard Surveying Terms Aliquot - The description of fractional section ownership used in the U.S. public land states. A parcel is generally identified by its section, township, and range. The aliquot
Building Layout 6. 6.1 Plot Plan Most, if not all, communities require the builder or owner to furnish a plot plan before
This sample chapter is for review purposes only. Copyright The Goodheart-Willcox Co., Inc. ll rights reserved. uilding Layout 6 150 Section 1 Preparing to uild they will issue a building permit, Figure
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
Chapter 3. Inversion and Applications to Ptolemy and Euler
Chapter 3. Inversion and Applications to Ptolemy and Euler 2 Power of a point with respect to a circle Let A be a point and C a circle (Figure 1). If A is outside C and T is a point of contact of a tangent
GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use
Mathematics (Project Maths)
Pre-Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Higher Level February 2010 2½ hours 300 marks Running total Examination number Centre stamp For examiner Question Mark 1 2 3 4 5
www.pioneermathematics.com
Problems and Solutions: INMO-2012 1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution:
Online EFFECTIVE AS OF JANUARY 2013
2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break
CHAPTER 7 DEAD RECKONING
CHAPTER 7 DEAD RECKONING DEFINITION AND PURPOSE 700. Definition and Use Dead reckoning is the process of determining one s present position by projecting course(s) and speed(s) from a known past position,
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Manual for simulation of EB processing. Software ModeRTL
1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
Basic Lesson: Pythagorean Theorem
Basic Lesson: Pythagorean Theorem Basic skill One leg of a triangle is 10 cm and other leg is of 24 cm. Find out the hypotenuse? Here we have AB = 10 and BC = 24 Using the Pythagorean Theorem AC 2 = AB
ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING
ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING Chapter 4 2015 Cadastral Mapping Manual 4-0 Elements of Surveying and Mapping Utah's system of land surveying is the rectangular survey system as set forth on
Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
Class-10 th (X) Mathematics Chapter: Tangents to Circles
Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a
Unit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
