Large-Scale Data Cleaning Using Hadoop. UC Irvine
|
|
|
- Anis Atkins
- 10 years ago
- Views:
Transcription
1 Chen Li UC Irvine Joint work with Michael Carey, Alexander Behm, Shengyue Ji, Rares Vernica 1
2 Overview Importance of information Importance of information quality Data cleaning Large scale Hadoop 2
3 Data Quality Example 1 Star Title Year Genre Keanu Reeves The Matrix 1999 Sci-Fi Samuel Jackson Iron man 2008 Sci-Fi Schwarrzeneger The Terminator 1984 Sci-Fi Samuel Jackson The man 2006 Crime 3
4 Data Quality Case 2 4
5 Outline Three data cleaning applications Document Cleaning Fuzzy string search Record linkage (with preliminary results) Conclusion 5
6 Data Cleaning Application 1 Document Cleaning 6
7 Wikipedia: Wikify project 7
8 Wiki Linking Policies Do not link terms that most readers are familiar with Neither too many nor too few links How to detect violations automatically? 8
9 An example wiki page No links at all! 9
10 Another wiki Too many trivial links! 10
11 Challenge Corpus-wide analysis of links and entities Implicit it join operations on page entities (even fuzzy) Scale: millions of pages (> 3M for English) # of entities/links could be even larger (even more) Plan: Hadoop 11
12 Data Cleaning Application 2 Fuzzy string search 12
13 Example: Web Search Actual queries gathered by Google Errors in queries Errors in data Bring query and meaningful results closer together 13
14 Fuzzy String Search: Formulation Find strings similar to a given string Functions: edit distance, jaccard, cosine, etc. Performance is important! -10 ms: 100 queries per second (QPS) - 5 ms: 200 QPS 14
15 q-grams of strings u n i v e r s a l 2-grams 15
16 Similar strings have many common grams universal u m i v e r s s l 16
17 q-gram inverted lists id strings 0 rich 1 stick 2 stich 3 stuck 4 static 2-grams at ch ck ic ri st ta ti tu uc
18 T-occurrence Problem Merge Find elements whose occurrences T 18
19 Optimizing i i inverted index Compressing inverted lists Using variable-length grams All these techniques need a cost-based analysis on the effects of grams on query performance Computationally expensive 19
20 Challenge: Scale! PubMed publications:18 million records GeneBank: 108 million sequences Google frequent Web word tokens: 1 trillion Parallel computing (Hadoop) to the rescue! 20
21 Data Cleaning Application 3 Record Linkage with preliminary results 21
22 Record Linkage Phone Age Name Brad Pitt Arnold Schwarzeneger George Bush Angelina Jolie Forrest Whittaker No exact match! Name Hobbies Address Brad Pitt Forest Whittacker George Bush Angelina Jolie Arnold Schwarzenegger 22
23 Fuzzy Join RID A B RID A B dist(t1.a,t2.a) k T1 T2 Self-Join : T1 = T2 23
24 Two Critical Steps Step 1: Sorting grams based on frequencies Step 2: Computing record ID pairs with common grams 24
25 Stage 1 Phase 1 25
26 Stage 1 Phase 2 26
27 Limitations: Step1 Analysis Second phase is just to sort the tokens Using one Reduce (not parallelizable) A possible optimization: Eliminate the second MR phase Sort in the Reduce of Phase 1 Result: 10M records, 10 nodes, 2-MR algorithm: 81 seconds 1-MR: 82 seconds 27
28 Step1: Lesson Learned Extra steps are needed to get right key-value pairs 1-MR solution might not be faster than 2-MR solution 28
29 Stage 2 Phase 1 29
30 Stage 2 Phase 2 30
31 Experiments 31
32 Outline Three data cleaning applications Document Cleaning Fuzzy string search Record linkage (with preliminary results) Conclusion 32
33 UCI ASTERIX Project Managing large amounts of semi-structured data using gparallel computing $2.7M from NSF (thanks, Jim!) Other campuses: UCR and UCSD 33
CSCI 5417 Information Retrieval Systems Jim Martin!
CSCI 5417 Information Retrieval Systems Jim Martin! Lecture 9 9/20/2011 Today 9/20 Where we are MapReduce/Hadoop Probabilistic IR Language models LM for ad hoc retrieval 1 Where we are... Basics of ad
Pla7orms for Big Data Management and Analysis. Michael J. Carey Informa(on Systems Group UCI CS Department
Pla7orms for Big Data Management and Analysis Michael J. Carey Informa(on Systems Group UCI CS Department Outline Big Data Pla6orm Space The Big Data Era Brief History of Data Pla6orms Dominant Pla6orms
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
A Cost-Benefit Analysis of Indexing Big Data with Map-Reduce
A Cost-Benefit Analysis of Indexing Big Data with Map-Reduce Dimitrios Siafarikas Argyrios Samourkasidis Avi Arampatzis Department of Electrical and Computer Engineering Democritus University of Thrace
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
Large-Scale Data Sets Clustering Based on MapReduce and Hadoop
Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE
Introduction to Parallel Programming and MapReduce
Introduction to Parallel Programming and MapReduce Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant
Introduction to Hadoop
1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools
Infrastructures for big data
Infrastructures for big data Rasmus Pagh 1 Today s lecture Three technologies for handling big data: MapReduce (Hadoop) BigTable (and descendants) Data stream algorithms Alternatives to (some uses of)
Databases 2 (VU) (707.030)
Databases 2 (VU) (707.030) Introduction to NoSQL Denis Helic KMI, TU Graz Oct 14, 2013 Denis Helic (KMI, TU Graz) NoSQL Oct 14, 2013 1 / 37 Outline 1 NoSQL Motivation 2 NoSQL Systems 3 NoSQL Examples 4
SEARCH ENGINE OPTIMIZATION USING D-DICTIONARY
SEARCH ENGINE OPTIMIZATION USING D-DICTIONARY G.Evangelin Jenifer #1, Mrs.J.Jaya Sherin *2 # PG Scholar, Department of Electronics and Communication Engineering(Communication and Networking), CSI Institute
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Performance and Energy Efficiency of. Hadoop deployment models
Performance and Energy Efficiency of Hadoop deployment models Contents Review: What is MapReduce Review: What is Hadoop Hadoop Deployment Models Metrics Experiment Results Summary MapReduce Introduced
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
Hadoop and Map-reduce computing
Hadoop and Map-reduce computing 1 Introduction This activity contains a great deal of background information and detailed instructions so that you can refer to it later for further activities and homework.
Scalable Machine Learning - or what to do with all that Big Data infrastructure
- or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information
Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information Satoshi Sekine Computer Science Department New York University [email protected] Kapil Dalwani Computer Science Department
Document Similarity Measurement Using Ferret Algorithm and Map Reduce Programming Model
Document Similarity Measurement Using Ferret Algorithm and Map Reduce Programming Model Condro Wibawa, Irwan Bastian, Metty Mustikasari Department of Information Systems, Faculty of Computer Science and
Inverted Indexes: Trading Precision for Efficiency
Inverted Indexes: Trading Precision for Efficiency Yufei Tao KAIST April 1, 2013 After compression, an inverted index is often small enough to fit in memory. This benefits query processing because it avoids
16.1 MAPREDUCE. For personal use only, not for distribution. 333
For personal use only, not for distribution. 333 16.1 MAPREDUCE Initially designed by the Google labs and used internally by Google, the MAPREDUCE distributed programming model is now promoted by several
Teaching Scheme Credits Assigned Course Code Course Hrs./Week. BEITC802 Big Data 04 02 --- 04 01 --- 05 Analytics. Theory Marks
Teaching Scheme Credits Assigned Course Code Course Hrs./Week Name Theory Practical Tutorial Theory Practical/Oral Tutorial Tota l BEITC802 Big Data 04 02 --- 04 01 --- 05 Analytics Examination Scheme
Developing MapReduce Programs
Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2015/16 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine. #AsterixDB
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine #AsterixDB 0 Rough Topical Plan Background and motivation (quick!) Big Data storage
MapReduce. MapReduce and SQL Injections. CS 3200 Final Lecture. Introduction. MapReduce. Programming Model. Example
MapReduce MapReduce and SQL Injections CS 3200 Final Lecture Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design
Implementing Heuristic Miner for Different Types of Event Logs
Implementing Heuristic Miner for Different Types of Event Logs Angelina Prima Kurniati 1, GunturPrabawa Kusuma 2, GedeAgungAry Wisudiawan 3 1,3 School of Compuing, Telkom University, Indonesia. 2 School
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
Distributed Apriori in Hadoop MapReduce Framework
Distributed Apriori in Hadoop MapReduce Framework By Shulei Zhao (sz2352) and Rongxin Du (rd2537) Individual Contribution: Shulei Zhao: Implements centralized Apriori algorithm and input preprocessing
Big Data and Scripting map/reduce in Hadoop
Big Data and Scripting map/reduce in Hadoop 1, 2, parts of a Hadoop map/reduce implementation core framework provides customization via indivudual map and reduce functions e.g. implementation in mongodb
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
KNIME TUTORIAL. Anna Monreale KDD-Lab, University of Pisa Email: [email protected]
KNIME TUTORIAL Anna Monreale KDD-Lab, University of Pisa Email: [email protected] Outline Introduction on KNIME KNIME components Exercise: Market Basket Analysis Exercise: Customer Segmentation Exercise:
Cloud Computing Summary and Preparation for Examination
Basics of Cloud Computing Lecture 8 Cloud Computing Summary and Preparation for Examination Satish Srirama Outline Quick recap of what we have learnt as part of this course How to prepare for the examination
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Data Intensive Computing Handout 6 Hadoop
Data Intensive Computing Handout 6 Hadoop Hadoop 1.2.1 is installed in /HADOOP directory. The JobTracker web interface is available at http://dlrc:50030, the NameNode web interface is available at http://dlrc:50070.
Answering Approximate String Queries on Large Data Sets Using External Memory
Answering Approxime String Queries on Large Da Sets Using External Memory Alexander Behm, Chen Li, Michael J. Carey Deptarment of Computer Science, University of California, Irvine [email protected], [email protected],
How To Improve Performance In A Database
Some issues on Conceptual Modeling and NoSQL/Big Data Tok Wang Ling National University of Singapore 1 Database Models File system - field, record, fixed length record Hierarchical Model (IMS) - fixed
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
What s next for the Berkeley Data Analytics Stack?
What s next for the Berkeley Data Analytics Stack? Michael Franklin June 30th 2014 Spark Summit San Francisco UC BERKELEY AMPLab: Collaborative Big Data Research 60+ Students, Postdocs, Faculty and Staff
Index support for regular expression search. Alexander Korotkov PGCon 2012, Ottawa
Index support for regular expression search Alexander Korotkov PGCon 2012, Ottawa Introduction What is regular expressions? Regular expressions are: powerful tool for text processing based on formal language
Why is Internal Audit so Hard?
Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets
DATA CLUSTERING USING MAPREDUCE
DATA CLUSTERING USING MAPREDUCE by Makho Ngazimbi A project submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Boise State University March 2009
Data Intensive Computing Handout 5 Hadoop
Data Intensive Computing Handout 5 Hadoop Hadoop 1.2.1 is installed in /HADOOP directory. The JobTracker web interface is available at http://dlrc:50030, the NameNode web interface is available at http://dlrc:50070.
Efficient Processing of XML Documents in Hadoop Map Reduce
Efficient Processing of Documents in Hadoop Map Reduce Dmitry Vasilenko, Mahesh Kurapati Business Analytics IBM Chicago, USA [email protected], [email protected] Abstract has dominated the enterprise
Big Data Platforms: What s Next?
Big Data Platforms: What s Next? Three computer scientists from UC Irvine address the question What s next for big data? by summarizing the current state of the big data platform space and then describing
Management & Analysis of Big Data in Zenith Team
Management & Analysis of Big Data in Zenith Team Zenith Team, INRIA & LIRMM Outline Introduction to MapReduce Dealing with Data Skew in Big Data Processing Data Partitioning for MapReduce Frequent Sequence
CIEL A universal execution engine for distributed data-flow computing
Reviewing: CIEL A universal execution engine for distributed data-flow computing Presented by Niko Stahl for R202 Outline 1. Motivation 2. Goals 3. Design 4. Fault Tolerance 5. Performance 6. Related Work
International Journal of Innovative Research in Computer and Communication Engineering
FP Tree Algorithm and Approaches in Big Data T.Rathika 1, J.Senthil Murugan 2 Assistant Professor, Department of CSE, SRM University, Ramapuram Campus, Chennai, Tamil Nadu,India 1 Assistant Professor,
Comparison of Different Implementation of Inverted Indexes in Hadoop
Comparison of Different Implementation of Inverted Indexes in Hadoop Hediyeh Baban, S. Kami Makki, and Stefan Andrei Department of Computer Science Lamar University Beaumont, Texas (hbaban, kami.makki,
Integrating NLTK with the Hadoop Map Reduce Framework 433-460 Human Language Technology Project
Integrating NLTK with the Hadoop Map Reduce Framework 433-460 Human Language Technology Project Paul Bone [email protected] June 2008 Contents 1 Introduction 1 2 Method 2 2.1 Hadoop and Python.........................
Processing Joins over Big Data in MapReduce
Processing Joins over Big Data in MapReduce Christos Doulkeridis Department of Digital Systems School of Information and Communication Technologies University of Piraeus http://www.ds.unipi.gr/cdoulk/
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Turning Big Data into Big Decisions Delivering on the High Demand for Data
Turning Big Data into Big Decisions Delivering on the High Demand for Data Michael Ho, Vice President of Professional Services Digital Government Institute s Government Big Data Conference, October 31,
Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart
Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM Iuon Chang Lin Department of Management Information Systems, National Chung Hsing University, Taiwan, Department of Photonics and Communication Engineering,
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping. Version 1.0, Oct 2012
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping Version 1.0, Oct 2012 This document describes PaRFR, a Java package that implements a parallel random
MapReduce and Hadoop Distributed File System V I J A Y R A O
MapReduce and Hadoop Distributed File System 1 V I J A Y R A O The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB
Introduction to NoSQL Databases and MapReduce. Tore Risch Information Technology Uppsala University 2014-05-12
Introduction to NoSQL Databases and MapReduce Tore Risch Information Technology Uppsala University 2014-05-12 What is a NoSQL Database? 1. A key/value store Basic index manager, no complete query language
Similarity Search in a Very Large Scale Using Hadoop and HBase
Similarity Search in a Very Large Scale Using Hadoop and HBase Stanislav Barton, Vlastislav Dohnal, Philippe Rigaux LAMSADE - Universite Paris Dauphine, France Internet Memory Foundation, Paris, France
ProM 6 Exercises. J.C.A.M. (Joos) Buijs and J.J.C.L. (Jan) Vogelaar {j.c.a.m.buijs,j.j.c.l.vogelaar}@tue.nl. August 2010
ProM 6 Exercises J.C.A.M. (Joos) Buijs and J.J.C.L. (Jan) Vogelaar {j.c.a.m.buijs,j.j.c.l.vogelaar}@tue.nl August 2010 The exercises provided in this section are meant to become more familiar with ProM
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
COSC 6397 Big Data Analytics. Mahout and 3 rd homework assignment. Edgar Gabriel Spring 2014. Mahout
COSC 6397 Big Data Analytics Mahout and 3 rd homework assignment Edgar Gabriel Spring 2014 Mahout Scalable machine learning library Built with MapReduce and Hadoop in mind Written in Java Focusing on three
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Big Data with Rough Set Using Map- Reduce
Big Data with Rough Set Using Map- Reduce Mr.G.Lenin 1, Mr. A. Raj Ganesh 2, Mr. S. Vanarasan 3 Assistant Professor, Department of CSE, Podhigai College of Engineering & Technology, Tirupattur, Tamilnadu,
Map-like Wikipedia Visualization. Pang Cheong Iao. Master of Science in Software Engineering
Map-like Wikipedia Visualization by Pang Cheong Iao Master of Science in Software Engineering 2011 Faculty of Science and Technology University of Macau Map-like Wikipedia Visualization by Pang Cheong
Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
Project Report BIG-DATA CONTENT RETRIEVAL, STORAGE AND ANALYSIS FOUNDATIONS OF DATA-INTENSIVE COMPUTING. Masters in Computer Science
Data Intensive Computing CSE 486/586 Project Report BIG-DATA CONTENT RETRIEVAL, STORAGE AND ANALYSIS FOUNDATIONS OF DATA-INTENSIVE COMPUTING Masters in Computer Science University at Buffalo Website: http://www.acsu.buffalo.edu/~mjalimin/
SEO AND CONTENT MANAGEMENT SYSTEM
International Journal of Electronics and Computer Science Engineering 953 Available Online at www.ijecse.org ISSN- 2277-1956 SEO AND CONTENT MANAGEMENT SYSTEM Savan K. Patel 1, Jigna B.Prajapati 2, Ravi.S.Patel
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams
VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams Chen Li University of California, Irvine CA 9697, USA [email protected] Bin Wang Northeastern University
Computing Issues for Big Data Theory, Systems, and Applications
Computing Issues for Big Data Theory, Systems, and Applications Beihang University Chunming Hu ([email protected]) Big Data Summit, with CyberC 2013 October 10, 2013. Beijing, China. Bio of Myself Chunming
A Comparison of Approaches to Large-Scale Data Analysis
A Comparison of Approaches to Large-Scale Data Analysis Sam Madden MIT CSAIL with Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, and Michael Stonebraker In SIGMOD 2009 MapReduce
Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2
Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data
Dynamical Clustering of Personalized Web Search Results
Dynamical Clustering of Personalized Web Search Results Xuehua Shen CS Dept, UIUC [email protected] Hong Cheng CS Dept, UIUC [email protected] Abstract Most current search engines present the user a ranked
Large-Scale Test Mining
Large-Scale Test Mining SIAM Conference on Data Mining Text Mining 2010 Alan Ratner Northrop Grumman Information Systems NORTHROP GRUMMAN PRIVATE / PROPRIETARY LEVEL I Aim Identify topic and language/script/coding
Hadoop SNS. renren.com. Saturday, December 3, 11
Hadoop SNS renren.com Saturday, December 3, 11 2.2 190 40 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December
Hadoop WordCount Explained! IT332 Distributed Systems
Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Movie Classification Using k-means and Hierarchical Clustering
Movie Classification Using k-means and Hierarchical Clustering An analysis of clustering algorithms on movie scripts Dharak Shah DA-IICT, Gandhinagar Gujarat, India [email protected] Saheb Motiani
Big Data Data-intensive Computing Methods, Tools, and Applications (CMSC 34900)
Big Data Data-intensive Computing Methods, Tools, and Applications (CMSC 34900) Ian Foster Computation Institute Argonne National Lab & University of Chicago 2 3 SQL Overview Structured Query Language
Parallel Programming Map-Reduce. Needless to Say, We Need Machine Learning for Big Data
Case Study 2: Document Retrieval Parallel Programming Map-Reduce Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31 st, 2013 Carlos Guestrin
Load-Balancing the Distance Computations in Record Linkage
Load-Balancing the Distance Computations in Record Linkage Dimitrios Karapiperis Vassilios S. Verykios Hellenic Open University School of Science and Technology Patras, Greece {dkarapiperis, verykios}@eap.gr
Fuzzy Multi-Join and Top-K Query Model for Search-As-You-Type in Multiple Tables
Fuzzy Multi-Join and Top-K Query Model for Search-As-You-Type in Multiple Tables 1 M.Naveena, 2 S.Sangeetha 1 M.E-CSE, 2 AP-CSE V.S.B. Engineering College, Karur, Tamilnadu, India. 1 [email protected],
