The Asynchronous Dynamic Load-Balancing Library
|
|
|
- Eric Phillips
- 10 years ago
- Views:
Transcription
1 The Asynchronous Dynamic Load-Balancing Library Rusty Lusk, Steve Pieper, Ralph Butler, Anthony Chan Mathematics and Computer Science Division Nuclear Physics Division
2 Outline The Nuclear Physics problem - GFMC The CS problem: scalability, load balancing, simplicity for the application Approach: a portable, scalable library, implementing a simple programming model Status Choices made Lessons learned Promising results Plans Scaling up Branching out Using threads so far 2
3 The Physics Project: Green s function Monte Carlo (GFMC) The benchmark for nuclei with 12 or fewer nucleons Starts with variational wave function containing non-central correlations Uses imaginary-time propagation to filter out excited-state contamination Samples removed or multiplied during propagation -- work fluctuates Local energies evaluated every 40 steps For 12 C expect ~10,000 Monte Carlo samples to be propagated for ~1000 steps Non ADLB version: Several samples per node; work on one sample not parallelized ADLB version: Three-body potential and propagator parallelized Wave functions for kinetic energy and two-body potential done in parallel Can use many processors per sample Physics target: Properties of both ground and excited states of 12 C 3
4 The Computer Science Project: ADLB Specific Problem: to scale up GFMC, a master/slave code General Problem: scaling up the master/slave paradigm in general Usually based on a single (or shared) data structure Goal for GFMC: scale to 160,000 processes (available on BG/P) General goal: provide simple yet scalable programming model for algorithms parallelized via master/slave structure General goal in GFMC setting: eliminate (most) MPI calls from GFMC and scale the general approach GFMC is not an easy case: Multiple types of work Any process can create work Large work units (multi-megabyte) Priorities and types used together to specify some sequencing without constraining parallelism ( workflow ) 4
5 Master/Slave Algorithms and Load Balancing Master Shared Work queue Slave Slave Slave Slave Slave Advantages Automatic load balancing Disadvantages Scalability - master can become bottleneck Wrinkles Slaves may create new work Multiple work types and priorities that impose ordering 5
6 Load Balancing in GFMC Before ADLB Master/Slave algorithm Slaves do create work dynamically Newly created work stored locally Periodic load balancing Done by master Slaves communicate work queue lengths to master Master determines reallocation of work Master tells slaves to reallocate work Slaves communicate work to one another Computation continues with balanced work queues 6
7 GFMC Before ADLB 7
8 Zoomed in 8
9 BlueGene P 4 cpus per node 4 threads or processes per node 160,000 cpus Efficient MPI communication Original GFMC not expected to continue to scale past 2000 processors More parallelism needed to exploit BG/P for Carbon 12 Existing load-balancing mechanism will not scale A general-purpose load-balancing library should Enable GFMC to scale Be of use to other codes as well Simplify parallel programming of applications 9
10 The Vision No explicit master for load balancing; slaves make calls to ADLB library; those subroutines access local and remote data structures (remote ones via MPI). Simple Put/Get interface from application code to distributed work queue hides most MPI calls Advantage: multiple applications may benefit Wrinkle: variable-size work units, in Fortran, introduce some complexity in memory management Proactive load balancing in background Advantage: application never delayed by search for work from other slaves Wrinkle: scalable work-stealing algorithms not obvious 10
11 The API (Application Programming Interface) Basic calls ADLB_Init( num_servers, am_server, app_comm) ADLB_Server() ADLB_Put( type, priority, len, buf, answer_dest ) ADLB_Reserve( req_types, work_handle, work_len, work_type, work_prio, answer_dest) ADLB_Ireserve( ) ADLB_Get_Reserved( ) ADLB_Set_done() ADLB_Finalize() A few others, for tuning and debugging (still at experimental stage) 11
12 Asynchronous Dynamic Load Balancing - Thread Approach The basic idea: Shared Memory Put/get Work queue Application Threads ADLB Library Thread MPI Communication with other nodes 12
13 A A A ADLB AA - Process Approach A put/get Application Processes ADLB Servers 13
14 Early Version of ADLB in GFMC on BG/L 14
15 History and Status Year 1: learned the application; worked out first version of API; did thread version of implementation Year 2: Switched to process version, began experiments at scale On BG/L (4096), SiCortex (5800), and BG/P (16K so far) Variational Monte Carlo (part of GFMC) Full GFMC (see following performance graph) Latest: GFMC for neutron drop at large scale Some additions to the API for increased scalability, memory management Internal changes to manage memory Still working on memory management for full GMFC with fine-grain parallelism, needed for 12 C Basic API not changing 15
16 Comparing Speedup 16
17 Most Recent Runs 14-neutron drop on 16,384 processors of BG/P Speedup of 13,634 (83% efficiency) No microparallization since more configurations ADLB processes 171 million work packages of size 129KB each, total of 20.5 terabytes of data moved Heretofore uncomputed level of accuracy for the computed energy and density Also some benchmarking runs for 9 Be and 7 Li 17
18 Future Plans Short detour into scalable debugging tools for understanding behavior, particularly memory usage Further microparallelization of GFMC using ADLB Scaling up on BG/P Revisit the thread model for ADLB implementation, particularly in anticipation of Q and experimental compute-node Linux on P Help with multithreading the application (locally parallel execution of work units via OpenMP) Work with others in the project who use manager/worker patterns in their codes Work with others outside the project in other SciDACs 18
19 Summary We have designed a simple programming model for a class of applications We are working on this in the context of a specific UNEDF application, which is a challenging one We have done two implementations Performance results are promising so far Still have not completely conquered the problem Needed: tools for understanding behavior, particularly to help with application-level debugging 19
20 The End 20
Asynchronous Dynamic Load Balancing (ADLB)
Asynchronous Dynamic Load Balancing (ADLB) A high-level, non-general-purpose, but easy-to-use programming model and portable library for task parallelism Rusty Lusk Mathema.cs and Computer Science Division
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
Four Keys to Successful Multicore Optimization for Machine Vision. White Paper
Four Keys to Successful Multicore Optimization for Machine Vision White Paper Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable results. Developers need
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Software Development around a Millisecond
Introduction Software Development around a Millisecond Geoffrey Fox In this column we consider software development methodologies with some emphasis on those relevant for large scale scientific computing.
Remote Graphical Visualization of Large Interactive Spatial Data
Remote Graphical Visualization of Large Interactive Spatial Data ComplexHPC Spring School 2011 International ComplexHPC Challenge Cristinel Mihai Mocan Computer Science Department Technical University
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General
Contributions to Gang Scheduling
CHAPTER 7 Contributions to Gang Scheduling In this Chapter, we present two techniques to improve Gang Scheduling policies by adopting the ideas of this Thesis. The first one, Performance- Driven Gang Scheduling,
Spring 2011 Prof. Hyesoon Kim
Spring 2011 Prof. Hyesoon Kim Today, we will study typical patterns of parallel programming This is just one of the ways. Materials are based on a book by Timothy. Decompose Into tasks Original Problem
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and
End-user Tools for Application Performance Analysis Using Hardware Counters
1 End-user Tools for Application Performance Analysis Using Hardware Counters K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, T. Spencer Abstract One purpose of the end-user tools described in
Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings
Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,
Overlapping Data Transfer With Application Execution on Clusters
Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm [email protected] [email protected] Department of Computer Science Department of Electrical and Computer
Kernel comparison of OpenSolaris, Windows Vista and. Linux 2.6
Kernel comparison of OpenSolaris, Windows Vista and Linux 2.6 The idea of writing this paper is evoked by Max Bruning's view on Solaris, BSD and Linux. The comparison of advantages and disadvantages among
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada [email protected] Micaela Serra
Server Consolidation with SQL Server 2008
Server Consolidation with SQL Server 2008 White Paper Published: August 2007 Updated: July 2008 Summary: Microsoft SQL Server 2008 supports multiple options for server consolidation, providing organizations
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden [email protected],
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
Cellular Computing on a Linux Cluster
Cellular Computing on a Linux Cluster Alexei Agueev, Bernd Däne, Wolfgang Fengler TU Ilmenau, Department of Computer Architecture Topics 1. Cellular Computing 2. The Experiment 3. Experimental Results
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
Multi-core Programming System Overview
Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,
A Flexible Cluster Infrastructure for Systems Research and Software Development
Award Number: CNS-551555 Title: CRI: Acquisition of an InfiniBand Cluster with SMP Nodes Institution: Florida State University PIs: Xin Yuan, Robert van Engelen, Kartik Gopalan A Flexible Cluster Infrastructure
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
PMI: A Scalable Parallel Process-Management Interface for Extreme-Scale Systems
PMI: A Scalable Parallel Process-Management Interface for Extreme-Scale Systems Pavan Balaji 1, Darius Buntinas 1, David Goodell 1, William Gropp 2, Jayesh Krishna 1, Ewing Lusk 1, and Rajeev Thakur 1
How To Install Linux Titan
Linux Titan Distribution Presented By: Adham Helal Amgad Madkour Ayman El Sayed Emad Zakaria What Is a Linux Distribution? What is a Linux Distribution? The distribution contains groups of packages and
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Interconnect Efficiency of Tyan PSC T-630 with Microsoft Compute Cluster Server 2003
Interconnect Efficiency of Tyan PSC T-630 with Microsoft Compute Cluster Server 2003 Josef Pelikán Charles University in Prague, KSVI Department, [email protected] Abstract 1 Interconnect quality
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015. Hermann Härtig
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015 Hermann Härtig ISSUES starting points independent Unix processes and block synchronous execution who does it load migration mechanism
Introduction to grid technologies, parallel and cloud computing. Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber
Introduction to grid technologies, parallel and cloud computing Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber OUTLINES Grid Computing Parallel programming technologies (MPI- Open MP-Cuda )
Performance of the JMA NWP models on the PC cluster TSUBAME.
Performance of the JMA NWP models on the PC cluster TSUBAME. K.Takenouchi 1), S.Yokoi 1), T.Hara 1) *, T.Aoki 2), C.Muroi 1), K.Aranami 1), K.Iwamura 1), Y.Aikawa 1) 1) Japan Meteorological Agency (JMA)
Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH
Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
INTRODUCTION ADVANTAGES OF RUNNING ORACLE 11G ON WINDOWS. Edward Whalen, Performance Tuning Corporation
ADVANTAGES OF RUNNING ORACLE11G ON MICROSOFT WINDOWS SERVER X64 Edward Whalen, Performance Tuning Corporation INTRODUCTION Microsoft Windows has long been an ideal platform for the Oracle database server.
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Memory Debugging with TotalView on AIX and Linux/Power
S cico m P Austin Aug 2004 Memory Debugging with TotalView on AIX and Linux/Power Chris Gottbrath Memory Debugging in AIX and Linux-Power Clusters Intro: Define the problem and terms What are Memory bugs?
CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT
81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to
Search Engine Architecture
Search Engine Architecture 1. Introduction This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/
Estimate Performance and Capacity Requirements for Workflow in SharePoint Server 2010
Estimate Performance and Capacity Requirements for Workflow in SharePoint Server 2010 This document is provided as-is. Information and views expressed in this document, including URL and other Internet
MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp
MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source
Multi-Threading Performance on Commodity Multi-Core Processors
Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction
Multi-GPU Load Balancing for Simulation and Rendering
Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks
Developing Parallel Applications with the Eclipse Parallel Tools Platform
Developing Parallel Applications with the Eclipse Parallel Tools Platform Greg Watson IBM STG [email protected] Parallel Tools Platform Enabling Parallel Application Development Best practice tools for experienced
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Goals of the session Overview of parallel MATLAB Why parallel MATLAB? Multiprocessing in MATLAB Parallel MATLAB using the Parallel Computing
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM Ramesh Maharjan and Manoj Shakya Department of Computer Science and Engineering Dhulikhel, Kavre, Nepal [email protected],
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
BLM 413E - Parallel Programming Lecture 3
BLM 413E - Parallel Programming Lecture 3 FSMVU Bilgisayar Mühendisliği Öğr. Gör. Musa AYDIN 14.10.2015 2015-2016 M.A. 1 Parallel Programming Models Parallel Programming Models Overview There are several
15-418 Final Project Report. Trading Platform Server
15-418 Final Project Report Yinghao Wang [email protected] May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support
FPGA area allocation for parallel C applications
1 FPGA area allocation for parallel C applications Vlad-Mihai Sima, Elena Moscu Panainte, Koen Bertels Computer Engineering Faculty of Electrical Engineering, Mathematics and Computer Science Delft University
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
Interoperability between Sun Grid Engine and the Windows Compute Cluster
Interoperability between Sun Grid Engine and the Windows Compute Cluster Steven Newhouse Program Manager, Windows HPC Team [email protected] 1 Computer Cluster Roadmap Mainstream HPC Mainstream
Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp
Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
An Introduction to Parallel Computing/ Programming
An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European
Virtual Machines. www.viplavkambli.com
1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software
Data-Flow Awareness in Parallel Data Processing
Data-Flow Awareness in Parallel Data Processing D. Bednárek, J. Dokulil *, J. Yaghob, F. Zavoral Charles University Prague, Czech Republic * University of Vienna, Austria 6 th International Symposium on
Basics of VTune Performance Analyzer. Intel Software College. Objectives. VTune Performance Analyzer. Agenda
Objectives At the completion of this module, you will be able to: Understand the intended purpose and usage models supported by the VTune Performance Analyzer. Identify hotspots by drilling down through
Petascale Software Challenges. Piyush Chaudhary [email protected] High Performance Computing
Petascale Software Challenges Piyush Chaudhary [email protected] High Performance Computing Fundamental Observations Applications are struggling to realize growth in sustained performance at scale Reasons
The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.
White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,
Part V Applications. What is cloud computing? SaaS has been around for awhile. Cloud Computing: General concepts
Part V Applications Cloud Computing: General concepts Copyright K.Goseva 2010 CS 736 Software Performance Engineering Slide 1 What is cloud computing? SaaS: Software as a Service Cloud: Datacenters hardware
Make the Most of Big Data to Drive Innovation Through Reseach
White Paper Make the Most of Big Data to Drive Innovation Through Reseach Bob Burwell, NetApp November 2012 WP-7172 Abstract Monumental data growth is a fact of life in research universities. The ability
Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints
Adaptive Tolerance Algorithm for Distributed Top-K Monitoring with Bandwidth Constraints Michael Bauer, Srinivasan Ravichandran University of Wisconsin-Madison Department of Computer Sciences {bauer, srini}@cs.wisc.edu
ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008
ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element
Numerix CrossAsset XL and Windows HPC Server 2008 R2
Numerix CrossAsset XL and Windows HPC Server 2008 R2 Faster Performance for Valuation and Risk Management in Complex Derivative Portfolios Microsoft Corporation Published: February 2011 Abstract Numerix,
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
A General Framework for Tracking Objects in a Multi-Camera Environment
A General Framework for Tracking Objects in a Multi-Camera Environment Karlene Nguyen, Gavin Yeung, Soheil Ghiasi, Majid Sarrafzadeh {karlene, gavin, soheil, majid}@cs.ucla.edu Abstract We present a framework
PostgreSQL Performance Characteristics on Joyent and Amazon EC2
OVERVIEW In today's big data world, high performance databases are not only required but are a major part of any critical business function. With the advent of mobile devices, users are consuming data
Enhance Service Delivery and Accelerate Financial Applications with Consolidated Market Data
White Paper Enhance Service Delivery and Accelerate Financial Applications with Consolidated Market Data What You Will Learn Financial market technology is advancing at a rapid pace. The integration of
ANALYSIS OF GRID COMPUTING AS IT APPLIES TO HIGH VOLUME DOCUMENT PROCESSING AND OCR
ANALYSIS OF GRID COMPUTING AS IT APPLIES TO HIGH VOLUME DOCUMENT PROCESSING AND OCR By: Dmitri Ilkaev, Stephen Pearson Abstract: In this paper we analyze the concept of grid programming as it applies to
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing
DELL s Oracle Database Advisor
DELL s Oracle Database Advisor Underlying Methodology A Dell Technical White Paper Database Solutions Engineering By Roger Lopez Phani MV Dell Product Group January 2010 THIS WHITE PAPER IS FOR INFORMATIONAL
In: Proceedings of RECPAD 2002-12th Portuguese Conference on Pattern Recognition June 27th- 28th, 2002 Aveiro, Portugal
Paper Title: Generic Framework for Video Analysis Authors: Luís Filipe Tavares INESC Porto [email protected] Luís Teixeira INESC Porto, Universidade Católica Portuguesa [email protected] Luís Corte-Real
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
Mathematical Libraries on JUQUEEN. JSC Training Course
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries on JUQUEEN JSC Training Course May 10, 2012 Outline General Informations Sequential Libraries, planned Parallel Libraries and Application Systems:
CA NSM System Monitoring Option for OpenVMS r3.2
PRODUCT SHEET CA NSM System Monitoring Option for OpenVMS CA NSM System Monitoring Option for OpenVMS r3.2 CA NSM System Monitoring Option for OpenVMS helps you to proactively discover, monitor and display
A High Performance Computing Scheduling and Resource Management Primer
LLNL-TR-652476 A High Performance Computing Scheduling and Resource Management Primer D. H. Ahn, J. E. Garlick, M. A. Grondona, D. A. Lipari, R. R. Springmeyer March 31, 2014 Disclaimer This document was
Chapter 18: Database System Architectures. Centralized Systems
Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and
Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster
Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster Gabriele Jost and Haoqiang Jin NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 {gjost,hjin}@nas.nasa.gov
Scheduling Task Parallelism" on Multi-Socket Multicore Systems"
Scheduling Task Parallelism" on Multi-Socket Multicore Systems" Stephen Olivier, UNC Chapel Hill Allan Porterfield, RENCI Kyle Wheeler, Sandia National Labs Jan Prins, UNC Chapel Hill Outline" Introduction
Lightweight Service-Based Software Architecture
Lightweight Service-Based Software Architecture Mikko Polojärvi and Jukka Riekki Intelligent Systems Group and Infotech Oulu University of Oulu, Oulu, Finland {mikko.polojarvi,jukka.riekki}@ee.oulu.fi
COMP5426 Parallel and Distributed Computing. Distributed Systems: Client/Server and Clusters
COMP5426 Parallel and Distributed Computing Distributed Systems: Client/Server and Clusters Client/Server Computing Client Client machines are generally single-user workstations providing a user-friendly
IBM Deep Computing Visualization Offering
P - 271 IBM Deep Computing Visualization Offering Parijat Sharma, Infrastructure Solution Architect, IBM India Pvt Ltd. email: [email protected] Summary Deep Computing Visualization in Oil & Gas
OpenMP & MPI CISC 879. Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware
OpenMP & MPI CISC 879 Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware 1 Lecture Overview Introduction OpenMP MPI Model Language extension: directives-based
Eloquence Training What s new in Eloquence B.08.00
Eloquence Training What s new in Eloquence B.08.00 2010 Marxmeier Software AG Rev:100727 Overview Released December 2008 Supported until November 2013 Supports 32-bit and 64-bit platforms HP-UX Itanium
