INTRODUCTION TO LAND NAVIGATION
|
|
|
- Justina Terry
- 10 years ago
- Views:
Transcription
1 Section 5 INTRODUCTION TO LAND NAVIGATION Key Points 1 Understanding Azimuths 2 Converting Azimuths 3 Determining Elevation 4 Calculating Distance on a Map Tactics and Techniques Track
2 Introduction to Land Navigation 199 Introduction To accomplish your mission, you must be in the right place at the right time. Being in the right place requires you to navigate well. Knowing how to read a map is one thing knowing how to use a map to navigate requires that you understand how to use azimuths, elevation, and map distance. In the previous section, you learned how to identify and interpret topographic symbols, colors, contour lines, and marginal information found on a military map. You also learned about the military grid reference system and how to plot grid coordinates using a military map and protractor. This section will expand your map-reading skills and introduce you to how the military navigates using a map, compass, and protractor. You will learn what an azimuth is and how to convert azimuths in order to navigate using a compass and map. You will also learn how to determine the elevation of the terrain by analyzing the contour lines and contour interval data from the marginal information on a military map. Lastly, you will learn to compute straight-line and road distance using the scale in the margin of the military map. Coupled with your learning from your orienteering and map reading lessons, you will have the basic knowledge to navigate from one point to another and arrive safely at your destination. In the following vignette, COL John Zierdt Jr., commander of the 1st Support Command during the first Gulf War, remembers how a group of Soldiers paid a serious price when they decided to rely on familiarity rather than put into practice basic mapreading and land-navigation skill required of all Soldiers. Captured During Desert Storm The driver had been on a particular route two or three times and thought he knew where he was going. Then instead of turning left, he kept going straight. They even saw the water on their right, which was a dead giveaway that they were going north rather than west. There were two HETs [heavy trucks] following each other. The guy, the one that was eventually captured, was in the lead vehicle, and stopped. And the guys behind him said, You re going the wrong way and we need to turn around. He said, I am not. He says, I m going straight. You can follow me or turn around if you want. So, they kept going straight. The next thing you knew they were in the middle of a firefight. The second vehicle got turned around in time [and] got out of there; the [first] vehicle got stuck and didn t get turned around, and the two of them got captured. Department of the Army, XVIII Airborne Corps and US Army Center of Military History Tactics and Techniques Track
3 200 SECTION 5 Critical Thinking e If the drivers of the two vehicles had looked at and oriented their maps, what might have told them they were headed in the wrong direction? What would you have done if you were in the second vehicle? Would you have continued to follow the first vehicle after you decided it was going the wrong way? What could you have said over the radio to the Soldiers in the first vehicle that may have triggered in their minds that they were, in fact, going in the wrong direction? azimuth the horizontal angle, measured clockwise by degrees or mils between a reference direction and the line to an observed or designated point there are three base (reference) directions or azimuths: true, grid, and magnetic azimuth The terms azimuth and direction are interchangeable. grid azimuth the angle between grid north and a line drawn on the map Understanding Azimuths Everything in land navigation begins with an azimuth. An azimuth is a horizontal angle measured clockwise by degrees or mils between a reference direction and a line to an observed or designated point. There are three base directions or azimuths: true, grid, and magnetic. The Army uses azimuths to express direction. Direction is determined from your start point, or where you are, outward toward your desired destination, or your intended target. Because you use north (0 or 360 degrees) as your base line, 270 degrees away from north will always be due west. Think of yourself as standing in the middle of a Nebraska cornfield. You are facing north. The horizon stretches around you in a great 360-degree circle. If you travel an azimuth of zero degrees or 360 degrees or due north you will wind up in Canada. If you turn to your right and travel on an azimuth of 90 degrees due east you will wind up in the Atlantic Ocean, probably off the coast of New Jersey. An azimuth of 180 degrees due south will take you into Mexico, and an azimuth of 270 degrees due west will take you to the Pacific, just off the coast of Northern California. Determining a Grid Azimuth Using a Protractor There are two ways you can determine an azimuth. You can use a map to determine a grid azimuth, or you can use a compass to determine a magnetic azimuth. Regardless of the technique, you will learn in this chapter how to convert a grid azimuth to a magnetic azimuth and a magnetic azimuth to a grid azimuth. You will first use a map and learn how to determine a grid azimuth. The steps in this process should be very familiar if you have ever taken a geometry class. To begin, select a start point on the map. Mark it as point A. Identify an end point on your map. Mark it as point B. Using the edge of your protractor, draw a straight pencil line between points A and B. The line is your azimuth. Now you must determine the grid azimuth of that line the angle between the line and grid north. When you lay your protractor down on your map, make sure you place it right side up; verify this by checking to see that the writing on the protractor is not backward. If your protractor is wrong side up, you will get grid azimuths that are 180 degrees off from the
4 Introduction to Land Navigation 201 Although having the mils scale on the outside of the protractor may seem confusing now, don t get into the habit of cutting the mils scale off your protractor. Later in your military career, your military occupational specialty (MOS) may require you to state azimuths in mils as well as degrees. Figure 5.1 Army Protractor (GTA , 1981) correct grid azimuth. Also, make sure the 0- or 360-degree mark of your protractor is toward the top (or north) of your map, and make sure the 90-degree mark is toward the right (or east) of your map. If you place your protractor down incorrectly on your map, the grid azimuth that you determine will be a minimum of 90 degrees off and as much as 270 degrees off the actual azimuth. Follow these three steps to determine your grid azimuth from the arbitrary points A and B (Figure 5.2): 1. Place the index of your protractor (the place where the etched vertical line and the etched horizontal line meet) at the point where the line you drew on your map crosses a vertical, north-south grid line. 2. Keeping the index at this point, line up the 0-to-180-degree line, or base line, of the protractor on the vertical, north-south grid line. 3. Follow your line outward to the degree scale of your protractor. Read the value of the angle from the protractor. This is your grid azimuth from point A to point B expressed in degrees. Next, you will plot an azimuth from a known point on a map. Imagine you receive an order to move from your current position in a given direction. Plotting the azimuth on your map will allow you to see the terrain and objects you will need to navigate through along the entire length of your azimuth. The steps are as follows:
5 202 SECTION 5 Figure 5.2 Measuring an Azimuth This is the same method you will use to determine the grid azimuth between any two points on the map. 1. Place your protractor on the map with the index mark at the center of the known point and the base line parallel to a vertical, north-south grid line. 2. Using your pencil, make a small tick mark on the map at the edge of the protractor at the desired azimuth. Remember that your protractor will have degrees on the inner scale and mils on the outer scale. Ensure the tick mark on the map is beside the desired azimuth in degrees and not mils. 3. Lift and reposition the protractor so you can use its side as a straightedge. Draw a line connecting the known point and the tick mark on the map. This is your grid direction line your azimuth.
6 Introduction to Land Navigation 203 Determining a Back Azimuth A back azimuth is simply the opposite direction to your azimuth. A simple example is when you get on the interstate going north when you wanted to go south. At the next exit, you get off the interstate, turn around, and get back on the interstate going south. You just took a back azimuth, or in slang, you just did a 180. To compute a back azimuth from an azimuth, simply add or subtract 180 degrees to or from your original azimuth. Remember that a circle has 360 degrees, so if your azimuth is greater than 180 degrees, adding 180 degrees to determine your back azimuth will give you an azimuth that is more than 360 degrees. For example, if your azimuth were 200 degrees, adding 180 degrees would result in a back azimuth of 380 degrees, whereas subtracting 180 degrees would result in a back azimuth of 20 degrees. The back azimuth 380 degrees is obviously greater than the number of degrees in a circle 20 degrees greater. Sure, you could subtract 360 degrees from 380 degrees and still get the same correct back azimuth of 20 degrees. But this simply adds another step to the process. So, subtracting 180 degrees from azimuths greater than 180 degrees simplifies determining back azimuths. back azimuth the opposite direction of an azimuth to obtain a back azimuth from an azimuth, add 180 degrees if the azimuth is 180 degrees or less, or subtract 180 degrees if the azimuth is 180 degrees or more Determining a Magnetic Azimuth to an Object A magnetic azimuth is an azimuth determined using magnetic instruments, such as a compass. The Army uses two types of compasses: the M2 compass and the lensatic compass. Soldiers use the M2 compass primarily for positioning indirect fire weapons such as mortars. The lensatic compass, pictured in Figure 5.3, is the compass the Army uses for land navigation. To determine a magnetic azimuth using a compass: 1. Open your compass to its fullest so the cover forms a straightedge with the base. Move the lens (the rear sight) to the rearmost position. This allows the dial to float freely. 2. Place your thumb through the thumb loop, form a steady base with your third and fourth fingers, and extend your index finger along the side of the compass. 3. Place the thumb of your other hand between the lens (rear sight) and the bezel ring; extend your index finger along the remaining side of the compass, and your remaining fingers around the fingers of your other hand. Tuck your elbows into your sides. This will place the compass between your chin and your belt. 4. Turn your body toward the object that you wish to get an azimuth to, pointing your compass cover directly at the object. 5. Look down and read the azimuth from beneath the fixed black index line on the compass face. Critical Thinking e 1. Why is it important for you to understand how to determine a back azimuth? 2. When would you use a back azimuth?
7 204 SECTION 5 Figure 5.3 Centerhold Technique With a Lensatic Compass Figure 5.4 True, Magnetic, and Grid North Shooting an Azimuth with a Compass When you already know the magnetic azimuth that you want to navigate along, you follow the above steps, but reverse steps 4 and 5. You look down at the compass bezel and slowly turn your body until you see the azimuth you wish to take. Once you see your azimuth on the bezel, look up, and identify an easily recognizable object off in the distance that is in line with your azimuth. Once you have identified the object on your azimuth, you can put your compass away and move to that object. As long as you continue to move to your identified object, you will be on your desired azimuth. This method is known as shooting an azimuth. declination diagram the chart in the map legend that tells you the differences in angle between true north, grid north, and magnetic north Converting Azimuths Two problems complicate your easy use of a map and compass: First, the surface of the earth is curved, while the surface of your map is flat. This creates problems between what your map shows as north (grid north) and what really is north (true north). Second, the earth s magnetic pole is not the same as the earth s axis. This creates a difference between what your compass shows as north (magnetic north) and what really is north (true north). Your map contains information to help you overcome these problems. The declination diagram in your map s legend gives you the information you need to compensate for the differences declination between grid north, true north, and magnetic north. The declination diagram (Figure 5.4) shows you the difference in angle between any of these norths. Since you will navigate with a magnetic compass and a grid map, your primary concern is the difference between grid north and magnetic north. The difference between grid north and magnetic north is known as the G-M angle (grid-magnetic angle).
8 Introduction to Land Navigation 205 Figure 5.5 Map Declination Diagram The G-M angle will be shown in the declination diagram and will be expressed in degrees. The G-M angle will either be to the west of grid north (westerly G-M angle) or to the east of grid north (easterly G-M angle). To reduce the confusion of converting easterly and westerly G-M angles from grid to magnetic or magnetic to grid, the mapmakers now include easy-to-understand instructions on the declination diagram so you can quickly convert azimuths without remembering formulas (Figure 5.5). The three vectors that make up the declination diagram (true north, grid north, and magnetic north) are not drawn to scale. Use the written value for the G-M angle and do not try to measure the vectors to determine the G-M angle. Most military maps will display the declination diagram in the lower margin. Some maps may not display the declination diagram and will only list the declination information as a note in the map margin. Adjusting for the Grid-Magnetic (G-M) Angle The G-M angle value is the size of the angle between grid north and magnetic north. You will see it as an arc, indicated by a dashed line, connecting the grid-north and magneticnorth vectors. The G-M angle is important because if you don t adjust for the G-M angle, your grid azimuth translated from your map to your compass will be wrong by the size of the angle and vice versa. For example, if your G-M angle is 8 degrees and you don t adjust for that angle, your grid or magnetic azimuth will be off by 8 degrees. The farther you move away from your start point on your incorrect azimuth, the farther off you will be from your objective. The angular error increases the farther you move. Not using the G-M angle when converting from a grid azimuth to a magnetic azimuth can cause you to miss your objective. Likewise, if you forget to use the G-M angle when you convert a magnetic azimuth to a grid azimuth, you will plot the wrong azimuth on your map. This could result in passing on incorrect information or calling in inaccurate indirect fire missions. Look at the notes that accompany the G-M angle diagram (Figure 5.5). One note tells you how to convert your magnetic azimuth to a grid azimuth; another tells you how to convert your grid azimuth to a magnetic azimuth.
9 206 SECTION 5 A typical note may read To convert a magnetic azimuth to grid azimuth, subtract G-M angle. If you have a magnetic azimuth of 270 degrees, and the G-M angle is 8 degrees, your grid azimuth will be 262 degrees. The conversion (whether to add or subtract) depends on whether your map has an easterly or westerly G-M angle. If your magnetic north is to the right (east) of the grid north, then your map has an easterly G-M angle. If your magnetic north is to the left (west) of the grid north, then your map has a westerly G-M angle. You will learn more about azimuths and land navigation as you progress through ROTC. By the end of your MSL III year, you must master land navigation in order to succeed at the Leader Development and Assessment Course (LDAC), which you will attend at Fort Lewis, Wash., after your MSL III year. Determining Elevation You can determine the elevation of any location on your map without any special equipment using two things on your map that you learned about in the previous Map Reading section contour lines and the contour interval. Before you can determine the elevation of any point on your map, you must first know the contour interval for the map you are using. As you read previously, you can find the contour interval in the margin of your map usually in the middle of the lower margin. Recall that the contour interval is a measurement of the vertical distance between adjacent contour lines. Refer to Figure 5.7 to learn how to determine the specific elevation of a point on a map: 1. Identify the contour interval and the unit of measure used (feet, meters, or yards) from your map s marginal information at Figure 5.6 (most military maps use meters). Using the map example at Figure 5.7, if you wanted to determine the elevation to point A, you would find the numbered index contour line nearest point A. In Figure 5.7, the closest numbered contour line to point A is the 500-meter contour interval. Determine if point A is above (higher in elevation) the 500-meter contour line, or if point A is below (lower in elevation) than the 500-meter line. Since point A lies between the 500-meter contour line and the 600-meter contour line, moving from the closest contour line (500-meter) to point A would be traveling uphill to a higher elevation. 2. Determine the elevation of point A by starting at the index contour line numbered 500 and counting the number of intermediate contour lines (the unmarked contour lines) to point A. Point A is on the second intermediate contour line above the 500-meter index contour line. Since the contour interval is 20 meters (Figure 5.6), each intermediate contour line crossed to get to point A adds 20 meters to the 500- meter index contour line. The elevation of point A is 540 meters. 3. Determine the elevation of point B by going to the nearest index contour line. In this case, it is the upper index contour line, numbered 600. Point B is located on the intermediate contour line immediately below the 600-meter index contour line. Therefore, point B is located at an elevation of 580 meters. Remember, if you are increasing elevation, add the contour interval to the nearest index contour line. If you are decreasing elevation, subtract the contour interval from the nearest index contour line.
10 Introduction to Land Navigation 207 Figure 5.6 Example of a Contour Interval Note Figure 5.7 Points on Contour Lines Critical Thinking e Why is it important for you to know how to determine elevation on a military map? Think about the azimuth you will plot on your map in order to travel from point A to point B. How will knowing elevation help you when navigating from point A to point B? Can knowing the elevation help you decide which azimuths or routes to take to your destination?
11 208 SECTION 5 4. Estimate the elevation of the hilltop, point C, by adding one-half of the contour interval to the elevation of the last contour line. In this example, the last contour line before the hilltop is an index contour line numbered 600. Add one-half the contour interval, 10 meters, to the index contour line. The elevation of the hilltop would be 610 meters. You use the same process to estimate the elevation of a depression, except you subtract half of the contour interval to estimate the elevation at the bottom of the depression. Calculating Distance on a Map Now you know how to plot and determine azimuths on your map, and you understand how to determine elevation on your map or along your plotted azimuth. But how far is it from your start point to your destination? The marginal information on your map allows you to determine both straight-line distance and road distance. You can use the graphic scale located in the lower center portion of the map margin as a ruler to convert distances on the map to distances on the ground (Figure 5.8). The graphic scale is divided into two parts. To the right of the zero, the scale is marked in full units of measure and is called the primary scale. To the left of the zero, the scale is divided into tenths and is called the extension scale. Most maps have three or more graphic scales, each with a different unit of measure, such as meters, yards, statute miles, and nautical miles. When you use the graphic scale, be sure that you use the appropriate unit of measure. Straight-Line Distance To calculate the straight-line distance between two points on your map: 1. Lay a straight-edged piece of paper on the map so the edge of your paper touches both points and extends past them. 2. Make a tick mark on the edge of the paper at each point (Figure 5.9). 3. Then move your paper to the graphic bar scale, and use the scale to measure the distance between the two points. Note that you should align the tick mark on the right with a printed number in the primary scale so that the left tick mark falls within the extension scale (Figure 5.10). Figure 5.8 Using a Graphic (Bar) Scale
12 Introduction to Land Navigation 209 Figure 5.9 Transferring Map Distance to Paper Strip Figure 5.10 Measuring Straight-Line Map Distance
13 210 SECTION 5 The more tick marks you make when measuring your curved route, the more accurate your final distance will be. This is especially true when measuring along curves. Curved-Line Distance To measure the distance along a curved route, such as a road, trail, waterway, or other curved line: Put a straight-edged piece of paper on your map with the edge next to your starting point. Place a tick mark on the paper and on your map. Line up the straight edge of the paper with the straight portion of the curved route you are measuring. Make a tick mark on both map and paper when the edge of the paper leaves the straight portion of the line you re measuring. (See View A in Figure 5.11.) Pivot the paper until another straight portion of the curved line lines up with the edge of the paper. Continue in this manner until you have completed the distance you want to measure. (See View B in Figure Notice the number of small ticks on the edge of the paper and that the last is labeled tick mark B.) Move the paper to the graphic scale to determine the ground distance. The only tick marks you need to measure are tick marks A and B. (See View C in Figure 5.11.) In order to maintain accuracy when measuring curved distance, it is important to keep the straight edge of your paper on the same side of the curve you are measuring. If you start off measuring a curved road on one side of that road, then keep your paper on that side of the road and mark all of your tick marks on that same side of the road. Do not cross over and start making tick marks on the opposite side of the road.
14 Introduction to Land Navigation 211 Figure 5.11 Measuring a Curved Line
15 212 SECTION 5 e CONCLUSION You are a Cadet now. In the not-too-distant future, you may be an Army second lieutenant leading a platoon. Perhaps, in the distant future, you will be a lieutenant colonel commanding a battalion, a colonel commanding a brigade, or even a major general commanding a division. Whatever your position and rank, you will always need to get your Soldiers from one point to another. If you can t do so, you endanger your mission and perhaps the lives of your Soldiers. It s impossible to overemphasize the importance of map reading and land navigation. They are critical leadership skills. They are also perishable skills they require constant practice and review, regardless of a Soldier s rank or experience. Start now to develop your expertise and work to keep your skills honed and at the ready. Learning Assessment 1. What is an azimuth? 2. Explain how to determine a grid azimuth. 3. Explain how to determine a magnetic azimuth. 4. Explain the differences between the three norths. 5. Explain how to use the G-M angle to convert grid and magnetic azimuth. 6. What is a contour interval? 7. Explain how to determine elevation on a map. 8. Explain how to measure the straight line and curved distance between two points on a map.
16 Introduction to Land Navigation 213 Key Words azimuth grid azimuth back azimuth declination diagram References Field Manual , The Infantry Rifle Platoon and Squad. 28 March Field Manual , Map Reading and Land Navigation. 18 January Department of the Army, XVIII Airborne Corps and US Army Center of Military History. (10 June 1991). Operations Desert Shield and Desert Storm. Oral History Interview DSIT AE 108. Fort Bragg, NC, and Washington, DC. Retrieved 8 July 2005 from
Map reading made easy
Map reading made easy What is a map? A map is simply a plan of the ground on paper. The plan is usually drawn as the land would be seen from directly above. A map will normally have the following features:
Plotting and Adjusting Your Course: Using Vectors and Trigonometry in Navigation
Plotting and Adjusting Your Course: Using Vectors and Trigonometry in Navigation ED 5661 Mathematics & Navigation Teacher Institute August 2011 By Serena Gay Target: Precalculus (grades 11 or 12) Lesson
CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION
CHAPTER 7 TRAVERSE Section I. SELECTION OF TRAVERSE DEFINITION A traverse is a series of straight lines called traverse legs. The surveyor uses them to connect a series of selected points called traverse
CHAPTER 7 DEAD RECKONING
CHAPTER 7 DEAD RECKONING DEFINITION AND PURPOSE 700. Definition and Use Dead reckoning is the process of determining one s present position by projecting course(s) and speed(s) from a known past position,
PREFACE. The many TRADOC service schools and DOD agencies that produce the ACCP materials administered by the AIPD develop them to the DETC standards.
PREFACE The Army Institute for Professional Development (AIPD) administers the consolidated Army Correspondence Course Program (ACCP), which provides highquality, economical training to its users. The
Title: Trigonometric Solutions to a Dead Reckoning Air Navigation Problem Using Vector Analysis and Advanced Organizers
Title: Trigonometric Solutions to a Dead Reckoning Air Navigation Problem Using Vector Analysis and Advanced Organizers Brief Overview: We will complete a dead reckoning navigation problem following certain
TRAFFIC ACCIDENT STUDY GUIDE 2010
TRAFFIC ACCIDENT STUDY GUIDE 2010 SECTION SEVEN This study guide is designed to provide the law enforcement Explorer with basic principles. The guide is not all inclusive, and does not delineate specific
Field Application Note
Field Application Note Reverse Dial Indicator Alignment RDIA Mis-alignment can be the most usual cause for unacceptable operation and high vibration levels. New facilities or new equipment installations
Logo Symmetry Learning Task. Unit 5
Logo Symmetry Learning Task Unit 5 Course Mathematics I: Algebra, Geometry, Statistics Overview The Logo Symmetry Learning Task explores graph symmetry and odd and even functions. Students are asked to
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
Anamorphic Projection Photographic Techniques for setting up 3D Chalk Paintings
Anamorphic Projection Photographic Techniques for setting up 3D Chalk Paintings By Wayne and Cheryl Renshaw. Although it is centuries old, the art of street painting has been going through a resurgence.
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Coordinate Systems. Orbits and Rotation
Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million
Motion & The Global Positioning System (GPS)
Grade Level: K - 8 Subject: Motion Prep Time: < 10 minutes Duration: 30 minutes Objective: To learn how to analyze GPS data in order to track an object and derive its velocity from positions and times.
How To Read Maps And Aerial Photos
3 Read Maps and Aerial Photos WRITING SAMPLE (training guide) Stephen X. Arthur, technical writer 2005 www.transcanfilm.com/stephenarthur First draft. Copyright 1996, BC Ministry of Forests / BC Institute
Plate Tectonics: Ridges, Transform Faults and Subduction Zones
Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean
FM 3-25.26 MAP READING AND LAND NAVIGATION
*FM 3-25.26 (FM 21-26) Field Manual No. 3-25.26 Headquarters Department of the Army Washington, DC, 20 July 2001 FM 3-25.26 MAP READING AND LAND NAVIGATION Table of Contents PREFACE Part One MAP READING
Unit 8 Angles, 2D and 3D shapes, perimeter and area
Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest
Unit 6 Direction and angle
Unit 6 Direction and angle Three daily lessons Year 4 Spring term Unit Objectives Year 4 Recognise positions and directions: e.g. describe and find the Page 108 position of a point on a grid of squares
MILS and MOA A Guide to understanding what they are and How to derive the Range Estimation Equations
MILS and MOA A Guide to understanding what they are and How to derive the Range Estimation Equations By Robert J. Simeone 1 The equations for determining the range to a target using mils, and with some
QM5091 2 SCHEDULE AND DISPATCH PETROLEUM PIPELINE OPERATIONS
SUBCOURSE EDITION QM5091 2 SCHEDULE AND DISPATCH PETROLEUM PIPELINE OPERATIONS SCHEDULE AND DISPATCH PETROLEUM PIPELINE OPERATIONS Subcourse QM 5091 Edition 2 Unites States Army Combined Arms Support Command
PRACTICAL BLOCK COMPASS BASICS. Compass Basics. Introduction. The Silva Compass
Compass Basics Introduction The first compass was, no doubt, a magnetised ore-bearing rock or stone, that when suspended, would always point the same way. No one knows who first discovered the compass;
Tutorial 8 Raster Data Analysis
Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring
Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a
How to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.
Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø
Flight Planning Using an Aeronautical Chart
Flight Planning Using an Aeronautical Chart By Laura Million INTRODUCTION When a driver in an automobile takes a trip, one hops in the car and drives. Signs along the highway will point the way to the
Grade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following
Topographic Maps Practice Questions and Answers Revised October 2007
Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining
OA4-13 Rounding on a Number Line Pages 80 81
OA4-13 Rounding on a Number Line Pages 80 81 STANDARDS 3.NBT.A.1, 4.NBT.A.3 Goals Students will round to the closest ten, except when the number is exactly halfway between a multiple of ten. PRIOR KNOWLEDGE
LESSON 9: COMPANY FORMATIONS AND MOVEMENT
LESSON 9: COMPANY FORMATIONS AND MOVEMENT PURPOSE arc base double time guide mark time mass formation post (2 different meanings) DRILL TIPS The company has four prescribed formations: company in line
Chapter 5: Working with contours
Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in
Impedance Matching. Using transformers Using matching networks
Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,
CHAPTER 4 EARTHWORK. Section I. PLANNING OF EARTHWORK OPERATIONS
CHAPTER 4 EARTHWORK Section I. PLANNING OF EARTHWORK OPERATIONS IMPORTANCE In road, railroad, and airfield construction, the movement of large volumes of earth (earthwork) is one of the most important
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Be visual all the time, and be verbal when labeling because explanations help clarify ideas.
Great visual thinkers throughout history have kept records of their ideas in one form or another. (Leonardo da Vinci s sketchbooks are world famous.) Idea logs are an integral part of visual thinking and
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
The Map Grid of Australia 1994 A Simplified Computational Manual
The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones
Interaction at a Distance
Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Wind Direction Smart Sensor (S-WDA-M003)
(S-WDA-M003) The Wind Direction smart sensor is designed to work with HOBO Stations. The smart sensor has a plug-in modular connector that allows it to be added easily to a HOBO Station. All sensor parameters
John F. Cotton College of Architecture & Environmental Design California Polytechnic State University San Luis Obispo, California JOHN F.
SO L I DMO D E L I N GAS A TO O LFO RCO N S T RU C T I N SO G LA REN V E LO PE S by John F. Cotton College of Architecture & Environmental Design California Polytechnic State University San Luis Obispo,
Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25
(Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No - 12 Lecture No - 25 Prandtl-Meyer Function, Numerical
The Basics of Navigation
The Basics of Navigation Knowledge of map reading and the use of the compass is an indispensable skill of bushcraft. Without this skill, a walker is a passenger and mere follower on a trip. To become a
Mathematics on the Soccer Field
Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that
SpaceClaim Introduction Training Session. A SpaceClaim Support Document
SpaceClaim Introduction Training Session A SpaceClaim Support Document In this class we will walk through the basic tools used to create and modify models in SpaceClaim. Introduction We will focus on:
Graphing Sea Ice Extent in the Arctic and Antarctic
Graphing Sea Ice Extent in the Arctic and Antarctic Summary: Students graph sea ice extent (area) in both polar regions (Arctic and Antarctic) over a three-year period to learn about seasonal variations
HOW TO TAKE A COMPASS READING
FENG SHUI Chinese Astrology Akashic Records Healing the Planet, One Living Space at a Time TM HOW TO TAKE A COMPASS READING There are five easy steps required to take an accurate compass reading of the
Navigation: Latitude and Longitude
Sextants and Chronometers Help Sailors Find Their Position at Sea Latitude lines run horizontally across the globe and are used to measure distances north and south of the equator. Sailors used a sextant
Freehand Sketching. Sections
3 Freehand Sketching Sections 3.1 Why Freehand Sketches? 3.2 Freehand Sketching Fundamentals 3.3 Basic Freehand Sketching 3.4 Advanced Freehand Sketching Key Terms Objectives Explain why freehand sketching
TRAINING AND EQUIPMENT MANUAL 304 LADDER PRACTICES 304.006 EXTENSION LADDERS EFFECTIVE: OCTOBER 2007
TRAINING AND EQUIPMENT MANUAL 304 LADDER PRACTICES 304.006 EXTENSION LADDERS EFFECTIVE: OCTOBER 2007 The Department utilizes 10-foot, 14-foot, 24-foot, and 35-foot extension ladders. Extension ladders
INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check.
INDEX SR NO NAME OF THE PRACTICALS Page No 1 Measuring the bearing of traverse lines, calculation of included angles and check. 1 2 To study the essential parts of dumpy level & reduction of levels 3 To
EXTENDED BALLISTIC DATA FOR THE FEDERAL.308 MATCH ROUND:
EXTENDED BALLISTIC DATA FOR THE FEDERAL.308 MATCH ROUND: All the data you wanted but couldn't find -- wind, moving targets, trajectories, etc. By Maj. John L. Plaster, USAR (Ret.) After nearly a decade
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Understand the Sketcher workbench of CATIA V5.
Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part
Using a Mil Based Scope - Easy Transition
Using a Mil Based Scope - Easy Transition Over the last 2 years we have seen a big increase in the number of scopes that offer their adjustments in Milliradian. I am personally a strong proponent of the
Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines
Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC
Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by Definition and Purpose of, Map: a representation of the whole or a part of an area. Maps serve a wide range of purposes.
How Do Oceans Affect Weather and Climate?
How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.
3D Drawing. Single Point Perspective with Diminishing Spaces
3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be
GARDEN WINDOW GLAZING AND DE-GLAZING INSTRUCTIONS
GARDEN WINDOW GLAZING AND DE-GLAZING INSTRUCTIONS DE-GLAZING 1.) If there is any PVC cement covering the joints where external glazing bead strips meet, cut through the cement with a utility knife. 2.)
In this chapter, you will learn improvement curve concepts and their application to cost and price analysis.
7.0 - Chapter Introduction In this chapter, you will learn improvement curve concepts and their application to cost and price analysis. Basic Improvement Curve Concept. You may have learned about improvement
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
OD1641 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS
SUBCOURSE OD1641 EDITION 8 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS US ARMY REPAIR SHOP TECHNICIAN WARRANT OFFICER ADVANCED CORRESPONDENCE COURSE MOS/SKILL LEVEL: 441A PRINCIPLES OF DRAFTING AND SHOP
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light
Weekend Cabin Retreat Project Site Plans
Weekend Cabin Retreat Project Site Plans Sacramento City College EDT 300/ENGR 306 EDT 300/ENGR 306 - Site Plans 1 Cabin Project Site Plan/Bubble Diagram - Assignment 1 =10-0 Floor Plan - Assignment 1/4
What Causes Climate? Use Target Reading Skills
Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions
MD5-26 Stacking Blocks Pages 115 116
MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
The Basics of Robot Mazes Teacher Notes
The Basics of Robot Mazes Teacher Notes Why do robots solve Mazes? A maze is a simple environment with simple rules. Solving it is a task that beginners can do successfully while learning the essentials
Where do they come from?
Exploring Meteorite Mysteries Lesson 2 Follow the Falling Meteorite Objectives Students will: apply geometric properties and relationships to meteorite hunting. demonstrate and experience the way remote
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS
CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained
Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
Military Science (http://catalog.creighton.edu/undergraduate/arts-sciences/military-science/ military-science-minor)
2014-2015 Creighton University Catalog 1 Military Science Chair: Jared Sutton Department Office: Military Science Building, Room 110 The Army Reserve Officers' Training Corps (ROTC), Blackwolves Battalion
How To Stretch Your Body
Exercise Module A New Leaf Choices for Healthy Living University of North Carolina at Chapel Hill 2007 Center for Health Promotion and Disease Prevention Physical Activity Exercises for Keeping Active
What is a piper plot?
What is a piper plot? A piper plot is a way of visualizing the chemistry of a rock, soil, or water sample. It s comprised of three pieces: a ternary diagram in the lower left representing the cations,
Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.
Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type
Takeoff Tools TM Crosswind Calculator Instructions Copyright 2005 by Eric C. King. All rights reserved. Rev. 11Sep05. How to Use
Takeoff Tools TM Crosswind Calculator Instructions Copyright 2005 by Eric C. King. All rights reserved. Rev. 11Sep05 Takeoff Tools TM Suppose you re arriving at, or about to depart from, an airport. You
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
House Design Tutorial
Chapter 2: House Design Tutorial This House Design Tutorial shows you how to get started on a design project. The tutorials that follow continue with the same plan. When we are finished, we will have created
Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M.
Information regarding the Lockheed F-104 Starfighter F-104 LN-3 An article published in the Zipper Magazine #48 December-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands http://www.xs4all.nl/~chair
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Mapping the Magnetic Field
I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude
Pre and post-visit activities - Navigating by the stars
Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find
Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines
MATHEMATICS Y6 Geometry 6750 Use co-ordinates and extend to 4 quadrants Equipment MathSphere www.mathsphere.co.uk
MATHEMATICS Y6 Geometry 675 Use co-ordinates and etend to quadrants Paper, pencil, ruler Equipment MathSphere 675 Use co-ordinates and etend to quadrants. Page Concepts Children should be familiar with
4 The Rhumb Line and the Great Circle in Navigation
4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
Experiment #8: Magnetic Forces
Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable
Introduction and Mathematical Concepts
CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be
Unit 9. Unit 10. Unit 11. Unit 12. Introduction Busy Ant Maths Year 2 Medium-Term Plans. Number - Geometry - Position & direction
Busy Ant Maths Year Medium-Term Plans Unit 9 Geometry - Position & direction Unit 0 ( Temperature) Unit Statistics Unit Fractions (time) 8 Busy Ant Maths Year Medium-Term Plans Introduction Unit Geometry
Astrock, t he A stronomical Clock
Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much
PRECISION SHOOTING TACTICAL
SECOND FOCAL PLANE Vortex EBR-1 MOA Reticle PRECISION SHOOTING TACTICAL TMCQ MRAD Manual 1 4x24 Riflescope Designed to maximize the performance of the Viper PST 1 4x24 in close and mid-range shooting situations,
How To Understand The Physics Of A Charge Charge
MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...
Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011
Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many
