PAPI - PERFORMANCE API. ANDRÉ PEREIRA [email protected]
|
|
|
- Bonnie Butler
- 10 years ago
- Views:
Transcription
1 1 PAPI - PERFORMANCE API ANDRÉ PEREIRA [email protected]
2 2 Motivation Application and functions execution time is easy to measure time gprof valgrind (callgrind) It is enough to identify bottlenecks, but Why is is it slow? How does the code behaves?
3 3 Motivation Efficient algorithms should take into account Cache behaviour Memory and resource contention Floating point efficiency Branch behaviour
4 4 HW Performance Counters Hardware designers added specialised registers o measure various aspects of a microprocessor Generally, they provide an insight into Timings Cache and branch behaviour Memory access patterns Pipeline behaviour FP performance IPC
5 5 What is PAPI? Interface to interact with performance counters With minimal overhead Portable across several platforms Provides utility tools, C, and Fortran API Platform and counters information
6 6 PAPI Organisation 3 rd Party Tools Low Level API High Level API PAPI Portable Layer PAPI Hardware Specific Layer Kernel Extension Operating System Perf Counter Hardware
7 7 Supported Platforms Mainstream platforms (Linux) x86, x86_64 Intel and AMD ARM, MIPS Intel Itanium II IBM PowerPC
8 8 Utilities papi_avail
9 8 Utilities papi_avail papi_native_avail
10 8 Utilities papi_avail papi_native_avail papi_event_chooser
11 9 PAPI Performance Counters Preset events Events implemented on all platforms PAPI_TOT_INS Native events Platform dependent events L3_CACHE_MISS Derived events Preset events that are derived from multiple native events PAPI_L1_TCM may be L1 data misses + L1 instruction misses
12 10 PAPI High-level Interface Calls the low-level API Easier to use Enough for coarse grain measurements You will not optimise code based on the amount of L2 TLB flushes per thread For preset events only!
13 11 The Basics PAPI_start_counters PAPI_stop_counters
14 12 The Basics #include "papi.h #define NUM_EVENTS 2 long long values[num_events]; unsigned int Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC}; /* Start the counters */ PAPI_start_counters((int*)Events,NUM_EVENTS); /* What we are monitoring */ do_work(); /* Stop counters and store results in values */ retval = PAPI_stop_counters(values,NUM_EVENTS);
15 13 PAPI Low-level Interface Increased efficiency and functionality More information about the environment Concepts to check EventSet Multiplexing
16 14 The Basics create_eventset library_init PREFIX: PAPI_ Initialised create_eventset EventSet Setup add_event Counter Setup add_event Measurement Storage stop Measuring start start
17 The Basics #include "papi.h #define NUM_EVENTS 2 int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC}; int EventSet; long long values[num_events]; /* Initialize the Library */ retval = PAPI_library_init(PAPI_VER_CURRENT); /* Allocate space for the new eventset and do setup */ retval = PAPI_create_eventset(&EventSet); /* Add Flops and total cycles to the eventset */ retval = PAPI_add_events(EventSet,Events,NUM_EVENTS); /* Start the counters */ retval = PAPI_start(EventSet); /* What we want to monitor*/ do_work(); /*Stop counters and store results in values */ retval = PAPI_stop(EventSet,values); André Pereira, UMinho, 2015/
18 16 PAPI CUDA Component PAPI is also available for CUDA GPUs Uses the CUPTI Which counters can be directly accessed Define a file with the counters and an environment variable Gives useful information about the GPU usage IPC Memory load/stores/throughput Branch divergences SM(X) occupancy
19 17 What to Measure? The whole application? PAPI usefulness is limited when used alone Combine it with other profilers Bottleneck identification + characterisation
20 18 A Practical Example for (int i = 0; i < SIZE; i++) for (int j = 0; j < SIZE; j++) for (int k = 0; k < SIZE; k++) c[i][j] += a[i][k] * b[k][j];
21 19 A Practical Example SGEMM int sum; for (int i = 0; i < SIZE; i++) for (int j = 0; j < SIZE; j++) { sum = 0; for (int k = 0; k < SIZE; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; }
22 Execution Time André Pereira, UMinho, 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz 20
23 FLOP s André Pereira, UMinho, 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz 21
24 Cache Miss Rate André Pereira, UMinho, 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz 22
25 Arithmetic Intensity André Pereira, UMinho, 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz 23
26 24 Useful Counters Instruction mix PAPI_FP_INS PAPI_SR/LD_INS PAPI_BR_INS PAPI_SP/DP_VEC
27 24 Useful Counters Instruction mix PAPI_FP_INS PAPI_SR/LD_INS PAPI_BR_INS PAPI_SP/DP_VEC FLOPS and operational intensity PAPI_FP_OPS PAPI_SP/DP_OPS PAPI_TOT_INS Cache behaviour and bytes transferred PAPI_L1/2/3_TCM PAPI_L1_TCA
28 25 Useful Hints Be careful choosing a measurement heuristic Q: Why? Average? Median? Best measurement? Automatise the measurement process With scripting/c++ coding Using 3rd party tools that resort to PAPI PerfSuite HPCToolkit TAU Available for Java and on virtual machines
29 26 Compiling and Running the Code Use the same GCC/G++ version as The PAPI compilation on your home (preferably) The PAPI available at the cluster Code compilation g++ -L$PAPI_DIR/lib -I$PAPI_DIR/include c.cpp -lpapi Code execution export LD_LIBRARY_PATH=$PAPI_DIR/lib: $LD_LIBRARY_PATH (dynamic library dependencies are resolved at runtime; you can have it on your.bashrc) Run the code!
30 27 Hands-on Assess the available counters Perform the FLOPs and miss rate measurements
31 28 References Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. "Using PAPI for Hardware Performance Monitoring on Linux Systems," Conference on Linux Clusters: The HPC Revolution, Linux Clusters Institute, Urbana, Illinois, June 25-27, Weaver, V., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., Moore, S. "Measuring Energy and Power with PAPI, International Workshop on Power-Aware Systems and Architectures, Pittsburgh, PA, September 10, Malony, A., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G., Dietrich, R., Duncan Poole, P., Lamb, C. "Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs," International Conference on Parallel Processing (ICPP'11), Taipei, Taiwan, September 13-16, Weaver, V., Dongarra, J. "Can Hardware Performance Counters Produce Expected, Deterministic Results?," 3rd Workshop on Functionality of Hardware Performance Monitoring, Atlanta, GA, December 4, 2010.
Hardware Performance Monitoring with PAPI
Hardware Performance Monitoring with PAPI Dan Terpstra [email protected] Workshop July 2007 What s s PAPI? Middleware that provides a consistent programming interface for the performance counter hardware
Performance Application Programming Interface
/************************************************************************************ ** Notes on Performance Application Programming Interface ** ** Intended audience: Those who would like to learn more
A Brief Survery of Linux Performance Engineering. Philip J. Mucci University of Tennessee, Knoxville [email protected]
A Brief Survery of Linux Performance Engineering Philip J. Mucci University of Tennessee, Knoxville [email protected] Overview On chip Hardware Performance Counters Linux Performance Counter Infrastructure
Performance Counter. Non-Uniform Memory Access Seminar Karsten Tausche 2014-12-10
Performance Counter Non-Uniform Memory Access Seminar Karsten Tausche 2014-12-10 Performance Counter Hardware Unit for event measurements Performance Monitoring Unit (PMU) Originally for CPU-Debugging
Performance Analysis Tools and PAPI
Performance Analysis Tools and PAPI Philip J. Mucci [email protected] Innovative Computing Laboratory, Knoxville, TN Center for Parallel Computers, Stockholm, Sweden Linux Performance Infrastructure Contrary
End-user Tools for Application Performance Analysis Using Hardware Counters
1 End-user Tools for Application Performance Analysis Using Hardware Counters K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, T. Spencer Abstract One purpose of the end-user tools described in
NVIDIA Tools For Profiling And Monitoring. David Goodwin
NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale
Multi-Threading Performance on Commodity Multi-Core Processors
Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction
A Scalable Cross-Platform Infrastructure for Application Performance Tuning Using Hardware Counters
A Scalable Cross-Platform Infrastructure for Application Performance Tuning Using Hardware Counters S. Browne, J. Dongarra +, N. Garner, K. London, and P. Mucci Introduction For years collecting performance
How To Monitor Performance On A Microsoft Powerbook (Powerbook) On A Network (Powerbus) On An Uniden (Powergen) With A Microsatellite) On The Microsonde (Powerstation) On Your Computer (Power
A Topology-Aware Performance Monitoring Tool for Shared Resource Management in Multicore Systems TADaaM Team - Nicolas Denoyelle - Brice Goglin - Emmanuel Jeannot August 24, 2015 1. Context/Motivations
D5.6 Prototype demonstration of performance monitoring tools on a system with multiple ARM boards Version 1.0
D5.6 Prototype demonstration of performance monitoring tools on a system with multiple ARM boards Document Information Contract Number 288777 Project Website www.montblanc-project.eu Contractual Deadline
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
Using PAPI for hardware performance monitoring on Linux systems
Using PAPI for hardware performance monitoring on Linux systems Jack Dongarra, Kevin London, Shirley Moore, Phil Mucci, and Dan Terpstra Innovative Computing Laboratory, University of Tennessee, Knoxville,
Building an energy dashboard. Energy measurement and visualization in current HPC systems
Building an energy dashboard Energy measurement and visualization in current HPC systems Thomas Geenen 1/58 [email protected] SURFsara The Dutch national HPC center 2H 2014 > 1PFlop GPGPU accelerators
Le langage OCaml et la programmation des GPU
Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline
COM 444 Cloud Computing
COM 444 Cloud Computing Lec 3: Virtual Machines and Virtualization of Clusters and Datacenters Prof. Dr. Halûk Gümüşkaya [email protected] [email protected] http://www.gumuskaya.com Virtual
Full and Para Virtualization
Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels
Performance Tools for Parallel Java Environments
Performance Tools for Parallel Java Environments Sameer Shende and Allen D. Malony Department of Computer and Information Science, University of Oregon {sameer,malony}@cs.uoregon.edu http://www.cs.uoregon.edu/research/paracomp/tau
PAPI-V: Performance Monitoring for Virtual Machines
PAPI-V: Performance Monitoring for Virtual Machines Matt Johnson, Heike McCraw, Shirley Moore, Phil Mucci, John Nelson, Dan Terpstra, Vince Weaver Electrical Engineering and Computer Science Dept. University
Data Structure Oriented Monitoring for OpenMP Programs
A Data Structure Oriented Monitoring Environment for Fortran OpenMP Programs Edmond Kereku, Tianchao Li, Michael Gerndt, and Josef Weidendorfer Institut für Informatik, Technische Universität München,
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
STUDY OF PERFORMANCE COUNTERS AND PROFILING TOOLS TO MONITOR PERFORMANCE OF APPLICATION
STUDY OF PERFORMANCE COUNTERS AND PROFILING TOOLS TO MONITOR PERFORMANCE OF APPLICATION 1 DIPAK PATIL, 2 PRASHANT KHARAT, 3 ANIL KUMAR GUPTA 1,2 Depatment of Information Technology, Walchand College of
An Implementation Of Multiprocessor Linux
An Implementation Of Multiprocessor Linux This document describes the implementation of a simple SMP Linux kernel extension and how to use this to develop SMP Linux kernels for architectures other than
Measuring Energy and Power with PAPI
Measuring Energy and Power with PAPI Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr Luszczek, Dan Terpstra, and Shirley Moore Innovative Computing Laboratory University of Tennessee
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Performance Analysis for GPU Accelerated Applications
Center for Information Services and High Performance Computing (ZIH) Performance Analysis for GPU Accelerated Applications Working Together for more Insight Willersbau, Room A218 Tel. +49 351-463 - 39871
GPU Performance Analysis and Optimisation
GPU Performance Analysis and Optimisation Thomas Bradley, NVIDIA Corporation Outline What limits performance? Analysing performance: GPU profiling Exposing sufficient parallelism Optimising for Kepler
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications
PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke, and James Browne The University of Texas at Austin
CUDA Tools for Debugging and Profiling. Jiri Kraus (NVIDIA)
Mitglied der Helmholtz-Gemeinschaft CUDA Tools for Debugging and Profiling Jiri Kraus (NVIDIA) GPU Programming@Jülich Supercomputing Centre Jülich 7-9 April 2014 What you will learn How to use cuda-memcheck
Virtual Machines. www.viplavkambli.com
1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software
Introduction to Virtual Machines
Introduction to Virtual Machines Introduction Abstraction and interfaces Virtualization Computer system architecture Process virtual machines System virtual machines 1 Abstraction Mechanism to manage complexity
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding
Perfmon2: A leap forward in Performance Monitoring
Perfmon2: A leap forward in Performance Monitoring Sverre Jarp, Ryszard Jurga, Andrzej Nowak CERN, Geneva, Switzerland [email protected] Abstract. This paper describes the software component, perfmon2,
Sequential Performance Analysis with Callgrind and KCachegrind
Sequential Performance Analysis with Callgrind and KCachegrind 4 th Parallel Tools Workshop, HLRS, Stuttgart, September 7/8, 2010 Josef Weidendorfer Lehrstuhl für Rechnertechnik und Rechnerorganisation
Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology
Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as
GPU Profiling with AMD CodeXL
GPU Profiling with AMD CodeXL Software Profiling Course Hannes Würfel OUTLINE 1. Motivation 2. GPU Recap 3. OpenCL 4. CodeXL Overview 5. CodeXL Internals 6. CodeXL Profiling 7. CodeXL Debugging 8. Sources
Multi-core Programming System Overview
Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,
BLM 413E - Parallel Programming Lecture 3
BLM 413E - Parallel Programming Lecture 3 FSMVU Bilgisayar Mühendisliği Öğr. Gör. Musa AYDIN 14.10.2015 2015-2016 M.A. 1 Parallel Programming Models Parallel Programming Models Overview There are several
Hardware performance monitoring. Zoltán Majó
Hardware performance monitoring Zoltán Majó 1 Question Did you take any of these lectures: Computer Architecture and System Programming How to Write Fast Numerical Code Design of Parallel and High Performance
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
MAQAO Performance Analysis and Optimization Tool
MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22
Intel DPDK Boosts Server Appliance Performance White Paper
Intel DPDK Boosts Server Appliance Performance Intel DPDK Boosts Server Appliance Performance Introduction As network speeds increase to 40G and above, both in the enterprise and data center, the bottlenecks
Analyzing PAPI Performance on Virtual Machines. John Nelson
Analyzing PAPI Performance on Virtual Machines John Nelson I. OVERVIEW Over the last ten years, virtualization techniques have become much more widely popular as a result of fast and cheap processors.
A quick tutorial on Intel's Xeon Phi Coprocessor
A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be [email protected] Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
THE BASICS OF PERFORMANCE- MONITORING HARDWARE
THE BASICS OF PERFORMANCE- MONITORING HARDWARE PERFORMANCE-MONITORING FEATURES PROVIDE DATA THAT DESCRIBE HOW AN APPLICATION AND THE OPERATING SYSTEM ARE PERFORMING ON THE PROCESSOR. THIS INFORMATION CAN
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Advanced MPI. Hybrid programming, profiling and debugging of MPI applications. Hristo Iliev RZ. Rechen- und Kommunikationszentrum (RZ)
Advanced MPI Hybrid programming, profiling and debugging of MPI applications Hristo Iliev RZ Rechen- und Kommunikationszentrum (RZ) Agenda Halos (ghost cells) Hybrid programming Profiling of MPI applications
Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design
Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards [email protected] At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components
Linux Performance Optimizations for Big Data Environments
Linux Performance Optimizations for Big Data Environments Dominique A. Heger Ph.D. DHTechnologies (Performance, Capacity, Scalability) www.dhtusa.com Data Nubes (Big Data, Hadoop, ML) www.datanubes.com
How To Write Portable Programs In C
Writing Portable Programs COS 217 1 Goals of Today s Class Writing portable programs in C Sources of heterogeneity Data types, evaluation order, byte order, char set, Reading period and final exam Important
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
GPU Computing - CUDA
GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective
Application Performance Analysis Tools and Techniques
Mitglied der Helmholtz-Gemeinschaft Application Performance Analysis Tools and Techniques 2012-06-27 Christian Rössel Jülich Supercomputing Centre [email protected] EU-US HPC Summer School Dublin
Building an Inexpensive Parallel Computer
Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University
Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture
Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts
CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing
CUDA SKILLS Yu-Hang Tang June 23-26, 2015 CSRC, Beijing day1.pdf at /home/ytang/slides Referece solutions coming soon Online CUDA API documentation http://docs.nvidia.com/cuda/index.html Yu-Hang Tang @
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING NVIDIA DEVELOPER TOOLS BUILD. DEBUG. PROFILE. C/C++ IDE INTEGRATION STANDALONE TOOLS HARDWARE SUPPORT CPU AND GPU DEBUGGING & PROFILING
PikeOS: Multi-Core RTOS for IMA. Dr. Sergey Tverdyshev SYSGO AG 29.10.2012, Moscow
PikeOS: Multi-Core RTOS for IMA Dr. Sergey Tverdyshev SYSGO AG 29.10.2012, Moscow Contents Multi Core Overview Hardware Considerations Multi Core Software Design Certification Consideratins PikeOS Multi-Core
The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
Big Data Visualization on the MIC
Big Data Visualization on the MIC Tim Dykes School of Creative Technologies University of Portsmouth [email protected] Many-Core Seminar Series 26/02/14 Splotch Team Tim Dykes, University of Portsmouth
Chapter 3 Operating-System Structures
Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:
An OS-oriented performance monitoring tool for multicore systems
An OS-oriented performance monitoring tool for multicore systems J.C. Sáez, J. Casas, A. Serrano, R. Rodríguez-Rodríguez, F. Castro, D. Chaver, M. Prieto-Matias Department of Computer Architecture Complutense
Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007
Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures This lecture is about a new trend in computer
Sequential Performance Analysis with Callgrind and KCachegrind
Sequential Performance Analysis with Callgrind and KCachegrind 2 nd Parallel Tools Workshop, HLRS, Stuttgart, July 7/8, 2008 Josef Weidendorfer Lehrstuhl für Rechnertechnik und Rechnerorganisation Institut
ST810 Advanced Computing
ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview
Next Generation Operating Systems
Next Generation Operating Systems Zeljko Susnjar, Cisco CTG June 2015 The end of CPU scaling Future computing challenges Power efficiency Performance == parallelism Cisco Confidential 2 Paradox of the
Libmonitor: A Tool for First-Party Monitoring
Libmonitor: A Tool for First-Party Monitoring Mark W. Krentel Dept. of Computer Science Rice University 6100 Main St., Houston, TX 77005 [email protected] ABSTRACT Libmonitor is a library that provides
Optimization tools. 1) Improving Overall I/O
Optimization tools After your code is compiled, debugged, and capable of running to completion or planned termination, you can begin looking for ways in which to improve execution speed. In general, the
5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model
5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model C99, C++, F2003 Compilers Optimizing Vectorizing Parallelizing Graphical parallel tools PGDBG debugger PGPROF profiler Intel, AMD, NVIDIA
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
