lprof : A Non- intrusive Request Flow Pro5iler for Distributed Systems
|
|
|
- Brian Gaines
- 10 years ago
- Views:
Transcription
1 lprof : A Non- intrusive Request Flow Pro5iler for Distributed Systems Xu Zhao, Yongle Zhang, David Lion, Muhammad FaizanUllah, Yu Luo, Ding Yuan, Michael Stumm Oct. 8th 2014
2 Performance analysis tools are needed Poor performance of distributed systems leads to o Increase of user latency o Increase of data center cost Distributed system behavior is hard to understand o Concurrent requests being processed by mullple nodes To diagnose poor performance, tools are needed to o Reconstruct the request control flow o Understand system behavior 2
3 Existing tools are intrusive Instrument systems to infer request control flow o E.g. MagPie, Project 5, X- Trace, Dapper, etc. o Incur performance overhead o InstrumentaLons are oqen system specific 3
4 System logs contain rich information Rich informalon in logs is not coincidence o Developers rely on logs to perform manual debugging Distributed systems generate lots of logs o During normal execulon 7TB/month [Cloudera 13] 25TB/day [Rothschild 09] 4
5 Existing log analyzers are limited Cannot infer request control flow o Machine learning based log analyzers E.g. [Xu 09], DISTALYZER, SynopGc, etc. Only detect system anomalies o Commercial tools E.g. splunk, VMWare LogInsight Require users to perform key- word based searches 5
6 lprof: a non- intrusive pro5iler Infers request control flow from system logs o Along with Lming informalon o Group logs printed by the same request on mullple nodes o Use informagon generated by stagc analysis System logs Request control 5low Node 2 Node 1 request Node1 Node2 Thread1 Thread3 Thread2 Thread4 6
7 Outline IntroducLon Case Study Design EvaluaLon 7
8 A real- world example Performance regression HDFS writeblock Latency for each type of request readblock (ms) Latency :00 08:00 12:00 16:00 Time 0 writeblock is suspecious 8
9 (ms) 1000 Zoom into per- node latency Per- node Latency DN1 Latency DN3 DN2 DN1 DN3 DN pre- update writeblock Node post- update writeblock o Intra- node latency doesn t increases while inter- node does o Conclusion: unnecessary network communicalon 9
10 Outline IntroducLon Case Study Design EvaluaLon 10
11 Overview Byte code StaLc analysis lprof Model VisualizaLon Logs Log analysis Request database 11
12 Challenges Goal: to sltch log messages with respeclve requests DataNode2 Receiving block blk_01 DataNode1 Receiving block blk_01 Receiving block blk_02 Received block blk_01 HDFS_READ block blk_01 blk_01 terminating log snippet from HDFS data nodes writeblock1 writeblock2 readblock Logs are interleaved From different request types From different request instances of the same type Perfect idenlfiers doesn t always exist Distributed across mullple nodes 12
13 Code snippet in HDFS 1 dataxceiver() { 2 switch(opcode){ 3 case WRITE_BLOCK: 4 blk_id = getblock(); 5 writeblock(blk_id, ); 6 break; 7 case READ_BLOCK: 8 blk_id = getblock(); 9 readblock(blk_id, ); 10 break; 11 } 12} 13 writeblock(blk_id, ) { 14 log( Receiving block + blk_id); 15 new PacketResponder().start(); 16 } 17 readblock(blk_id, ) { 18 log( HDFS_READ block + blk_id); 19 } 20 PacketResponder.run() { 21 log( Received block + blk_id); log(blk_id + terminating ); 24 } Top level method - starlng method to process a request Request idenlfier - logged variable not modified in one request Log temporal order - possible order between log statements CommunicaLon behavior - communicalon between threads 13
14 Find top level method Find request idenlfiers IntuiLon Request analysis o Request idenlfiers already exist for manual debugging o Not modified within one request o Once modified, outside of the request 14
15 Bokom- up analysis on call graph o Logged variables idenlfier candidates (IC) o Number of Lmes they got printed count Call Graph 1 dataxceiver () { 2 switch(opcode){ 3 case WRITE_BLOCK: Request analysis example 4 blk_id = getblock(); 5 writeblock(blk_id, ); 6 break; 7 case READ_BLOCK: 8 blk_id = getblock(); 9 readblock(blk_id, ); 10 break; 11 } 12} writeblock() IC: {blk_id} count: 8 dataxceiver() IC: {} count:0 readblock() IC: {blk_id} count: 7 top level method idengfiers writeblock readblock blk_id blk_id o Once count decreases, pick top level method and idenlfier 15
16 Temporal order analysis Control flow analysis in each top level method 20 PacketResponder.run() { 21 log( Received block + blk_id); log(blk_id + terminating ); 24 } temporal order 16
17 Communication pair analysis CommunicaLon between request top level methods o Intra- node: thread crealon, shared objects o Network: socket, RPC Pair serializing and de- serializing methods 17
18 Summary of static analysis output Top level method & request idenlfier top level method idengfiers writeblock() blk_id readblock() blk_id Log temporal order PacketResponder.run() CommunicaLon pair writeblock() type: Network id: blk_id writeblock() type: Thread CreaLon id: blk_id writeblock() PacketResponder.run() 18
19 Distributed log stitching Implemented as a MapReduce job Node 3 Node 2 Node 1 1 Receiving blk_01 2 Received blk_01 3 blk_01 terminating Node 1 s log writeblock [log1],blk_01 PktRsp.run [log2,3],blk_01 [log1,2,3],blk_01 writeblock [9 logs from 3 nodes], blk_01 Map Combine Reduce 19
20 Outline IntroducLon Case Study Design EvaluaLon 20
21 Evaluation methodology Evaluated on logs from 4 distributed systems o HDFS, Yarn, HBase, Cassandra o Logs generated on 200 Amazon EC2 nodes o HiBench, YCSB workload Authors manually verified each unique log sequence logs Receiving block Received block terminating writeblock log sequence 21
22 Request attribution accuracy System Correct Incomplete Failed Incorrect HDFS Yarn Cassandra HBase accuracy for all the log messages 97.0% 79.6% 95.3% 90.6% 0.1% 19.2% 0.1% 2.5% 2.6% 1.2% 4.6% 3.4% 0.3% 0.0% 0.0% 3.5% Average 90.4% 5.7% 3.0% 1.0% 22
23 Real- world performance anomalies Randomly selected 23 anomalies o Reproduced each one to collect logs lprof is helpful for idenlfying the root cause for 65% Reasons for the cases lprof cannot help o Abnormal requests don t print any logs o The abnormal request only print 1 log But latency is needed for debugging 23
24 Related work Intrusive tools o E.g. MagPie, Project 5, X- Trace, Dapper, etc. ExisLng log analyzers o E.g. [Xu 09], DISTALYZER, SynopGc, etc. The Mystery Machine [Chow 14] o Infers request flow across soqware layers o Analyzes crilcal path and slack o But requires instrumenlng IDs into logs 24
25 Conclusions lprof: a profiler for distributed system o Infers request control flow along with Lming informalon o Non- intrusive because enlrely from system logs o Analyzes logs with informalon generated by stalc analysis lprof leverages the natural way developers do logging Demo 25
26 Limitations lprof benefits from good logging praclce o lprof cannot help when there s no log o Timestamp is required for latency analysis o Good idenlfier can improve the accuracy lprof cannot infer request across soqware layers lprof currently works on Java byte code 26
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
ReproLite : A Lightweight Tool to Quickly Reproduce Hard System Bugs
ReproLite : A Lightweight Tool to Quickly Reproduce Hard System Bugs Kaituo Li (U. Massachusetts, Amherst) Pallavi Joshi (NEC Labs America) Aarti Gupta (NEC Labs America) Malay K. Ganai (NEC Labs America)
Comparing Scalable NOSQL Databases
Comparing Scalable NOSQL Databases Functionalities and Measurements Dory Thibault UCL Contact : [email protected] Sponsor : Euranova Website : nosqlbenchmarking.com February 15, 2011 Clarications
Deploying Splunk on Amazon Web Services
Copyright 2014 Splunk Inc. Deploying Splunk on Amazon Web Services Simeon Yep Senior Manager, Business Development Technical Services Roy Arsan Senior SoHware Engineer Disclaimer During the course of this
Hadoop. History and Introduction. Explained By Vaibhav Agarwal
Hadoop History and Introduction Explained By Vaibhav Agarwal Agenda Architecture HDFS Data Flow Map Reduce Data Flow Hadoop Versions History Hadoop version 2 Hadoop Architecture HADOOP (HDFS) Data Flow
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson 1 A New Platform for Pervasive Analytics Multiple big data opportunities
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Qsoft Inc www.qsoft-inc.com
Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Network Measurement. Why Measure the Network? Types of Measurement. Traffic Measurement. Packet Monitoring. Monitoring a LAN Link. ScienLfic discovery
Why Measure the Network? Network Measurement Jennifer Rexford COS 461: Computer Networks Lectures: MW 10-10:50am in Architecture N101 ScienLfic discovery Characterizing traffic, topology, performance Understanding
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Cloudera Manager Introduction
Cloudera Manager Introduction Important Notice (c) 2010-2013 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained
Snapshots in Hadoop Distributed File System
Snapshots in Hadoop Distributed File System Sameer Agarwal UC Berkeley Dhruba Borthakur Facebook Inc. Ion Stoica UC Berkeley Abstract The ability to take snapshots is an essential functionality of any
Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems
Processing of massive data: MapReduce 2. Hadoop 1 MapReduce Implementations Google were the first that applied MapReduce for big data analysis Their idea was introduced in their seminal paper MapReduce:
This exam contains 13 pages (including this cover page) and 18 questions. Check to see if any pages are missing.
Big Data Processing 2013-2014 Q2 April 7, 2014 (Resit) Lecturer: Claudia Hauff Time Limit: 180 Minutes Name: Answer the questions in the spaces provided on this exam. If you run out of room for an answer,
Addressing Open Source Big Data, Hadoop, and MapReduce limitations
Addressing Open Source Big Data, Hadoop, and MapReduce limitations 1 Agenda What is Big Data / Hadoop? Limitations of the existing hadoop distributions Going enterprise with Hadoop 2 How Big are Data?
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University
CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Big Data and Hadoop for the Executive A Reference Guide
Big Data and Hadoop for the Executive A Reference Guide Overview The amount of information being collected by companies today is incredible. Wal- Mart has 460 terabytes of data, which, according to the
Bigtable is a proven design Underpins 100+ Google services:
Mastering Massive Data Volumes with Hypertable Doug Judd Talk Outline Overview Architecture Performance Evaluation Case Studies Hypertable Overview Massively Scalable Database Modeled after Google s Bigtable
Hadoop Technology for Flow Analysis of the Internet Traffic
Hadoop Technology for Flow Analysis of the Internet Traffic Rakshitha Kiran P PG Scholar, Dept. of C.S, Shree Devi Institute of Technology, Mangalore, Karnataka, India ABSTRACT: Flow analysis of the internet
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Data Semantics Aware Cloud for High Performance Analytics
Data Semantics Aware Cloud for High Performance Analytics Microsoft Future Cloud Workshop 2011 June 2nd 2011, Prof. Jun Wang, Computer Architecture and Storage System Laboratory (CASS) Acknowledgement
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Scalable Forensics with TSK and Hadoop. Jon Stewart
Scalable Forensics with TSK and Hadoop Jon Stewart CPU Clock Speed Hard Drive Capacity The Problem CPU clock speed stopped doubling Hard drive capacity kept doubling Multicore CPUs to the rescue!...but
Real World Big Data Architecture - Splunk, Hadoop, RDBMS
Copyright 2015 Splunk Inc. Real World Big Data Architecture - Splunk, Hadoop, RDBMS Raanan Dagan, Big Data Specialist, Splunk Disclaimer During the course of this presentagon, we may make forward looking
Sujee Maniyam, ElephantScale
Hadoop PRESENTATION 2 : New TITLE and GOES Noteworthy HERE Sujee Maniyam, ElephantScale SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member
Managing large clusters resources
Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth
BIG DATA - HADOOP PROFESSIONAL amron
0 Training Details Course Duration: 30-35 hours training + assignments + actual project based case studies Training Materials: All attendees will receive: Assignment after each module, video recording
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM 1. Introduction 1.1 Big Data Introduction What is Big Data Data Analytics Bigdata Challenges Technologies supported by big data 1.2 Hadoop Introduction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Configuration Manual Yahoo Cloud System Benchmark (YCSB) 24-Mar-14 SEECS-NUST Faria Mehak
Configuration Manual Yahoo Cloud System Benchmark (YCSB) 24-Mar-14 SEECS-NUST Faria Mehak Table of Contents 1 Introduction... 3 1.1 Purpose... 3 1.2 Product Information... 3 2 Installation Manual... 3
Hadoop Setup. 1 Cluster
In order to use HadoopUnit (described in Sect. 3.3.3), a Hadoop cluster needs to be setup. This cluster can be setup manually with physical machines in a local environment, or in the cloud. Creating a
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
MinCopysets: Derandomizing Replication In Cloud Storage
MinCopysets: Derandomizing Replication In Cloud Storage Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout and Mendel Rosenblum Stanford University [email protected], {stutsman,rumble,skatti,ouster,mendel}@cs.stanford.edu
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping. Version 1.0, Oct 2012
PaRFR : Parallel Random Forest Regression on Hadoop for Multivariate Quantitative Trait Loci Mapping Version 1.0, Oct 2012 This document describes PaRFR, a Java package that implements a parallel random
Cloudera Manager Training: Hands-On Exercises
201408 Cloudera Manager Training: Hands-On Exercises General Notes... 2 In- Class Preparation: Accessing Your Cluster... 3 Self- Study Preparation: Creating Your Cluster... 4 Hands- On Exercise: Working
Hadoop for MySQL DBAs. Copyright 2011 Cloudera. All rights reserved. Not to be reproduced without prior written consent.
Hadoop for MySQL DBAs + 1 About me Sarah Sproehnle, Director of Educational Services @ Cloudera Spent 5 years at MySQL At Cloudera for the past 2 years [email protected] 2 What is Hadoop? An open-source
Informatica Master Data Management Multi Domain Hub API: Performance and Scalability Diagnostics Checklist
Informatica Master Data Management Multi Domain Hub API: Performance and Scalability Diagnostics Checklist 2012 Informatica Corporation. No part of this document may be reproduced or transmitted in any
Getting to know Apache Hadoop
Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the
CDH 5 Quick Start Guide
CDH 5 Quick Start Guide Important Notice (c) 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained in this
Analysis of MapReduce Algorithms
Analysis of MapReduce Algorithms Harini Padmanaban Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT MapReduce is a programming model
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Can High-Performance Interconnects Benefit Memcached and Hadoop?
Can High-Performance Interconnects Benefit Memcached and Hadoop? D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,
STeP-IN SUMMIT 2014. June 2014 at Bangalore, Hyderabad, Pune - INDIA. Performance testing Hadoop based big data analytics solutions
11 th International Conference on Software Testing June 2014 at Bangalore, Hyderabad, Pune - INDIA Performance testing Hadoop based big data analytics solutions by Mustufa Batterywala, Performance Architect,
A Cost-Evaluation of MapReduce Applications in the Cloud
1/23 A Cost-Evaluation of MapReduce Applications in the Cloud Diana Moise, Alexandra Carpen-Amarie Gabriel Antoniu, Luc Bougé KerData team 2/23 1 MapReduce applications - case study 2 3 4 5 3/23 MapReduce
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Mobile Cloud Computing for Data-Intensive Applications
Mobile Cloud Computing for Data-Intensive Applications Senior Thesis Final Report Vincent Teo, [email protected] Advisor: Professor Priya Narasimhan, [email protected] Abstract The computational and storage
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
Hadoop 2.6 Configuration and More Examples
Hadoop 2.6 Configuration and More Examples Big Data 2015 Apache Hadoop & YARN Apache Hadoop (1.X)! De facto Big Data open source platform Running for about 5 years in production at hundreds of companies
Cloud Storage Solution for WSN Based on Internet Innovation Union
Cloud Storage Solution for WSN Based on Internet Innovation Union Tongrang Fan 1, Xuan Zhang 1, Feng Gao 1 1 School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang,
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Copyright Shraddha Pradip Sen 2011 ALL RIGHTS RESERVED
LOG ANALYSIS TECHNIQUE: PICVIZ by SHRADDHA PRADIP SEN DR. YANG XIAO, COMMITTEE CHAIR DR. XIAOYAN HONG DR. SUSAN VRBSKY DR. SHUHUI LI A THESIS Submitted in partial fulfillment of the requirements for the
Apache Hama Design Document v0.6
Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault
Integrating Big Data into the Computing Curricula
Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big
Like what you hear? Tweet it using: #Sec360
Like what you hear? Tweet it using: #Sec360 HADOOP SECURITY Like what you hear? Tweet it using: #Sec360 HADOOP SECURITY About Robert: School: UW Madison, U St. Thomas Programming: 15 years, C, C++, Java
High Availability for Database Systems in Cloud Computing Environments. Ashraf Aboulnaga University of Waterloo
High Availability for Database Systems in Cloud Computing Environments Ashraf Aboulnaga University of Waterloo Acknowledgments University of Waterloo Prof. Kenneth Salem Umar Farooq Minhas Rui Liu (post-doctoral
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Performance Testing Process A Whitepaper
Process A Whitepaper Copyright 2006. Technologies Pvt. Ltd. All Rights Reserved. is a registered trademark of, Inc. All other trademarks are owned by the respective owners. Proprietary Table of Contents
Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY
Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person
Advanced Computer Networks. Scheduling
Oriana Riva, Department of Computer Science ETH Zürich Advanced Computer Networks 263-3501-00 Scheduling Patrick Stuedi, Qin Yin and Timothy Roscoe Spring Semester 2015 Outline Last time Load balancing
Applied Storage Performance For Big Analytics. PRESENTATION TITLE GOES HERE Hubbert Smith LSI
Applied Storage Performance For Big Analytics PRESENTATION TITLE GOES HERE Hubbert Smith LSI It s NOT THIS SIMPLE!!! 2 Theoretical vs Real World Theoretical & Lab Storage Workloads I/O I/O I/O I/O I/O
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Automated Machine Learning For Autonomic Computing
Automated Machine Learning For Autonomic Computing ICAC 2012 Numenta Subutai Ahmad Autonomic Machine Learning ICAC 2012 Numenta Subutai Ahmad 35% 30% 25% 20% 15% 10% 5% 0% Percentage of Machine Learning
YARN Apache Hadoop Next Generation Compute Platform
YARN Apache Hadoop Next Generation Compute Platform Bikas Saha @bikassaha Hortonworks Inc. 2013 Page 1 Apache Hadoop & YARN Apache Hadoop De facto Big Data open source platform Running for about 5 years
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Technical Paper. Moving SAS Applications from a Physical to a Virtual VMware Environment
Technical Paper Moving SAS Applications from a Physical to a Virtual VMware Environment Release Information Content Version: April 2015. Trademarks and Patents SAS Institute Inc., SAS Campus Drive, Cary,
Hadoop Performance Diagnosis By Post-execution Log Analysis
Hadoop Performance Diagnosis By Post-execution Log Analysis cs598 Project Proposal Zhijin Li, Chris Cai, Haitao Liu ([email protected],[email protected],[email protected]) University of Illinois
HiTune: Dataflow-Based Performance Analysis for Big Data Cloud
HiTune: Dataflow-Based Performance Analysis for Big Data Cloud Jinquan Dai, Jie Huang, Shengsheng Huang, Bo Huang, Yan Liu Intel Asia-Pacific Research and Development Ltd Shanghai, P.R.China, 200241 {jason.dai,
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing Eric Charles [http://echarles.net] @echarles Datalayer [http://datalayer.io] @datalayerio FOSDEM 02 Feb 2014 NoSQL DevRoom
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Audit Trails in the Aeolus Distributed Security Platform. Victoria Popic
Audit Trails in the Aeolus Distributed Security Platform by Victoria Popic B.S., C.S. and Math MIT (2009) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment
Media Upload and Sharing Website using HBASE
A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark Media Upload and Sharing Website using HBASE Tushar Mahajan Santosh Mukherjee Shubham Mathur Agenda Motivation for the project Introduction
System requirements for ICS Skills ATS
System requirements for ICS Skills ATS A system requirements check verifies that the computer fulfils the requirements to run ICS Skills Automated tests. There are 4 possible checks that can be made prior
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
SALSA: Analyzing Logs as StAte Machines 1
SALSA Analyzing s as StAte Machines 1 Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi and Priya Narasimhan Electrical & Computer Engineering Department, Carnegie Mellon University {jiaqit, xinghaop,
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
