Resource Allocation and the Law of Diminishing Returns

Size: px
Start display at page:

Download "Resource Allocation and the Law of Diminishing Returns"

Transcription

1 esource Allocation and the Law of Diminishing eturns Julia and Igor Korsunsky The law of diminishing returns is a well-known topic in economics. The law states that the output attributed to an individual unit of input diminishes with each additional unit of input, hence the term diminishing returns or diminishing returns on investment. Since ancient times people learned that planting too many seeds leads to poor harvesting results, i.e. one cannot indefinitely increase the input to further increase the output. As our life becomes more complex we apply this ancient knowledge to multiple aspects of life. Computer scientist Gene Amdahl has demonstrated applicability of diminishing returns to parallel computing. Amdahl developed a formula to calculate the optimal number of parallel CPUs needed for large calculations. He illustrated that acceleration is constrained by the part of code-execution that runs sequentially, and thus maximum overall time improvement is finite and can be calculated (estimated). Allocation of human resources can be approached in the same way as hardware resources. Adding people to a project will result in time improvement for project s concurrent tasks, but the law of diminishing returns kicks in due to the existence of sequential tasks. This article provides IT Project and esource Managers with a quick rule of thumb in estimating the optimal resource allocation for large projects. We use Amdahl s formula and apply it to a hypothetical project to analyze maximum possible time improvement. We then enhance the formula to take project overhead into account. We illustrate the impact of fixed project overhead to the project s time improvement. We also look into the more realistic scenario of having variable overhead. In doing so, we will illustrate the concept of saturation point - a point after which adding resources to the project becomes counterproductive, decreasing the overall project completion time. Example Let s imagine a large software project to be completed by a single software developer. Let s assume that developer works 00 percent in isolation completing the project within certain time. It may be sensible to add more people to speedup project development. The question is: How many? We all know that project will not be finished proportionally faster to the number of added resources. The overall time improvement will be affected by the existence of tasks that cannot be parallelized. If we ignore other factors (for now), and in a way pretend that people are machines, the overall project development time improvement ) can be calculated using well-known Amdahl s formula: ) P + P In the above formula, P is a fraction of work that can be parallelized; is the total number of resources. In all examples that we showing in this article we are going to assume that 90 percent of all tasks can be parallelized, i.e. P.

2 ) + Table below provides results ) for of our calculations for {5, 0,, 65}: esources () (I) Incremental Time (ΔI) Table. A Classic Case of Diminishing eturns The data in the Table illustrates a classic case of diminishing returns every 5 people (unit of input) has lesser and lesser impact on the Incremental Time s ΔI (unit of output). If, then ΔI 0 as illustrated on a graph bellow (Figure ) (I) Incremental Time (ΔI) Figure. A Classic Case of Diminishing eturns Analysis of the above dataset leads to a conclusion that total time improvement I is a finite number. For example, if 000,

3 000) In fact, with P when, I 0 as demonstrated in formula below lim lim Above calculations illustrate that regardless of the number of resources added to the project the maximum possible time improvement is 0, given the 90 percent parallel tasks. Example 2 In real life the potential for the s will be smaller than in the Example. The more people are being added to the project, the more new tasks are being introduced to make sure people work cohesively more status meetings, more code sharing and more documentation, coordination and new discussions. Thus, we propose to adjust Amdahl s formula by taking into account the Total Overhead O due to the human factors: O ) ( + O P) + P 0 Let s continue with our example project in which we could parallelize 90 percent of the tasks. In a simplified case let s assume that project s overhead is a fixed number, regardless of the number of resources working on a project. Let s assume that fixed overhead is 0 percent (O 0.). As in a previous example, we are going to calculate ) for {5,0,, 65}: esources () (I) Incremental Time (ΔI) Table 2. The for 000

4 In addition to the data in Table 2, let s calculate the for 000. Wwe intentionally took such a large number of people to further illustrate the law of diminishing returns. As shown below 000) is equal to ) ( + 0. ) Comparing results with the first example, it is evident that an overhead has an impact on the Total Time ). The maximum improvement for this example is shown below: 0. ( + 0. ) lim lim (I) Incremental Time (ΔI) Figure 2. Negative Effect of Overhead The data set in Table 2 and Figure 2 illustrates that the is negatively impacted by the project s overhead. However, shapes of the above curves (I and ΔI) are not affected by the overhead. Example 3 Let s make our example even more realistic. It is reasonable to presume that a larger team has a larger overhead and that overhead consists of a fixed part not affected by the team s size and a variable part that will grow as the team grows. Note that in real life the variable overhead is even harder to calculate it may grow incrementally, increasing with each new resource or resemble a step-curve. For the purpose of our demonstration we are going to show the case where variable part is proportional to the amount of resources. The overall overhead is a sum of fixed overhead (o) and growing variable part ( k ), where k is a coefficient of overhead per person, O o + k Our modified formula looks as following:

5 o + k ) ( + o + k P) + P Let s assume a 0 percent fixed overhead o and each person adds 50 basis points to the fixed overhead, i.e. k For 5 people the total overhead O If we plug in 0 in the above formula, then ) (see below) ) ( ) + 0 If we plug in 000 in the above formula, then ).73 (see below) ).73 ( ) These results (for 0) and 000)) paint a different picture for the ). In the two prior examples, if < 2 then ) < 2 ). However, this is not the case since we introduced a variable overhead in our current example. We can conclude that a variable portion of the overhead has a significant impact on the total time improvement and thus 0 people achieve better result than 000 people. To generalize this observation, the limit of ) is calculated below: 0. ( + 0. ) lim lim When we plugging in the numbers into our formula with the same P and {5, 0,, 65} we get the following values of I and ΔI: esources () (I) Incremental Time (ΔI)

6 Table 3. Too Many People Slow a Project Down Incremental Time Figure 3. The Saturation Point Table 3 and Figure 3 demonstrate something that experienced managers already know too many people will slow a project down rather than speeding it up. Adding people are beneficial only to a certain point after which the overall time improvement decreases we will call this point a saturation point. In the current example the saturation point is reached at 6 (sixteen people). If we continue adding people, incremental time improvement ΔI becomes negative and I decreased. Conclusions Overall time improvement I from all three examples is shown on the in Figure (I) 2 (I) 3 (I) Figure 4. Times form All Three Examples The law of diminishing returns applies to projects resource management and Incremental Time ΔI attributed to each additional resource diminishes with each new resource.

7 tasks. Projects I is always a finite number due to the existence of sequential The upper bound of the total time improvement I can be quickly estimated based on the Amdahl formula. That number can be further refined with our proposed formula that takes project overhead into account. If project overhead grows with the number of project resources, then the overhead has a negative impact on the I. Growing overhead brings a project to a saturation point, a point after which adding resources increases the overall project time rather than decreasing it. About the Authors Julia Korsunsky is a senior technologist with emphasis in database architecture. For over 20 years Julia has consulted clients from start-ups to Fortune 500 companies designing and implementing systems, performing business analysis and project management for financial, utilities, biomedical and pharmaceutical industries. She created and taught IT training courses at Clark University and written articles, manuals and curriculums on a range of technical subjects. She holds two Masters Degrees, in Mathematics (with minor in education) and Computer Science. Julia can be contacted at [email protected] Igor Korsunsky is a senior manager with over 20 years of diverse IT experience in finance, banking and healthcare. Igor is experienced in IT planning, budgeting, and technical and business analyses, systems and workflow architecture. Igor holds two Masters Degrees in Manufacturing (minor in automation) and Mechanical Engineering. He can be contacted at [email protected]

Parallel Scalable Algorithms- Performance Parameters

Parallel Scalable Algorithms- Performance Parameters www.bsc.es Parallel Scalable Algorithms- Performance Parameters Vassil Alexandrov, ICREA - Barcelona Supercomputing Center, Spain Overview Sources of Overhead in Parallel Programs Performance Metrics for

More information

Performance metrics for parallel systems

Performance metrics for parallel systems Performance metrics for parallel systems S.S. Kadam C-DAC, Pune [email protected] C-DAC/SECG/2006 1 Purpose To determine best parallel algorithm Evaluate hardware platforms Examine the benefits from parallelism

More information

Quiz for Chapter 1 Computer Abstractions and Technology 3.10

Quiz for Chapter 1 Computer Abstractions and Technology 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,

More information

How To Model Software Development Life Cycle Models

How To Model Software Development Life Cycle Models Various Software Development Life Cycle Models Sahil Jindal, Puneet Gulati, Praveen Rohilla Dronacharya College of Engineering, India Abstract:An SDLC model is a conceptual framework describing different

More information

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance.

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance. Agenda Enterprise Performance Factors Overall Enterprise Performance Factors Best Practice for generic Enterprise Best Practice for 3-tiers Enterprise Hardware Load Balancer Basic Unix Tuning Performance

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

on an system with an infinite number of processors. Calculate the speedup of

on an system with an infinite number of processors. Calculate the speedup of 1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements

More information

Chapter 4 Technological Progress and Economic Growth

Chapter 4 Technological Progress and Economic Growth Chapter 4 Technological Progress and Economic Growth 4.1 Introduction Technical progress is defined as new, and better ways of doing things, and new techniques for using scarce resources more productively.

More information

Review of Production and Cost Concepts

Review of Production and Cost Concepts Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #3 Review of Production and Cost Concepts Thursday - September 23, 2004 OUTLINE OF TODAY S RECITATION 1.

More information

Energy Efficient MapReduce

Energy Efficient MapReduce Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing

More information

Understanding the Benefits of IBM SPSS Statistics Server

Understanding the Benefits of IBM SPSS Statistics Server IBM SPSS Statistics Server Understanding the Benefits of IBM SPSS Statistics Server Contents: 1 Introduction 2 Performance 101: Understanding the drivers of better performance 3 Why performance is faster

More information

USING SPREADSHEET SOFTWARE TO TEACH THE RECIPROCAL METHOD OF SERVICE DEPARTMENT COST ALLOCATION. By:

USING SPREADSHEET SOFTWARE TO TEACH THE RECIPROCAL METHOD OF SERVICE DEPARTMENT COST ALLOCATION. By: USING SPREADSHEET SOFTWARE TO TEACH THE RECIPROCAL METHOD OF SERVICE DEPARTMENT COST ALLOCATION By: Gerald K. DeBusk UC Foundation Associate Professor of Accounting University of Tennessee - Chattanooga

More information

FPGA area allocation for parallel C applications

FPGA area allocation for parallel C applications 1 FPGA area allocation for parallel C applications Vlad-Mihai Sima, Elena Moscu Panainte, Koen Bertels Computer Engineering Faculty of Electrical Engineering, Mathematics and Computer Science Delft University

More information

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper Four Keys to Successful Multicore Optimization for Machine Vision White Paper Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable results. Developers need

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

System Models for Distributed and Cloud Computing

System Models for Distributed and Cloud Computing System Models for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Classification of Distributed Computing Systems

More information

1 Discussion of multithreading on Win32 mod_perl

1 Discussion of multithreading on Win32 mod_perl Discussion of multithreading on Win32 mod_perl 1xx 1 Discussion of multithreading on Win32 mod_perl 1xx 1 Discussion of multithreading on Win32 mod_perl 1xx 1 11 Description 11 Description This document

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

Big Data 101: Harvest Real Value & Avoid Hollow Hype

Big Data 101: Harvest Real Value & Avoid Hollow Hype Big Data 101: Harvest Real Value & Avoid Hollow Hype 2 Executive Summary Odds are you are hearing the growing hype around the potential for big data to revolutionize our ability to assimilate and act on

More information

Unprecedented Performance and Scalability Demonstrated For Meter Data Management:

Unprecedented Performance and Scalability Demonstrated For Meter Data Management: Unprecedented Performance and Scalability Demonstrated For Meter Data Management: Ten Million Meters Scalable to One Hundred Million Meters For Five Billion Daily Meter Readings Performance testing results

More information

Performance metrics for parallelism

Performance metrics for parallelism Performance metrics for parallelism 8th of November, 2013 Sources Rob H. Bisseling; Parallel Scientific Computing, Oxford Press. Grama, Gupta, Karypis, Kumar; Parallel Computing, Addison Wesley. Definition

More information

ILLIQUID ALTERNATIVE ASSET FUND MODELING. Dean Takahashi Yale University Investments Office. Seth Alexander Yale University Investments office

ILLIQUID ALTERNATIVE ASSET FUND MODELING. Dean Takahashi Yale University Investments Office. Seth Alexander Yale University Investments office ILLIQUID ALTERNATIVE ASSET FUND MODELING Dean Takahashi Yale University Investments Office Seth Alexander Yale University Investments office January 21 Illiquid Alternative Asset Fund Modeling Dean Takahashi

More information

Integrating Spreadsheet Templates and Data Analysis into Fluid Power Instruction

Integrating Spreadsheet Templates and Data Analysis into Fluid Power Instruction Volume 16, Number 4 - August 2000 to October 2000 Integrating Spreadsheet Templates and Data Analysis into Fluid Power Instruction By Dr. Bruce Marsh KEYWORD SEARCH Curriculum Fluid Power Teaching Methods

More information

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

More information

QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE

QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE QlikView Technical Brief April 2011 www.qlikview.com Introduction This technical brief covers an overview of the QlikView product components and architecture

More information

Architectural Patterns: From Mud to Structure

Architectural Patterns: From Mud to Structure DCC / ICEx / UFMG Architectural Patterns: From Mud to Structure Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo From Mud to Structure Layered Architecture It helps to structure applications that

More information

The Methodology of Application Development for Hybrid Architectures

The Methodology of Application Development for Hybrid Architectures Computer Technology and Application 4 (2013) 543-547 D DAVID PUBLISHING The Methodology of Application Development for Hybrid Architectures Vladimir Orekhov, Alexander Bogdanov and Vladimir Gaiduchok Department

More information

Introduction to Quadratic Functions

Introduction to Quadratic Functions Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

More information

FOUNDATIONS OF A CROSS- DISCIPLINARY PEDAGOGY FOR BIG DATA

FOUNDATIONS OF A CROSS- DISCIPLINARY PEDAGOGY FOR BIG DATA FOUNDATIONS OF A CROSSDISCIPLINARY PEDAGOGY FOR BIG DATA Joshua Eckroth Stetson University DeLand, Florida 3867402519 [email protected] ABSTRACT The increasing awareness of big data is transforming

More information

Use finite approximations to estimate the area under the graph of the function. f(x) = x 3

Use finite approximations to estimate the area under the graph of the function. f(x) = x 3 5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

Revolutionized DB2 Test Data Management

Revolutionized DB2 Test Data Management Revolutionized DB2 Test Data Management TestBase's Patented Slice Feature Provides a Fresh Solution to an Old Set of DB2 Application Testing Problems The challenge in creating realistic representative

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions

More information

System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies

System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies Table of Contents Introduction... 1 Prerequisites... 2 Executing System Copy GT... 3 Program Parameters / Selection Screen... 4 Technical

More information

Tools Page 1 of 13 ON PROGRAM TRANSLATION. A priori, we have two translation mechanisms available:

Tools Page 1 of 13 ON PROGRAM TRANSLATION. A priori, we have two translation mechanisms available: Tools Page 1 of 13 ON PROGRAM TRANSLATION A priori, we have two translation mechanisms available: Interpretation Compilation On interpretation: Statements are translated one at a time and executed immediately.

More information

Six Strategies for Building High Performance SOA Applications

Six Strategies for Building High Performance SOA Applications Six Strategies for Building High Performance SOA Applications Uwe Breitenbücher, Oliver Kopp, Frank Leymann, Michael Reiter, Dieter Roller, and Tobias Unger University of Stuttgart, Institute of Architecture

More information

What is a life cycle model?

What is a life cycle model? What is a life cycle model? Framework under which a software product is going to be developed. Defines the phases that the product under development will go through. Identifies activities involved in each

More information

Instructional systems development

Instructional systems development A Pebble-in-the-Pond Model For Instructional Design by M. David Merrill Instructional systems development (ISD) has recently come under attack to suggestions that it may not be an appropriate methodology

More information

How To Understand Cost Volume Profit Analysis

How To Understand Cost Volume Profit Analysis Course Title: Cost Accounting for Decision Making Professional Development Programme on Enriching Knowledge of the Business, Accounting and Financial Studies (BAFS) Curriculum 1 Learning

More information

Software-defined Storage Architecture for Analytics Computing

Software-defined Storage Architecture for Analytics Computing Software-defined Storage Architecture for Analytics Computing Arati Joshi Performance Engineering Colin Eldridge File System Engineering Carlos Carrero Product Management June 2015 Reference Architecture

More information

Rackspace Cloud Databases and Container-based Virtualization

Rackspace Cloud Databases and Container-based Virtualization Rackspace Cloud Databases and Container-based Virtualization August 2012 J.R. Arredondo @jrarredondo Page 1 of 6 INTRODUCTION When Rackspace set out to build the Cloud Databases product, we asked many

More information

This means there are two equilibrium solutions 0 and K. dx = rx(1 x). x(1 x) dt = r

This means there are two equilibrium solutions 0 and K. dx = rx(1 x). x(1 x) dt = r Verhulst Model For Population Growth The first model (t) = r is not that realistic as it either led to a population eplosion or to etinction. This simple model was improved on by building into this differential

More information

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two age 1 18-742 Lecture 4 arallel rogramming II Spring 2005 rof. Babak Falsafi http://www.ece.cmu.edu/~ece742 write X Memory send X Memory read X Memory Slides developed in part by rofs. Adve, Falsafi, Hill,

More information

Chapter 6: The Information Function 129. CHAPTER 7 Test Calibration

Chapter 6: The Information Function 129. CHAPTER 7 Test Calibration Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the

More information

Variable Costs. Breakeven Analysis. Examples of Variable Costs. Variable Costs. Mixed

Variable Costs. Breakeven Analysis. Examples of Variable Costs. Variable Costs. Mixed Breakeven Analysis Variable Vary directly in proportion to activity: Example: if sales increase by 5%, then the Variable will increase by 5% Remain the same, regardless of the activity level Mixed Combines

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

Week 7 - Game Theory and Industrial Organisation

Week 7 - Game Theory and Industrial Organisation Week 7 - Game Theory and Industrial Organisation The Cournot and Bertrand models are the two basic templates for models of oligopoly; industry structures with a small number of firms. There are a number

More information

Business and Economics Applications

Business and Economics Applications Business and Economics Applications Most of the word problems you do in math classes are not actually related to real life. Textbooks try to pretend they are by using real life data, but they do not use

More information

Big Data Systems CS 5965/6965 FALL 2015

Big Data Systems CS 5965/6965 FALL 2015 Big Data Systems CS 5965/6965 FALL 2015 Today General course overview Expectations from this course Q&A Introduction to Big Data Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2015.html

More information

The Document Review Process: Automation of your document review and approval. A White Paper. BP Logix, Inc.

The Document Review Process: Automation of your document review and approval. A White Paper. BP Logix, Inc. The Document Review Process: Automation of your document review and approval A White Paper BP Logix, Inc. The Document Review Process A document encompasses many forms technical documentation, product

More information

A capacity planning / queueing theory primer or How far can you go on the back of an envelope? Elementary Tutorial CMG 87

A capacity planning / queueing theory primer or How far can you go on the back of an envelope? Elementary Tutorial CMG 87 A capacity planning / queueing theory primer or How far can you go on the back of an envelope? Elementary Tutorial CMG 87 Ethan D. Bolker Departments of Mathematics and Computer Science University of Massachusetts

More information

Copyright www.agileload.com 1

Copyright www.agileload.com 1 Copyright www.agileload.com 1 INTRODUCTION Performance testing is a complex activity where dozens of factors contribute to its success and effective usage of all those factors is necessary to get the accurate

More information

Make Better Decisions with Optimization

Make Better Decisions with Optimization ABSTRACT Paper SAS1785-2015 Make Better Decisions with Optimization David R. Duling, SAS Institute Inc. Automated decision making systems are now found everywhere, from your bank to your government to

More information

Comparison of Cloud vs. Tape Backup Performance and Costs with Oracle Database

Comparison of Cloud vs. Tape Backup Performance and Costs with Oracle Database JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 02/11; ACCEPTED 06/11 UDC 004.75 Comparison of Cloud vs. Tape Backup Performance and Costs with Oracle Database University of Ljubljana Faculty of Computer and Information

More information

Engineering Process Software Qualities Software Architectural Design

Engineering Process Software Qualities Software Architectural Design Engineering Process We need to understand the steps that take us from an idea to a product. What do we do? In what order do we do it? How do we know when we re finished each step? Production process Typical

More information

Complete a table of values. Graph the values given in a table. Create an equation representing the information in a table or graph.

Complete a table of values. Graph the values given in a table. Create an equation representing the information in a table or graph. Activity III: Surface Area of a Leaf (Grades 7-9) Objectives: Complete a table of values. Graph the values given in a table. Create an equation representing the information in a table or graph. NCTM Standards

More information

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source

More information

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Battleships Searching Algorithms

Battleships Searching Algorithms Activity 6 Battleships Searching Algorithms Summary Computers are often required to find information in large collections of data. They need to develop quick and efficient ways of doing this. This activity

More information

How To Understand Engineering

How To Understand Engineering ENGINEERING YOUR FUTURE Dr. Vlasov 1 Outline 1. Importance of Engineering 2. Major Engineering Disciplines 3. Engineering Functions 4. Engineering Majors 5. Statistical Overview Dr. Vlasov 2 Importance

More information

IT White Paper. N + 1 Become Too Many + 1?

IT White Paper. N + 1 Become Too Many + 1? IT White Paper Balancing Scalability and Reliability in the Critical Power system: When Does N + 1 Become Too Many + 1? Summary Uninterruptible Power Supply (UPS) protection can be delivered through a

More information

ANALYTICS STRATEGY: creating a roadmap for success

ANALYTICS STRATEGY: creating a roadmap for success ANALYTICS STRATEGY: creating a roadmap for success Companies in the capital and commodity markets are looking at analytics for opportunities to improve revenue and cost savings. Yet, many firms are struggling

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

Managing batch and business processes in Oracle environments

Managing batch and business processes in Oracle environments E-Book Managing batch and business processes in Oracle environments Batch processing dates back to the mainframe and has thus been around for decades. After falling out of favor, it has made a comeback

More information

Software Engineering. What is a system?

Software Engineering. What is a system? What is a system? Software Engineering Software Processes A purposeful collection of inter-related components working together to achieve some common objective. A system may include software, mechanical,

More information

Structure of Presentation. The Role of Programming in Informatics Curricula. Concepts of Informatics 2. Concepts of Informatics 1

Structure of Presentation. The Role of Programming in Informatics Curricula. Concepts of Informatics 2. Concepts of Informatics 1 The Role of Programming in Informatics Curricula A. J. Cowling Department of Computer Science University of Sheffield Structure of Presentation Introduction The problem, and the key concepts. Dimensions

More information

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,

More information

Life Insurance Modelling: Notes for teachers. Overview

Life Insurance Modelling: Notes for teachers. Overview Life Insurance Modelling: Notes for teachers In this mathematics activity, students model the following situation: An investment fund is set up Investors pay a set amount at the beginning of 20 years.

More information

Distributed Dynamic Load Balancing for Iterative-Stencil Applications

Distributed Dynamic Load Balancing for Iterative-Stencil Applications Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,

More information

Model Based Testing (MBT) J u n e 2 0 1 3

Model Based Testing (MBT) J u n e 2 0 1 3 Model Based Testing (MBT) J u n e 2 0 1 3 TABLE OF CONTENTS Abstract... 3 Abbreviations... 4 Market Trends/Challenges... 5 Solution... 6 Best Practices... 9 Common Issues... 11 Conclusion... 12 Reference...

More information

Managing large clusters resources

Managing large clusters resources Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth

More information

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to

More information

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,

More information

Technology, Production, and Costs

Technology, Production, and Costs Chapter 10 Technology, Production, and Costs 10.1 Technology: An Economic Definition 10.1 LEARNING OBJECTIVE Learning Objective 1 Define technology and give examples of technological change. A firm s technology

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

White Paper Business Process Modeling and Simulation

White Paper Business Process Modeling and Simulation White Paper Business Process Modeling and Simulation WP0146 May 2014 Bhakti Stephan Onggo Bhakti Stephan Onggo is a lecturer at the Department of Management Science at the Lancaster University Management

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing

Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server 2003 Partner Solution Brief Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server Runs

More information

3C05: Unified Software Development Process

3C05: Unified Software Development Process 3C05: Unified Software Development Process 1 Unit 5: Unified Software Development Process Objectives: Introduce the main concepts of iterative and incremental development Discuss the main USDP phases 2

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Summary. Chapter Five. Cost Volume Relations & Break Even Analysis

Summary. Chapter Five. Cost Volume Relations & Break Even Analysis Summary Chapter Five Cost Volume Relations & Break Even Analysis 1. Introduction : The main aim of an undertaking is to earn profit. The cost volume profit (CVP) analysis helps management in finding out

More information

A Mathematical Programming Solution to the Mars Express Memory Dumping Problem

A Mathematical Programming Solution to the Mars Express Memory Dumping Problem A Mathematical Programming Solution to the Mars Express Memory Dumping Problem Giovanni Righini and Emanuele Tresoldi Dipartimento di Tecnologie dell Informazione Università degli Studi di Milano Via Bramante

More information