Holger Eichelberger, Cui Qin, Klaus Schmid, Claudia Niederée

Size: px
Start display at page:

Download "Holger Eichelberger, Cui Qin, Klaus Schmid, Claudia Niederée"

Transcription

1 Adaptive Application Performance Management for Holger Eichelberger, Cui Qin, Klaus Schmid, Claudia Niederée {eichelberger,

2 Contents Contents Motivation Performance Management Problem Our Approach Summary / Outlook SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 1

3 Motivation Motivation Big Data Processing of large and complex data sets Too difficult for traditional data processing applications 3V: Volume, Velocity, Volatility Risk identification in financial markets (FP7 QualiMaster) Interconnected markets Regular risk analysis requested by EU / US law Bursty data streams Financial data Social web SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 2

4 Performance Management Problem Problem (Performance View) Data processing pipeline Soft real-time constraints Varying stream characteristics Several orders of magnitude Resource pool Constrained Specialized hardware (e.g., FPGA) Goal: Simplified Development of Performance Management Mechanisms Lightweight for the developer Resource-aware configuration Model-based generation Adaptive Performance Management SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 3

5 Performance Management Problem Tradeoffs Soft real-time constraints Processing latency Utility of results Number of events may vary, latency shall not Resource constraints Optimal allocation to available resources Heterogeneous resource pool Minimize resource costs Result precision Algorithms offer different precision Algorithms differ in performance, resource usage SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 4

6 Approach Main concepts Algorithm families Adaptive data analysis pipelines Financial source Financial preprocessing Correlation computation Result sink Twitter source Twitter preprocessing Sentiment analysis Pipeline adaptation Select most appropriate algorithm Modify algorithm parameters Resource allocation Change structure of pipeline SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 5

7 Approach Application Development Configure the application Topological configuration Complex constraints Validate the configuration Generate the implementation Bind Pipeline and Execution Infrastructure Apache Storm Maxeler Data Flow Engines Introduce algorithm switching and monitoring probes Deploy and run SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 6

8 Approach Adaptive Management (1) MAPE-K: Monitoring, Analysis, Planning, Execution Knowledge Monitoring Statistics by Apache Thrift Execution time, processed items, executors SPASS-meter Memory, network, file transfer Generated monitoring probes Hardware: Available FPGAs Derived: Capacity, pipeline measures Monitoring = Algorithm ) public class Component { public void exec() { // } Trend: More generated probes! Class B Class C SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 7

9 Approach Adaptive Management (2) Analysis Future: Profiles Constraint-based deviations from current behavior and Predictions! Watermarking-scheme for resource usage Planning Determine changes to the runtime configuration Configuration + adaptive planning Basis: Stitch, S/T/A Actions modify configuration and can generate new code SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 8

10 Approach Adaptive Management (3) Execution Enact changes due to runtime configuration Coordination: Software vs. Hardware Execution Examples: Change parallelization at runtime Apache Storm: 8 s stop Modified Storm: < 30 ms stop Switch distributed algorithms Naïve: 23 s Improved < 50 ms + queue transfer Gap-free enactment Future: State transfer! SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 9

11 Approach Conclusions Simplification of adaptive performance management Lightweight for the developer Configure, validate, generate Adaptive management through MAPE-K Adaptive performance management is a challenge Gap-free enactment Future More detailed experiments Offline / online algorithm profiles Generic vs. application-specific (generated) probes SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 11

12 Overview The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/ ] under grant agreement n (QualiMaster). SSP 15, Eichelberger /Schmid, SSE, University of Hildesheim 12

Resource Aware Scheduler for Storm. Software Design Document. <[email protected]> Date: 09/18/2015

Resource Aware Scheduler for Storm. Software Design Document. <jerry.boyang.peng@gmail.com> Date: 09/18/2015 Resource Aware Scheduler for Storm Software Design Document Author: Boyang Jerry Peng Date: 09/18/2015 Table of Contents 1. INTRODUCTION 3 1.1. USING

More information

Heterogeneous Resource Scheduling Using Apache Mesos for Cloud Native Frameworks

Heterogeneous Resource Scheduling Using Apache Mesos for Cloud Native Frameworks Heterogeneous Resource Scheduling Using Apache Mesos for Cloud Native Frameworks Sharma Podila Senior Software Engineer Netflix Aug 20th MesosCon 2015 Agenda Context, motivation Fenzo scheduler library

More information

Big Data Analytics - Accelerated. stream-horizon.com

Big Data Analytics - Accelerated. stream-horizon.com Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements

More information

Distributed Realtime Systems Framework for Sustainable Industry 4.0 applications

Distributed Realtime Systems Framework for Sustainable Industry 4.0 applications Distributed Realtime Systems Framework for Sustainable Industry 4.0 applications 1 / 28 Agenda Use case example Deterministic realtime systems Almost deterministic distributed realtime systems Distributed

More information

Networking Virtualization Using FPGAs

Networking Virtualization Using FPGAs Networking Virtualization Using FPGAs Russell Tessier, Deepak Unnikrishnan, Dong Yin, and Lixin Gao Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Massachusetts,

More information

A Novel Cloud Based Elastic Framework for Big Data Preprocessing

A Novel Cloud Based Elastic Framework for Big Data Preprocessing School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

A stream computing approach towards scalable NLP

A stream computing approach towards scalable NLP A stream computing approach towards scalable NLP Xabier Artola, Zuhaitz Beloki, Aitor Soroa IXA group. University of the Basque Country. LREC, Reykjavík 2014 Table of contents 1

More information

Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and

Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and Simulink targeting ASIC/FGPA. Previously Worked as logic

More information

Design and Implementation of an On-Chip timing based Permutation Network for Multiprocessor system on Chip

Design and Implementation of an On-Chip timing based Permutation Network for Multiprocessor system on Chip Design and Implementation of an On-Chip timing based Permutation Network for Multiprocessor system on Chip Ms Lavanya Thunuguntla 1, Saritha Sapa 2 1 Associate Professor, Department of ECE, HITAM, Telangana

More information

Integrated System Modeling for Handling Big Data in Electric Utility Systems

Integrated System Modeling for Handling Big Data in Electric Utility Systems Integrated System Modeling for Handling Big Data in Electric Utility Systems Stephanie Hamilton Brookhaven National Laboratory Robert Broadwater EDD [email protected] 1 Finding Good Solutions for the Hard

More information

Architectures and Platforms

Architectures and Platforms Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation

More information

How To Design An Image Processing System On A Chip

How To Design An Image Processing System On A Chip RAPID PROTOTYPING PLATFORM FOR RECONFIGURABLE IMAGE PROCESSING B.Kovář 1, J. Kloub 1, J. Schier 1, A. Heřmánek 1, P. Zemčík 2, A. Herout 2 (1) Institute of Information Theory and Automation Academy of

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Enhance Service Delivery and Accelerate Financial Applications with Consolidated Market Data

Enhance Service Delivery and Accelerate Financial Applications with Consolidated Market Data White Paper Enhance Service Delivery and Accelerate Financial Applications with Consolidated Market Data What You Will Learn Financial market technology is advancing at a rapid pace. The integration of

More information

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015 Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive

More information

Dell* In-Memory Appliance for Cloudera* Enterprise

Dell* In-Memory Appliance for Cloudera* Enterprise Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous

More information

AN FPGA FRAMEWORK SUPPORTING SOFTWARE PROGRAMMABLE RECONFIGURATION AND RAPID DEVELOPMENT OF SDR APPLICATIONS

AN FPGA FRAMEWORK SUPPORTING SOFTWARE PROGRAMMABLE RECONFIGURATION AND RAPID DEVELOPMENT OF SDR APPLICATIONS AN FPGA FRAMEWORK SUPPORTING SOFTWARE PROGRAMMABLE RECONFIGURATION AND RAPID DEVELOPMENT OF SDR APPLICATIONS David Rupe (BittWare, Concord, NH, USA; [email protected]) ABSTRACT The role of FPGAs in Software

More information

White Paper. Requirements of Network Virtualization

White Paper. Requirements of Network Virtualization White Paper on Requirements of Network Virtualization INDEX 1. Introduction 2. Architecture of Network Virtualization 3. Requirements for Network virtualization 3.1. Isolation 3.2. Network abstraction

More information

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...

More information

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline

More information

Distributed Elastic Switch Architecture for efficient Networks-on-FPGAs

Distributed Elastic Switch Architecture for efficient Networks-on-FPGAs Distributed Elastic Switch Architecture for efficient Networks-on-FPGAs Antoni Roca, Jose Flich Parallel Architectures Group Universitat Politechnica de Valencia (UPV) Valencia, Spain Giorgos Dimitrakopoulos

More information

ICT 10: Software Technologies

ICT 10: Software Technologies Technologies Jorge GASOS DG CONNECT [email protected] Odysseas I. Pyrovolakis DG CONNECT [email protected] Software related activities in WP2016-17 Innovating in software: topics

More information

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada [email protected] Micaela Serra

More information

Real Time Analytics for Big Data. NtiSh Nati Shalom @natishalom

Real Time Analytics for Big Data. NtiSh Nati Shalom @natishalom Real Time Analytics for Big Data A Twitter Inspired Case Study NtiSh Nati Shalom @natishalom Big Data Predictions Overthe next few years we'll see the adoption of scalable frameworks and platforms for

More information

Resource Models: Batch Scheduling

Resource Models: Batch Scheduling Resource Models: Batch Scheduling Last Time» Cycle Stealing Resource Model Large Reach, Mass Heterogeneity, complex resource behavior Asynchronous Revocation, independent, idempotent tasks» Resource Sharing

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

High-Level Synthesis for FPGA Designs

High-Level Synthesis for FPGA Designs High-Level Synthesis for FPGA Designs BRINGING BRINGING YOU YOU THE THE NEXT NEXT LEVEL LEVEL IN IN EMBEDDED EMBEDDED DEVELOPMENT DEVELOPMENT Frank de Bont Trainer consultant Cereslaan 10b 5384 VT Heesch

More information

The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient.

The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient. The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM 2012-13 CALIENT Technologies www.calient.net 1 INTRODUCTION In datacenter networks, video, mobile data, and big data

More information

Hybrid Software Architectures for Big Data. [email protected] @hurence http://www.hurence.com

Hybrid Software Architectures for Big Data. Laurence.Hubert@hurence.com @hurence http://www.hurence.com Hybrid Software Architectures for Big Data [email protected] @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line

More information

4.2: Multimedia File Systems Traditional File Systems. Multimedia File Systems. Multimedia File Systems. Disk Scheduling

4.2: Multimedia File Systems Traditional File Systems. Multimedia File Systems. Multimedia File Systems. Disk Scheduling Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia Systems Storage Aspects Optical Storage Media Multimedia File Systems

More information

Motivation: Smartphone Market

Motivation: Smartphone Market Motivation: Smartphone Market Smartphone Systems External Display Device Display Smartphone Systems Smartphone-like system Main Camera Front-facing Camera Central Processing Unit Device Display Graphics

More information

Data Center and Cloud Computing Market Landscape and Challenges

Data Center and Cloud Computing Market Landscape and Challenges Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution

More information

What can DDS do for You? Learn how dynamic publish-subscribe messaging can improve the flexibility and scalability of your applications.

What can DDS do for You? Learn how dynamic publish-subscribe messaging can improve the flexibility and scalability of your applications. What can DDS do for You? Learn how dynamic publish-subscribe messaging can improve the flexibility and scalability of your applications. 2 Contents: Abstract 3 What does DDS do 3 The Strengths of DDS 4

More information

DOE/OE Transmission Reliability Program. Data Validation & Conditioning

DOE/OE Transmission Reliability Program. Data Validation & Conditioning DOE/OE Transmission Reliability Program Data Validation & Conditioning Jianzhong Mo [email protected] Kenneth Martin [email protected] June 3-4, 2014 Washington, DC 2 Presentation Introduction

More information

Seeking Opportunities for Hardware Acceleration in Big Data Analytics

Seeking Opportunities for Hardware Acceleration in Big Data Analytics Seeking Opportunities for Hardware Acceleration in Big Data Analytics Paul Chow High-Performance Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Toronto Who

More information

MAQAO Performance Analysis and Optimization Tool

MAQAO Performance Analysis and Optimization Tool MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22

More information

VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS

VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS Perhaad Mistry, Yash Ukidave, Dana Schaa, David Kaeli Department of Electrical and Computer Engineering Northeastern University,

More information

Resource Utilization of Middleware Components in Embedded Systems

Resource Utilization of Middleware Components in Embedded Systems Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system

More information

Pentaho High-Performance Big Data Reference Configurations using Cisco Unified Computing System

Pentaho High-Performance Big Data Reference Configurations using Cisco Unified Computing System Pentaho High-Performance Big Data Reference Configurations using Cisco Unified Computing System By Jake Cornelius Senior Vice President of Products Pentaho June 1, 2012 Pentaho Delivers High-Performance

More information

Self-Tuning Memory Management of A Database System

Self-Tuning Memory Management of A Database System Self-Tuning Memory Management of A Database System Yixin Diao [email protected] IM 2009 Tutorial: Recent Advances in the Application of Control Theory to Network and Service Management DB2 Self-Tuning Memory

More information

Cognos8 Deployment Best Practices for Performance/Scalability. Barnaby Cole Practice Lead, Technical Services

Cognos8 Deployment Best Practices for Performance/Scalability. Barnaby Cole Practice Lead, Technical Services Cognos8 Deployment Best Practices for Performance/Scalability Barnaby Cole Practice Lead, Technical Services Agenda > Cognos 8 Architecture Overview > Cognos 8 Components > Load Balancing > Deployment

More information

Mobile Cloud Networking FP7 European Project: Radio Access Network as a Service

Mobile Cloud Networking FP7 European Project: Radio Access Network as a Service Optical switch WC-Pool (in a data centre) BBU-pool RAT 1 BBU-pool RAT 2 BBU-pool RAT N Mobile Cloud Networking FP7 European Project: Radio Access Network as a Service Dominique Pichon (Orange) 4th Workshop

More information

Software Defined Active Queue Management

Software Defined Active Queue Management Software Defined Active Queue Management Future Networks 2014 Sebastian Meier [email protected] 2014-09-26 Universität Stuttgart Institute of Communication Networks and Computer Engineering

More information

10 METRICS TO MONITOR IN THE LTE NETWORK. [ WhitePaper ]

10 METRICS TO MONITOR IN THE LTE NETWORK. [ WhitePaper ] [ WhitePaper ] 10 10 METRICS TO MONITOR IN THE LTE NETWORK. Abstract: The deployment of LTE increases dependency on the underlying network, which must be closely monitored in order to avert service-impacting

More information

ICT 10: Software Technologies

ICT 10: Software Technologies Technologies Software related activities in WP2016-17 Innovating in software: topics which have generic software concepts and methodologies as the core R&I activities E.g. generic and advanced research

More information

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University

More information

Automated Virtual Cloud Management: The need of future

Automated Virtual Cloud Management: The need of future Automated Virtual Cloud Management: The need of future Prof. (Ms) Manisha Shinde-Pawar Faculty of Management (Information Technology), Bharati Vidyapeeth Univerisity, Pune, IMRDA, SANGLI Abstract: With

More information

Network Architecture and Topology

Network Architecture and Topology 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches and routers 6. End systems 7. End-to-end

More information

OpenNebula Leading Innovation in Cloud Computing Management

OpenNebula Leading Innovation in Cloud Computing Management OW2 Annual Conference 2010 Paris, November 24th, 2010 OpenNebula Leading Innovation in Cloud Computing Management Ignacio M. Llorente DSA-Research.org Distributed Systems Architecture Research Group Universidad

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

< IMPACT > START ACCELERATE IMPACT

< IMPACT > START ACCELERATE IMPACT START ACCELERATE IMPACT IMPACT project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 632828 START ACCELERATE IMPACT WEBINAR #2 Technology

More information

Multi-GPU Load Balancing for Simulation and Rendering

Multi-GPU Load Balancing for Simulation and Rendering Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks

More information

Extending the Internet of Things to IPv6 with Software Defined Networking

Extending the Internet of Things to IPv6 with Software Defined Networking Extending the Internet of Things to IPv6 with Software Defined Networking Abstract [WHITE PAPER] Pedro Martinez-Julia, Antonio F. Skarmeta {pedromj,skarmeta}@um.es The flexibility and general programmability

More information

Rapid System Prototyping with FPGAs

Rapid System Prototyping with FPGAs Rapid System Prototyping with FPGAs By R.C. Coferand Benjamin F. Harding AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes is an imprint of

More information

whitepaper Network Traffic Analysis Using Cisco NetFlow Taking the Guesswork Out of Network Performance Management

whitepaper Network Traffic Analysis Using Cisco NetFlow Taking the Guesswork Out of Network Performance Management whitepaper Network Traffic Analysis Using Cisco NetFlow Taking the Guesswork Out of Network Performance Management Taking the Guesswork Out of Network Performance Management EXECUTIVE SUMMARY Many enterprise

More information

MPLS/SDN Intersections Next Generation Access Networks. Anthony Magee Advanced Technology ADVA Optical Networking MPLS & Ethernet World Congress 2013

MPLS/SDN Intersections Next Generation Access Networks. Anthony Magee Advanced Technology ADVA Optical Networking MPLS & Ethernet World Congress 2013 MPLS/SDN Intersections Next Generation Access Networks Anthony Magee Advanced Technology ADVA Optical Networking MPLS & Ethernet World Congress 2013 Agenda Carrier Requirements Current & Future Software

More information

Research Report: The Arista 7124FX Switch as a High Performance Trade Execution Platform

Research Report: The Arista 7124FX Switch as a High Performance Trade Execution Platform Research Report: The Arista 7124FX Switch as a High Performance Trade Execution Platform Abstract: Many groups are working on reducing trading execution latency - the time from a critical Ethernet frame

More information

Introducing Storm 1 Core Storm concepts Topology design

Introducing Storm 1 Core Storm concepts Topology design Storm Applied brief contents 1 Introducing Storm 1 2 Core Storm concepts 12 3 Topology design 33 4 Creating robust topologies 76 5 Moving from local to remote topologies 102 6 Tuning in Storm 130 7 Resource

More information

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat

ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web

More information

HP Moonshot: An Accelerator for Hyperscale Workloads

HP Moonshot: An Accelerator for Hyperscale Workloads HP Moonshot: An Accelerator for Hyperscale Workloads Sponsored by HP, see HP Moonshot for more information www.hp.com/go/moonshot Executive Summary Hyperscale data center customers have specialized workloads,

More information

Key Challenges in Cloud Computing to Enable Future Internet of Things

Key Challenges in Cloud Computing to Enable Future Internet of Things The 4th EU-Japan Symposium on New Generation Networks and Future Internet Future Internet of Things over "Clouds Tokyo, Japan, January 19th, 2012 Key Challenges in Cloud Computing to Enable Future Internet

More information

Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com

Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and

More information

Big Data Analytics. Chances and Challenges. Volker Markl

Big Data Analytics. Chances and Challenges. Volker Markl Volker Markl Professor and Chair Database Systems and Information Management (DIMA), Technische Universität Berlin www.dima.tu-berlin.de Big Data Analytics Chances and Challenges Volker Markl DIMA BDOD

More information

Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect

Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional

More information

CHAPTER 4: SOFTWARE PART OF RTOS, THE SCHEDULER

CHAPTER 4: SOFTWARE PART OF RTOS, THE SCHEDULER CHAPTER 4: SOFTWARE PART OF RTOS, THE SCHEDULER To provide the transparency of the system the user space is implemented in software as Scheduler. Given the sketch of the architecture, a low overhead scheduler

More information

Building Web-based Infrastructures for Smart Meters

Building Web-based Infrastructures for Smart Meters Building Web-based Infrastructures for Smart Meters Andreas Kamilaris 1, Vlad Trifa 2, and Dominique Guinard 2 1 University of Cyprus, Nicosia, Cyprus 2 ETH Zurich and SAP Research, Switzerland Abstract.

More information

SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON

SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner The emergence

More information

Beyond Watson: The Business Implications of Big Data

Beyond Watson: The Business Implications of Big Data Beyond Watson: The Business Implications of Big Data Shankar Venkataraman IBM Program Director, STSM, Big Data August 10, 2011 The World is Changing and Becoming More INSTRUMENTED INTERCONNECTED INTELLIGENT

More information

Understanding Data Locality in VMware Virtual SAN

Understanding Data Locality in VMware Virtual SAN Understanding Data Locality in VMware Virtual SAN July 2014 Edition T E C H N I C A L M A R K E T I N G D O C U M E N T A T I O N Table of Contents Introduction... 2 Virtual SAN Design Goals... 3 Data

More information

KEEP IT SYNPLE STUPID

KEEP IT SYNPLE STUPID Utilizing Programmable Logic for Analyzing Hardware Targets Dmitry Nedospasov SHORT DESCRIPTION Hardware security analysis differs from software security analysis primarily in the tools

More information

An Oracle Technical White Paper November 2011. Oracle Solaris 11 Network Virtualization and Network Resource Management

An Oracle Technical White Paper November 2011. Oracle Solaris 11 Network Virtualization and Network Resource Management An Oracle Technical White Paper November 2011 Oracle Solaris 11 Network Virtualization and Network Resource Management Executive Overview... 2 Introduction... 2 Network Virtualization... 2 Network Resource

More information

Understanding Slow Start

Understanding Slow Start Chapter 1 Load Balancing 57 Understanding Slow Start When you configure a NetScaler to use a metric-based LB method such as Least Connections, Least Response Time, Least Bandwidth, Least Packets, or Custom

More information

Xeon+FPGA Platform for the Data Center

Xeon+FPGA Platform for the Data Center Xeon+FPGA Platform for the Data Center ISCA/CARL 2015 PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA Accelerator Platform Applications and Eco-system

More information

Whitepaper. 10 Metrics to Monitor in the LTE Network. www.sevone.com blog.sevone.com [email protected]

Whitepaper. 10 Metrics to Monitor in the LTE Network. www.sevone.com blog.sevone.com info@sevone.com 10 Metrics to Monitor in the LTE Network The deployment of LTE increases dependency on the underlying network, which must be closely monitored in order to avert serviceimpacting events. In addition, the

More information

GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications

GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102

More information

Hardware acceleration enhancing network security

Hardware acceleration enhancing network security Hardware acceleration enhancing network security Petr Kaštovský [email protected] High-Speed Networking Technology Partner Threats Number of attacks grows together with damage caused Source: McAfee

More information

Architectures for massive data management

Architectures for massive data management Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with

More information

BSC vision on Big Data and extreme scale computing

BSC vision on Big Data and extreme scale computing BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information