Typy danych. Data types: Literals:
|
|
|
- Egbert Park
- 10 years ago
- Views:
Transcription
1 Lab 10 MIPS32
2 Typy danych Data types: Instructions are all 32 bits byte(8 bits), halfword (2 bytes), word (4 bytes) a character requires 1 byte of storage an integer requires 1 word (4 bytes) of storage Literals: numbers entered as is. e.g. 4 characters enclosed in single quotes. e.g. 'b' Strings enclosed in double quotes. e.g. "A string"
3 Rejestry 32 general-purpose registers register preceded by $ in assembly language instruction two formats for addressing: using register number e.g. $0 through $31 using equivalent names e.g. $t1, $sp special registers Lo and Hi used to store result of multiplication and division not directly addressable; contents accessed with special instruction mfhi ("move from Hi") and mflo ("move from Lo") stack grows from high memory to low memory
4 Register Number Alternative Name Description 0 zero the value 0 1 $at (assembler temporary) reserved by the assembler 2-3 $v0 - $v1 (values) from expression evaluation and function results 4-7 $a0 - $a $t0 - $t $s0 - $s $t8 - $t9 (arguments) First four parameters for subroutine. Not preserved across procedure calls (temporaries) Caller saved if needed. Subroutines can use w/out saving. Not preserved across procedure calls (saved values) - Callee saved. A subroutine using one of these must save original and restore it before exiting. Preserved across procedure calls (temporaries) Caller saved if needed. Subroutines can use w/out saving. These are in addition to $t0 - $t7 above. Not preserved across procedure calls $k0 - $k1 reserved for use by the interrupt/trap handler 28 $gp 29 $sp 30 $s8/$fp global pointer. Points to the middle of the 64K block of memory in the static data segment. stack pointer Points to last location on the stack. saved value / frame pointer Preserved across procedure calls 31 $ra return address
5 Struktura programu just plain text file with data declarations, program code (name of file should end in suffix.s to be used with SPIM simulator) data declaration section followed by program code section Data Declarations placed in section of program identified with assembler directive.data declares variable names used in program; storage allocated in main memory (RAM) Code placed in section of text identified with assembler directive.text contains program code (instructions) starting point for code e.g.ecution given label main: ending point of main code should use exit system call (see below under System Calls) Comments anything following # on a line
6 .data # variable declarations follow this line #....text # instructions follow this line main: # indicates start of code # (first instruction to execute) #... # End of program, leave a blank line afterwards
7 Instrukcje ładowania/zapisu RAM access only allowed with load and store instructions all other instructions use register operands load: lw register_destination, RAM_source #copy word (4 bytes) at source RAM location to destination register. lb register_destination, RAM_source #copy byte at source RAM location to low-order byte of destination register, # and sign-e.g.tend to higher-order bytes store word: sw register_source, RAM_destination #store word in source register into RAM destination sb register_source, RAM_destination #store byte (low-order) in source register into RAM destination load immediate: li register_destination, value #load immediate value into destination register
8 Tryby adresowania load address: la $t0, var1 copy RAM address of var1 (presumably a label defined in the program) into register $t0 indirect addressing: lw $t2, ($t0) load word at RAM address contained in $t0 into $t2 sw $t2, ($t0) store word in register $t2 into RAM at address contained in $t0 based or indexed addressing: lw $t2, 4($t0) load word at RAM address ($t0+4) into register $t2 "4" gives offset from address in register $t0 sw $t2, -12($t0) store word in register $t2 into RAM at address ($t0-12) negative offsets are fine
9 Instrukcje arytmetyczne all operands are registers; no RAM or indirect addressing - operand size is word (4 bytes) add $t0,$t1,$t2 # $t0 = $t1 + $t2; add as signed (2's complement) integers sub $t2,$t3,$t4 # $t2 = $t3 - $t4 addi $t2,$t3, 5 # $t2 = $t3 + 5; "add immediate" (no sub immediate) addu $t1,$t6,$t7 # $t1 = $t6 + $t7; add as unsigned integers subu $t1,$t6,$t7 # $t1 = $t6 + $t7; subtract as unsigned integers mult $t3,$t4 # multiply 32-bit quantities in $t3 and $t4, and store 64-bit result in special registers Lo and Hi: (Hi,Lo) = $t3 * $t4 div $t5,$t6 # Lo = $t5 / $t6 (integer quotient) # Hi = $t5 mod $t6 (remainder) mfhi $t0 # move quantity in special register Hi to $t0: $t0 = Hi mflo $t1 # move quantity in special register Lo to $t1: $t1 = Lo # used to get at result of product or quotient move $t2,$t3 # $t2 = $t3
10 Instrukcje sterujące Branches comparison for conditional branches is built into instruction b target # unconditional branch to program label target beq $t0,$t1,target # branch to target if $t0 = $t1 blt $t0,$t1,target # branch to target if $t0 < $t1 ble $t0,$t1,target # branch to target if $t0 <= $t1 bgt $t0,$t1,target # branch to target if $t0 > $t1 bge $t0,$t1,target # branch to target if $t0 >= $t1 bne $t0,$t1,target # branch to target if $t0 <> $t1 Jumps j target # unconditional jump to program label target jr $t3 # jump to address contained in $t3 ("jump register") Subroutine Calls subroutine call: "jump and link" instruction jal sub_label # "jump and link" copy program counter (return address) to register $ra (return address register) jump to program statement at sub_label subroutine return: "jump register" instruction jr $ra # "jump register" jump to return address in $ra (stored by jal instruction)
11 Wywołania systemowe Service Code in $v0 Arguments print_int 1 $a0 = integer to be printed print_float 2 $f12 = float to be printed print_double 3 $f12 = double to be printed print_string 4 $a0 = address of string in memory read_int 5 read_float 6 read_double 7 read_string 8 $a0 = memory address of string input buffer $a1 = length of string buffer (n) Results integer returned in $v0 float returned in $v0 double returned in $v0 sbrk 9 $a0 = amount address in $v0 exit 10
MIPS Assembly Code Layout
Learning MIPS & SPIM MIPS assembly is a low-level programming language The best way to learn any programming language is to write code We will get you started by going through a few example programs and
Introduction to MIPS Assembly Programming
1 / 26 Introduction to MIPS Assembly Programming January 23 25, 2013 2 / 26 Outline Overview of assembly programming MARS tutorial MIPS assembly syntax Role of pseudocode Some simple instructions Integer
Reduced Instruction Set Computer (RISC)
Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying
Lab Work 2. MIPS assembly and introduction to PCSpim
Lab Work 2. MIPS assembly and introduction to PCSpim The goal of this work is for the student to become familiar with the data types and the programming in assembly (MIPS32). To realize this lab work you
Computer Systems Architecture
Computer Systems Architecture http://cs.nott.ac.uk/ txa/g51csa/ Thorsten Altenkirch and Liyang Hu School of Computer Science University of Nottingham Lecture 10: MIPS Procedure Calling Convention and Recursion
Translating C code to MIPS
Translating C code to MIPS why do it C is relatively simple, close to the machine C can act as pseudocode for assembler program gives some insight into what compiler needs to do what's under the hood do
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.
Code Generation I Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.7 Stack Machines A simple evaluation model No variables
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
5 MIPS Assembly Language
103 5 MIPS Assembly Language Today, digital computers are almost exclusively programmed using high-level programming languages (PLs), eg, C, C++, Java The CPU fetch execute cycle, however, is not prepared
Instruction Set Architecture
Instruction Set Architecture Consider x := y+z. (x, y, z are memory variables) 1-address instructions 2-address instructions LOAD y (r :=y) ADD y,z (y := y+z) ADD z (r:=r+z) MOVE x,y (x := y) STORE x (x:=r)
Winter 2002 MID-SESSION TEST Friday, March 1 6:30 to 8:00pm
University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Winter 2002 MID-SESSION TEST Friday,
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 Overview: In the first projects for COMP 303, you will design and implement a subset of the MIPS32 architecture
Review: MIPS Addressing Modes/Instruction Formats
Review: Addressing Modes Addressing mode Example Meaning Register Add R4,R3 R4 R4+R3 Immediate Add R4,#3 R4 R4+3 Displacement Add R4,1(R1) R4 R4+Mem[1+R1] Register indirect Add R4,(R1) R4 R4+Mem[R1] Indexed
Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine
7 Objectives After completing this lab you will: know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine Introduction Branches and jumps provide ways to change
THUMB Instruction Set
5 THUMB Instruction Set This chapter describes the THUMB instruction set. Format Summary 5-2 Opcode Summary 5-3 5. Format : move shifted register 5-5 5.2 Format 2: add/subtract 5-7 5.3 Format 3: move/compare/add/subtract
Lecture Outline. Stack machines The MIPS assembly language. Code Generation (I)
Lecture Outline Code Generation (I) Stack machines The MIPS assembl language Adapted from Lectures b Profs. Ale Aiken and George Necula (UCB) A simple source language Stack- machine implementation of the
Assembly Language Programming
Assembly Language Programming Assemblers were the first programs to assist in programming. The idea of the assembler is simple: represent each computer instruction with an acronym (group of letters). Eg:
An Introduction to Assembly Programming with the ARM 32-bit Processor Family
An Introduction to Assembly Programming with the ARM 32-bit Processor Family G. Agosta Politecnico di Milano December 3, 2011 Contents 1 Introduction 1 1.1 Prerequisites............................. 2
MIPS Assembler and Simulator
MIPS Assembler and Simulator Reference Manual Last Updated, December 1, 2005 Xavier Perséguers (ing. info. dipl. EPF) Swiss Federal Institude of Technology [email protected] Preface MIPS Assembler
What to do when I have a load/store instruction?
76 What to do when I have a load/store instruction? Is there a label involved or a virtual address to compute? 1 A label (such as ldiq $T1, a; ldq $T0, ($T1);): a Find the address the label is pointing
Introduction to MIPS Programming with Mars
Introduction to MIPS Programming with Mars This week s lab will parallel last week s lab. During the lab period, we want you to follow the instructions in this handout that lead you through the process
More MIPS: Recursion. Computer Science 104 Lecture 9
More MIPS: Recursion Computer Science 104 Lecture 9 Admin Homework Homework 1: graded. 50% As, 27% Bs Homework 2: Due Wed Midterm 1 This Wed 1 page of notes 2 Last time What did we do last time? 3 Last
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will:
6 Objectives After completing this lab you will: know how to do integer arithmetic in MIPS know how to do floating point arithmetic in MIPS know about conversion from integer to floating point and from
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 1. Introduction 6.004 Computation Structures β Documentation This handout is
Instruction Set Design
Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,
Chapter 7D The Java Virtual Machine
This sub chapter discusses another architecture, that of the JVM (Java Virtual Machine). In general, a VM (Virtual Machine) is a hypothetical machine (implemented in either hardware or software) that directly
Instruction Set Architecture (ISA) Design. Classification Categories
Instruction Set Architecture (ISA) Design Overview» Classify Instruction set architectures» Look at how applications use ISAs» Examine a modern RISC ISA (DLX)» Measurement of ISA usage in real computers
CPU Organization and Assembly Language
COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:
2) Write in detail the issues in the design of code generator.
COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage
PCSpim Tutorial. Nathan Goulding-Hotta 2012-01-13 v0.1
PCSpim Tutorial Nathan Goulding-Hotta 2012-01-13 v0.1 Download and install 1. Download PCSpim (file PCSpim_9.1.4.zip ) from http://sourceforge.net/projects/spimsimulator/files/ This tutorial assumes you
Instruction Set Reference
2015.04.02 Set Reference NII51017 Subscribe This section introduces the Nios II instruction word format and provides a detailed reference of the Nios II instruction set. Word Formats There are three types
1 Classical Universal Computer 3
Chapter 6: Machine Language and Assembler Christian Jacob 1 Classical Universal Computer 3 1.1 Von Neumann Architecture 3 1.2 CPU and RAM 5 1.3 Arithmetic Logical Unit (ALU) 6 1.4 Arithmetic Logical Unit
1 The Java Virtual Machine
1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This
How To Write An Array In A Microsoft Zil
Array Declaration and Storage Allocation The first step is to reserve sufficient space for the array: 1.data list:.space 1000 # reserves a block of 1000 bytes This yields a contiguous block of bytes of
X86-64 Architecture Guide
X86-64 Architecture Guide For the code-generation project, we shall expose you to a simplified version of the x86-64 platform. Example Consider the following Decaf program: class Program { int foo(int
CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 20: Stack Frames 7 March 08
CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 20: Stack Frames 7 March 08 CS 412/413 Spring 2008 Introduction to Compilers 1 Where We Are Source code if (b == 0) a = b; Low-level IR code
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine
Intel 8086 architecture
Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086
MIPS Assembly Language Programming CS50 Discussion and Project Book. Daniel J. Ellard
MIPS Assembly Language Programming CS50 Discussion and Project Book Daniel J. Ellard September, 1994 Contents 1 Data Representation 1 1.1 Representing Integers........................... 1 1.1.1 Unsigned
CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005
CSE 141 Introduction to Computer Architecture Summer Session I, 2005 Lecture 1 Introduction Pramod V. Argade June 27, 2005 CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade ([email protected])
Faculty of Engineering Student Number:
Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:
HC12 Assembly Language Programming
HC12 Assembly Language Programming Programming Model Addressing Modes Assembler Directives HC12 Instructions Flow Charts 1 Assembler Directives In order to write an assembly language program it is necessary
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
Comp 255Q - 1M: Computer Organization Lab #3 - Machine Language Programs for the PDP-8
Comp 255Q - 1M: Computer Organization Lab #3 - Machine Language Programs for the PDP-8 January 22, 2013 Name: Grade /10 Introduction: In this lab you will write, test, and execute a number of simple PDP-8
8085 INSTRUCTION SET
DATA TRANSFER INSTRUCTIONS Opcode Operand Description 8085 INSTRUCTION SET INSTRUCTION DETAILS Copy from source to destination OV Rd, Rs This instruction copies the contents of the source, Rs register
Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC
Chapter 2 Topics 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC See Appendix C for Assembly language information. 2.4
Syscall 5. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Syscall 5 System call 5 allows input of numerical data from the keyboard while a program is running. Syscall 5 is a bit unusual, in that it requires the use of register $v0 twice. In syscall 5 (as for
Introduction to the Altera Nios II Soft Processor. 1 Introduction. For Quartus II 11.1
Introduction to the Altera Nios II Soft Processor For Quartus II 11.1 1 Introduction This tutorial presents an introduction to Altera s Nios II processor, which is a soft processor that can be instantiated
MACHINE ARCHITECTURE & LANGUAGE
in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based
A Tiny Guide to Programming in 32-bit x86 Assembly Language
CS308, Spring 1999 A Tiny Guide to Programming in 32-bit x86 Assembly Language by Adam Ferrari, [email protected] (with changes by Alan Batson, [email protected] and Mike Lack, [email protected])
Chapter 5 Instructor's Manual
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction
Embedded Systems. Review of ANSI C Topics. A Review of ANSI C and Considerations for Embedded C Programming. Basic features of C
Embedded Systems A Review of ANSI C and Considerations for Embedded C Programming Dr. Jeff Jackson Lecture 2-1 Review of ANSI C Topics Basic features of C C fundamentals Basic data types Expressions Selection
M6800. Assembly Language Programming
M6800 Assembly Language Programming 1 3. MC6802 MICROPROCESSOR MC6802 microprocessor runs in 1MHz clock cycle. It has 64 Kbyte memory address capacity using 16-bit addressing path (A0-A15). The 8-bit data
Figure 1: Graphical example of a mergesort 1.
CSE 30321 Computer Architecture I Fall 2011 Lab 02: Procedure Calls in MIPS Assembly Programming and Performance Total Points: 100 points due to its complexity, this lab will weight more heavily in your
C Compiler Targeting the Java Virtual Machine
C Compiler Targeting the Java Virtual Machine Jack Pien Senior Honors Thesis (Advisor: Javed A. Aslam) Dartmouth College Computer Science Technical Report PCS-TR98-334 May 30, 1998 Abstract One of the
Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes:
Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes: An 8 or 16 bit microprocessor (CPU). A small amount of RAM. Programmable ROM and/or flash memory.
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway Abstract High Level Languages (HLLs) are rapidly becoming the standard
EECS 427 RISC PROCESSOR
RISC PROCESSOR ISA FOR EECS 427 PROCESSOR ImmHi/ ImmLo/ OP Code Rdest OP Code Ext Rsrc Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline) ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc * ADDI Imm, Rdest
CS201: Architecture and Assembly Language
CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary
Assembly Language: Function Calls" Jennifer Rexford!
Assembly Language: Function Calls" Jennifer Rexford! 1 Goals of this Lecture" Function call problems:! Calling and returning! Passing parameters! Storing local variables! Handling registers without interference!
First Bytes Programming Lab 2
First Bytes Programming Lab 2 This lab is available online at www.cs.utexas.edu/users/scottm/firstbytes. Introduction: In this lab you will investigate the properties of colors and how they are displayed
Lecture 3 Addressing Modes, Instruction Samples, Machine Code, Instruction Execution Cycle
Lecture 3 Addressing Modes, Instruction Samples, Machine Code, Instruction Execution Cycle Contents 3.1. Register Transfer Notation... 2 3.2. HCS12 Addressing Modes... 2 1. Inherent Mode (INH)... 2 2.
Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Some slides adapted (and slightly modified)
We will use the accumulator machine architecture to demonstrate pass1 and pass2.
Accumulator machine We will use the accumulator machine architecture to demonstrate pass1 and pass2. The accumulator machine - has one processor register: the accumulator - all other operands are in memory,
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,
612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS
612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS 11.1 How is conditional execution of ARM instructions (see Part I of Chapter 3) related to predicated execution
Informatica e Sistemi in Tempo Reale
Informatica e Sistemi in Tempo Reale Introduction to C programming Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa October 25, 2010 G. Lipari (Scuola Superiore Sant Anna)
A SystemC Transaction Level Model for the MIPS R3000 Processor
SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor
Sources: On the Web: Slides will be available on:
C programming Introduction The basics of algorithms Structure of a C code, compilation step Constant, variable type, variable scope Expression and operators: assignment, arithmetic operators, comparison,
Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T)
Unit- I Introduction to c Language: C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
64-Bit NASM Notes. Invoking 64-Bit NASM
64-Bit NASM Notes The transition from 32- to 64-bit architectures is no joke, as anyone who has wrestled with 32/64 bit incompatibilities will attest We note here some key differences between 32- and 64-bit
Chapter 2: Elements of Java
Chapter 2: Elements of Java Basic components of a Java program Primitive data types Arithmetic expressions Type casting. The String type (introduction) Basic I/O statements Importing packages. 1 Introduction
An Overview of Stack Architecture and the PSC 1000 Microprocessor
An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which
MACHINE INSTRUCTIONS AND PROGRAMS
CHAPTER 2 MACHINE INSTRUCTIONS AND PROGRAMS CHAPTER OBJECTIVES In this chapter you will learn about: Machine instructions and program execution, including branching and subroutine call and return operations
PROBLEMS (Cap. 4 - Istruzioni macchina)
98 CHAPTER 2 MACHINE INSTRUCTIONS AND PROGRAMS PROBLEMS (Cap. 4 - Istruzioni macchina) 2.1 Represent the decimal values 5, 2, 14, 10, 26, 19, 51, and 43, as signed, 7-bit numbers in the following binary
How It All Works. Other M68000 Updates. Basic Control Signals. Basic Control Signals
CPU Architectures Motorola 68000 Several CPU architectures exist currently: Motorola Intel AMD (Advanced Micro Devices) PowerPC Pick one to study; others will be variations on this. Arbitrary pick: Motorola
The Java Virtual Machine (JVM) Pat Morin COMP 3002
The Java Virtual Machine (JVM) Pat Morin COMP 3002 Outline Topic 1 Topic 2 Subtopic 2.1 Subtopic 2.2 Topic 3 2 What is the JVM? The JVM is a specification of a computing machine Instruction set Primitive
EE361: Digital Computer Organization Course Syllabus
EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001. (Total Time = 120 minutes, Total Points = 100)
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001 (Total Time = 120 minutes, Total Points = 100) Name: (please print) Wolfe - Solution In recognition of and in the spirit of the
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
Debugging of Application Programs on Altera s DE-Series Boards. 1 Introduction
Debugging of Application Programs on Altera s DE-Series Boards 1 Introduction This tutorial presents some basic concepts that can be helpful in debugging of application programs written in the Nios II
Efficient Low-Level Software Development for the i.mx Platform
Freescale Semiconductor Application Note Document Number: AN3884 Rev. 0, 07/2009 Efficient Low-Level Software Development for the i.mx Platform by Multimedia Applications Division Freescale Semiconductor,
Introduction to Java
Introduction to Java The HelloWorld program Primitive data types Assignment and arithmetic operations User input Conditional statements Looping Arrays CSA0011 Matthew Xuereb 2008 1 Java Overview A high
Developer Suite ARM. Assembler Guide. Version 1.2. Copyright 2000, 2001 ARM Limited. All rights reserved. ARM DUI 0068B
ARM Developer Suite Version 1.2 Assembler Guide Copyright 2000, 2001 ARM Limited. All rights reserved. ARM DUI 0068B ARM Developer Suite Assembler Guide Copyright 2000, 2001 ARM Limited. All rights reserved.
x64 Cheat Sheet Fall 2015
CS 33 Intro Computer Systems Doeppner x64 Cheat Sheet Fall 2015 1 x64 Registers x64 assembly code uses sixteen 64-bit registers. Additionally, the lower bytes of some of these registers may be accessed
Solution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
SMIPS Processor Specification
SMIPS Processor Specification 6.884 Spring 25 - Version: 25215 1 Introduction SMIPS is the version of the MIPS instruction set architecture (ISA) we ll be using for the processors we implement in 6.884.
VB.NET Programming Fundamentals
Chapter 3 Objectives Programming Fundamentals In this chapter, you will: Learn about the programming language Write a module definition Use variables and data types Compute with Write decision-making statements
Instruction Set Architecture
Instruction Set Architecture Arquitectura de Computadoras Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN [email protected] Arquitectura de Computadoras ISA- 1 Instruction
Computer Organization and Architecture
Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal
CS352H: Computer Systems Architecture
CS352H: Computer Systems Architecture Topic 9: MIPS Pipeline - Hazards October 1, 2009 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Data Hazards in ALU Instructions
ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology)
ALLIED PAPER : DISCRETE MATHEMATICS (for B.Sc. Computer Technology & B.Sc. Multimedia and Web Technology) Subject Description: This subject deals with discrete structures like set theory, mathematical
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Computer organization
Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs
Machine-Code Generation for Functions
Machine-Code Generation for Functions Cosmin Oancea [email protected] University of Copenhagen December 2012 Structure of a Compiler Programme text Lexical analysis Binary machine code Symbol sequence
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
