Components: Interconnect Page 1 of 18
|
|
|
- Lisa Barrett
- 10 years ago
- Views:
Transcription
1 Components: Interconnect Page 1 of 18 PE to PE interconnect: The most expensive supercomputer component Possible implementations: FULL INTERCONNECTION: The ideal Usually not attainable Each PE has a direct link to every other PE. Nice in principle but costly: Number of links is proportional to the square of the number of PEs. For large number of PEs this becomes impractical. Therefore we will try two compromises: Static interconnect networks and dynamic interconnect networks.
2 Components: Interconnect Page 2 of 18 BUS Bus-based networks are perhaps the simplest: they consist of a shared medium common to all nodes. Cost of the network is proportional to the number of nodes, distance between any two nodes is constant O(1). Ideal for broadcasting info among nodes. However: Bounded bus bandwidth limits total number of nodes. Partial remedy: use caches new problem: cache contamination. Bus networks: (a) Without local memory / caches, (b) with local memory / caches
3 Components: Interconnect Page 3 of 18 CROSSBAR A crossbar network connecting p processors to b memory banks is shown below: This is a non-blocking network: a connection of one processor to a given memory bank does not block a connection of another processor to a different memory bank. There must be pxb switches. It is reasonable to assume that b > p From this follows that the cost of crossbar is high, at least O(p 2 ), so it is not very scalable like the fully connected network.
4 Components: Interconnect Page 4 of 18 LINEAR + RING In an attempt to reduce interconnect cost, we try out sparser networks: (a) Linear network: every node has two neighbours (except terminal nodes) (b) Ring or 1D torus: every node has exactly two neighbours. Note that by providing the wraparound link we halve the maximum distance between the nodes and double the bandwidth. We may attempt a multidimensional generalization: MESH + TORUS: 2D, 3D, etc. (a) 2D mesh, (b) 2D torus, (c) 3D mesh. Designers like 2D meshes due to easy wiring layout. Users like 3D meshes and 3D tori because many problems map naturally to 3D topologies (like weather modeling, structural modeling, etc.). This is so because we seem to inhabit a 3D universe. Note that nd meshes and nd tori need not have the same number of nodes in each dimension. This facilitates upgrades at cost of increased node-to-node distance.
5 Components: Interconnect Page 5 of 18 Another multidimensional generalization: So far, when increasing the number of processors we kept the network dimensionality constant. How about another approach: Let s keep the number of processors in any given dimension constant (say, 2) and keep increasing dimensionality. We get hypercube. HYPERCUBE (a.k.a. n-cube) Observe a clever numbering scheme of nodes in a hypercube, facilitating message forwarding.
6 Components: Interconnect Page 6 of 18 Basic concept: TREE In a tree network there is only one path between any two nodes. The taller the tree, the higher is communication bottleneck at high levels of the tree. Two remedies are possible: We may have (a) static tree networks, or (b) dynamic tree networks. Alternatively, we may introduce fat tree networks (see below). Fat tree network.
7 Components: Interconnect Page 7 of 18 The crossbar network is scalable in terms of performance, but not scalable in terms of cost. Conversely, the bus network is scalable in terms of cost but not in terms of performance, hence some designers feel the need to compromise: MULTISTAGE NETWORKS A multistage network connects a number of processors to a number of memory banks, via a number of switches organized in layers, viz: Each switch can be in one of the following positions: The example above is that of the Omega Network.
8 Components: Interconnect Page 8 of 18 OMEGA Omega network connecting P processors to P memory banks (see below for P=8) Omega network has P/2 * log(p) switches, so the cost of this network is lower than the crossbar network.
9 Components: Interconnect Page 9 of 18 OMEGA (continued) Omega network belongs to the class of blocking networks: Observe that, in the diagram above, when P2 is connected to M6, P6 cannot talk to M4.
10 Components: Interconnect Page 10 of 18 An Omega network can be static: switches may remain in fixed position (either straight-thru or criss-cross). An Omega network can also be used to connect processors to processors. Example of such a network: SHUFFLE EXCHANGE Consider a set of N processors, numbered P 0, P 1, P N-1 Perfect shuffle connects processors P i and P j by a one-way communications link, if j = 2*i for 0 <= i <= N/2 1 or j = 2*i + 1 N otherwise. See below an example for N= 8 where arrows represent shuffle links and solid lines represent exchange links. In other words, perfect shuffle connects processor I with (2*I modulo (N-1)), with the exception of the processor N 1 which is connected to itself. Having trouble with this logic? Consider the following:
11 Components: Interconnect Page 11 of 18 SHUFFLE EXCHANGE (continued) Let s represent numbers i and j in binary. If j can be obtained from i by a circular shift to the left, then P i and P j are connected by one-way communications link, viz.: A perfect unshuffle can be obtained by reversing the direction of arrows or making all links bi-directional.
12 Components: Interconnect Page 12 of 18 Other interconnect solutions: A naïve solution: STAR In this solution the central node plays the same role as the bus in bus networks. It also suffers from the some shortcomings. However, this idea can be generalized:
13 Components: Interconnect Page 13 of 18 STAR (continued) A generalized star interconnection network has the property that for a given integer N, we have exactly N! processors. Each processor is labeled with the permutation to which it corresponds. Two processors P i and P j are connected if the label I can be transformed into label j by switching the first label symbol of I with a symbol of j (excluding 1 st symbol of j) Below we have a star network for N=4, i.e. a network of 4! = 24 processors. Example: Processors labeled 2134 and 3124 are connected with two links. NOTE: The whole idea is to make each node a center node of a small star!
14 Components: Interconnect Page 14 of 18 DE BRUIJN A network consisting of N = d k processors, each labeled with a k-digit word (a k-1 a k-2 a 1 a 0 ) where a j is a digit (radix d), i.e. a j is one of (0, 1,, d-1) The processors directly reachable from (a k-1 a k-2 a 1 a 0 ) are q (a k-2 a 1 a 0 q) and (q a k-1 a k-2 a 1 ) where q is another digit (radix d). Shown below is a de Bruijn network for d=2 and k=3 De Bruijn network can be seen as a generalization of a shuffle exchange network. It contains shuffle connections, but has smaller diameter than the shuffle exchange (roughly half the diameter).
15 Components: Interconnect Page 15 of 18 BUTTERFLY A Butterfly network is made of (n + 1)*2 n processors organized into n+1 rows, each containing 2 n processors. Rows are labeled 0 n. Each processor has four connections to other processors (except processors in top and bottom row). Processor P(r, j), i.e. processor number j in row r is connected to P(r-1, j) and P(r-1, m) where m is obtained by inverting the r th significant bit in the binary representation of j.
16 Components: Interconnect Page 16 of 18 PYRAMID A pyramid consists of (4 d+1 1)/3 processors organized in d+1 levels so as: Levels are numbered from d down to 0 There is 1 processor at level d Every level below d has four times the number of processors than the level immediately above it. Note the connections between processors. Pyramid interconnection can be seen as generalization of the ring binary tree network, or as a way of combining meshes and trees.
17 Components: Interconnect Page 17 of 18 COMPARISON OF INTERCONNECTION NETWORKS Intuitively, one network topology is more desirable than another if it is More efficient More convenient More regular (i.e. easy to implement) More expandable (i.e. highly modular) Unlikely to experience bottlenecks Clearly no one interconnection network maximizes all these criteria. Some tradeoffs are needed. Standard criteria used by industry: Network diameter = Max. number of hops necessary to link up two most distant processors Network bisection width = Minimum number of links to be severed for a network to be into two halves (give or take one processor) Network bisection bandwidth = Minimum sum of bandwidths of chosen links to be severed for a network to be into two halves (give or take one processor) Maximum-Degree of PEs = maximum number of links to/from one PE Minimum-Degree of PEs = minimum number of links to/from one PE
18 Components: Interconnect Page 18 of 18 COMPARISON OF INTERCONNECTION NETWORKS (continued) Interconnect comparison at-a-glance: Network Topology Number of Nodes Node Degree Linear and Ring d 2 Shuffle-Exchange 2 d 3 2D Mesh d 2 4 Hypercube 2 d d Star m! m-1 De Bruijn 2 d 4 Binary Tree 2 d Butterfly (d+1)* 2 d d+1 Omega 2 d 2 Pyramid (4 d+1 1)/3 9
Interconnection Networks Programmierung Paralleler und Verteilter Systeme (PPV)
Interconnection Networks Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Interconnection Networks 2 SIMD systems
Topological Properties
Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any
System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1
System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect
Lecture 23: Interconnection Networks. Topics: communication latency, centralized and decentralized switches (Appendix E)
Lecture 23: Interconnection Networks Topics: communication latency, centralized and decentralized switches (Appendix E) 1 Topologies Internet topologies are not very regular they grew incrementally Supercomputers
Interconnection Network
Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network
Interconnection Networks. Interconnection Networks. Interconnection networks are used everywhere!
Interconnection Networks Interconnection Networks Interconnection networks are used everywhere! Supercomputers connecting the processors Routers connecting the ports can consider a router as a parallel
Why the Network Matters
Week 2, Lecture 2 Copyright 2009 by W. Feng. Based on material from Matthew Sottile. So Far Overview of Multicore Systems Why Memory Matters Memory Architectures Emerging Chip Multiprocessors (CMP) Increasing
Lecture 18: Interconnection Networks. CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)
Lecture 18: Interconnection Networks CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Announcements Project deadlines: - Mon, April 2: project proposal: 1-2 page writeup - Fri,
Chapter 2. Multiprocessors Interconnection Networks
Chapter 2 Multiprocessors Interconnection Networks 2.1 Taxonomy Interconnection Network Static Dynamic 1-D 2-D HC Bus-based Switch-based Single Multiple SS MS Crossbar 2.2 Bus-Based Dynamic Single Bus
Interconnection Networks
CMPT765/408 08-1 Interconnection Networks Qianping Gu 1 Interconnection Networks The note is mainly based on Chapters 1, 2, and 4 of Interconnection Networks, An Engineering Approach by J. Duato, S. Yalamanchili,
Interconnection Network Design
Interconnection Network Design Vida Vukašinović 1 Introduction Parallel computer networks are interesting topic, but they are also difficult to understand in an overall sense. The topological structure
Introduction to Parallel Computing. George Karypis Parallel Programming Platforms
Introduction to Parallel Computing George Karypis Parallel Programming Platforms Elements of a Parallel Computer Hardware Multiple Processors Multiple Memories Interconnection Network System Software Parallel
Chapter 12: Multiprocessor Architectures. Lesson 04: Interconnect Networks
Chapter 12: Multiprocessor Architectures Lesson 04: Interconnect Networks Objective To understand different interconnect networks To learn crossbar switch, hypercube, multistage and combining networks
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP
Parallel Programming
Parallel Programming Parallel Architectures Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen [email protected] WS15/16 Parallel Architectures Acknowledgements Prof. Felix
Lecture 2 Parallel Programming Platforms
Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple
Data Center Switch Fabric Competitive Analysis
Introduction Data Center Switch Fabric Competitive Analysis This paper analyzes Infinetics data center network architecture in the context of the best solutions available today from leading vendors such
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
Annotation to the assignments and the solution sheet. Note the following points
Computer rchitecture 2 / dvanced Computer rchitecture Seite: 1 nnotation to the assignments and the solution sheet This is a multiple choice examination, that means: Solution approaches are not assessed
Scaling 10Gb/s Clustering at Wire-Speed
Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400
Interconnection Networks
Advanced Computer Architecture (0630561) Lecture 15 Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Interconnection Networks: Multiprocessors INs can be classified based on: 1. Mode
Chapter 4 Multi-Stage Interconnection Networks The general concept of the multi-stage interconnection network, together with its routing properties, have been used in the preceding chapter to describe
Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)
Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...
Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors
2011 International Symposium on Computer Networks and Distributed Systems (CNDS), February 23-24, 2011 Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors Atefeh Khosravi,
Interconnection Networks
Interconnection Networks Z. Jerry Shi Assistant Professor of Computer Science and Engineering University of Connecticut * Slides adapted from Blumrich&Gschwind/ELE475 03, Peh/ELE475 * Three questions about
Large Scale Clustering with Voltaire InfiniBand HyperScale Technology
Large Scale Clustering with Voltaire InfiniBand HyperScale Technology Scalable Interconnect Topology Tradeoffs Since its inception, InfiniBand has been optimized for constructing clusters with very large
Introduction to Exploration and Optimization of Multiprocessor Embedded Architectures based on Networks On-Chip
Introduction to Exploration and Optimization of Multiprocessor Embedded Architectures based on Networks On-Chip Cristina SILVANO [email protected] Politecnico di Milano, Milano (Italy) Talk Outline
Binary search tree with SIMD bandwidth optimization using SSE
Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous
Parallel Architectures and Interconnection
Chapter 2 Networks Parallel Architectures and Interconnection The interconnection network is the heart of parallel architecture. Feng [1] - Chuan-Lin and Tse-Yun 2.1 Introduction You cannot really design
Behavior Analysis of Multilayer Multistage Interconnection Network With Extra Stages
Behavior Analysis of Multilayer Multistage Interconnection Network With Extra Stages Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Computer
On-Chip Interconnection Networks Low-Power Interconnect
On-Chip Interconnection Networks Low-Power Interconnect William J. Dally Computer Systems Laboratory Stanford University ISLPED August 27, 2007 ISLPED: 1 Aug 27, 2007 Outline Demand for On-Chip Networks
Mixed-Criticality Systems Based on Time- Triggered Ethernet with Multiple Ring Topologies. University of Siegen Mohammed Abuteir, Roman Obermaisser
Mixed-Criticality s Based on Time- Triggered Ethernet with Multiple Ring Topologies University of Siegen Mohammed Abuteir, Roman Obermaisser Mixed-Criticality s Need for mixed-criticality systems due to
Synchronization. Todd C. Mowry CS 740 November 24, 1998. Topics. Locks Barriers
Synchronization Todd C. Mowry CS 740 November 24, 1998 Topics Locks Barriers Types of Synchronization Mutual Exclusion Locks Event Synchronization Global or group-based (barriers) Point-to-point tightly
Lecture 24: WSC, Datacenters. Topics: network-on-chip wrap-up, warehouse-scale computing and datacenters (Sections 6.1-6.7)
Lecture 24: WSC, Datacenters Topics: network-on-chip wrap-up, warehouse-scale computing and datacenters (Sections 6.1-6.7) 1 Topology Examples Grid Torus Hypercube Criteria 64 nodes Performance Bisection
Industrial Ethernet How to Keep Your Network Up and Running A Beginner s Guide to Redundancy Standards
Redundancy = Protection from Network Failure. Redundancy Standards WP-31-REV0-4708-1/5 Industrial Ethernet How to Keep Your Network Up and Running A Beginner s Guide to Redundancy Standards For a very
InfiniBand Clustering
White Paper InfiniBand Clustering Delivering Better Price/Performance than Ethernet 1.0 Introduction High performance computing clusters typically utilize Clos networks, more commonly known as Fat Tree
Interconnection Network of OTA-based FPAA
Chapter S Interconnection Network of OTA-based FPAA 5.1 Introduction Aside from CAB components, a number of different interconnect structures have been proposed for FPAAs. The choice of an intercmmcclion
Network Architecture and Topology
1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches and routers 6. End systems 7. End-to-end
The Butterfly, Cube-Connected-Cycles and Benes Networks
The Butterfly, Cube-Connected-Cycles and Benes Networks Michael Lampis [email protected] NTUA The Butterfly, Cube-Connected-Cycles and Benes Networks p.1/16 Introduction Hypercubes are computationally
Architectural Level Power Consumption of Network on Chip. Presenter: YUAN Zheng
Architectural Level Power Consumption of Network Presenter: YUAN Zheng Why Architectural Low Power Design? High-speed and large volume communication among different parts on a chip Problem: Power consumption
Hadoop Cluster Applications
Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday
A RDT-Based Interconnection Network for Scalable Network-on-Chip Designs
A RDT-Based Interconnection Network for Scalable Network-on-Chip Designs ang u, Mei ang, ulu ang, and ingtao Jiang Dept. of Computer Science Nankai University Tianjing, 300071, China [email protected],
Chapter 15: Distributed Structures. Topology
1 1 Chapter 15: Distributed Structures Topology Network Types Operating System Concepts 15.1 Topology Sites in the system can be physically connected in a variety of ways; they are compared with respect
Photonic Networks for Data Centres and High Performance Computing
Photonic Networks for Data Centres and High Performance Computing Philip Watts Department of Electronic Engineering, UCL Yury Audzevich, Nick Barrow-Williams, Robert Mullins, Simon Moore, Andrew Moore
Chapter 2 Parallel Architecture, Software And Performance
Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program
Cisco s Massively Scalable Data Center
Cisco s Massively Scalable Data Center Network Fabric for Warehouse Scale Computer At-A-Glance Datacenter is the Computer MSDC is the Network Cisco s Massively Scalable Data Center (MSDC) is a framework
Lecture 6 Types of Computer Networks and their Topologies Three important groups of computer networks: LAN, MAN, WAN
Lecture 6 Types of Computer Networks and their Topologies Three important groups of computer networks: LAN, MAN, WAN LAN (Local Area Networks) 10/28/2008 Vasile Dadarlat - Computer Networks 1 MAN (Metropolitan
Communication Networks. MAP-TELE 2011/12 José Ruela
Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)
Universal hashing. In other words, the probability of a collision for two different keys x and y given a hash function randomly chosen from H is 1/m.
Universal hashing No matter how we choose our hash function, it is always possible to devise a set of keys that will hash to the same slot, making the hash scheme perform poorly. To circumvent this, we
Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software
Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set
Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen
Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks
Performance Evaluation of 2D-Mesh, Ring, and Crossbar Interconnects for Chip Multi- Processors. NoCArc 09
Performance Evaluation of 2D-Mesh, Ring, and Crossbar Interconnects for Chip Multi- Processors NoCArc 09 Jesús Camacho Villanueva, José Flich, José Duato Universidad Politécnica de Valencia December 12,
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 1 Network Topology Specific Instructional Objectives At the end of this lesson, the students will be able to: Specify what is meant by network topology
CSE 4351/5351 Notes 7: Task Scheduling & Load Balancing
CSE / Notes : Task Scheduling & Load Balancing Task Scheduling A task is a (sequential) activity that uses a set of inputs to produce a set of outputs. A task (precedence) graph is an acyclic, directed
Systolic Computing. Fundamentals
Systolic Computing Fundamentals Motivations for Systolic Processing PARALLEL ALGORITHMS WHICH MODEL OF COMPUTATION IS THE BETTER TO USE? HOW MUCH TIME WE EXPECT TO SAVE USING A PARALLEL ALGORITHM? HOW
A Source Identification Scheme against DDoS Attacks in Cluster Interconnects
A Source Identification Scheme against DDoS Attacks in Cluster Interconnects Manhee Lee* Eun Jung Kim* Cheol Won Lee *Department of Computer Science Texas A&M University College Station, TX-77840 [email protected],
CSCI 362 Computer and Network Security
The Purpose of ing CSCI 362 Computer and Security Introduction to ing Goals: Remote exchange and remote process control. A few desirable properties: Interoperability, Flexibility, Geographical range, Scalability,
Distributed communication-aware load balancing with TreeMatch in Charm++
Distributed communication-aware load balancing with TreeMatch in Charm++ The 9th Scheduling for Large Scale Systems Workshop, Lyon, France Emmanuel Jeannot Guillaume Mercier Francois Tessier In collaboration
SOC architecture and design
SOC architecture and design system-on-chip (SOC) processors: become components in a system SOC covers many topics processor: pipelined, superscalar, VLIW, array, vector storage: cache, embedded and external
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
A hierarchical multicriteria routing model with traffic splitting for MPLS networks
A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra
PowerPC Microprocessor Clock Modes
nc. Freescale Semiconductor AN1269 (Freescale Order Number) 1/96 Application Note PowerPC Microprocessor Clock Modes The PowerPC microprocessors offer customers numerous clocking options. An internal phase-lock
Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer
Res. Lett. Inf. Math. Sci., 2003, Vol.5, pp 1-10 Available online at http://iims.massey.ac.nz/research/letters/ 1 Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer
Real-time Processor Interconnection Network for FPGA-based Multiprocessor System-on-Chip (MPSoC)
Real-time Processor Interconnection Network for FPGA-based Multiprocessor System-on-Chip (MPSoC) Stefan Aust, Harald Richter Department of Computer Science Clausthal University of Technology Julius-Albert-Str.
Fault-Tolerant Routing Algorithm for BSN-Hypercube Using Unsafety Vectors
Journal of omputational Information Systems 7:2 (2011) 623-630 Available at http://www.jofcis.com Fault-Tolerant Routing Algorithm for BSN-Hypercube Using Unsafety Vectors Wenhong WEI 1,, Yong LI 2 1 School
Brocade Solution for EMC VSPEX Server Virtualization
Reference Architecture Brocade Solution Blueprint Brocade Solution for EMC VSPEX Server Virtualization Microsoft Hyper-V for 50 & 100 Virtual Machines Enabled by Microsoft Hyper-V, Brocade ICX series switch,
MULTISTAGE INTERCONNECTION NETWORKS: A TRANSITION TO OPTICAL
MULTISTAGE INTERCONNECTION NETWORKS: A TRANSITION TO OPTICAL Sandeep Kumar 1, Arpit Kumar 2 1 Sekhawati Engg. College, Dundlod, Dist. - Jhunjhunu (Raj.), [email protected], 2 KIIT, Gurgaon (HR.), Abstract
Non-blocking Switching in the Cloud Computing Era
Non-blocking Switching in the Cloud Computing Era Contents 1 Foreword... 3 2 Networks Must Go With the Flow in the Cloud Computing Era... 3 3 Fat-tree Architecture Achieves a Non-blocking Data Center Network...
Memory Systems. Static Random Access Memory (SRAM) Cell
Memory Systems This chapter begins the discussion of memory systems from the implementation of a single bit. The architecture of memory chips is then constructed using arrays of bit implementations coupled
Locality-Sensitive Operators for Parallel Main-Memory Database Clusters
Locality-Sensitive Operators for Parallel Main-Memory Database Clusters Wolf Rödiger, Tobias Mühlbauer, Philipp Unterbrunner*, Angelika Reiser, Alfons Kemper, Thomas Neumann Technische Universität München,
Definition. A Historical Example
Overlay Networks This lecture contains slides created by Ion Stoica (UC Berkeley). Slides used with permission from author. All rights remain with author. Definition Network defines addressing, routing,
Large-Scale Distributed Systems. Datacenter Networks. COMP6511A Spring 2014 HKUST. Lin Gu [email protected]
Large-Scale Distributed Systems Datacenter Networks COMP6511A Spring 2014 HKUST Lin Gu [email protected] Datacenter Networking Major Components of a Datacenter Computing hardware (equipment racks) Power supply
Designing HP SAN Networking Solutions
Exam : HP0-J65 Title : Designing HP SAN Networking Solutions Version : Demo 1 / 6 1.To install additional switches, you must determine the ideal ISL ratio. Which ISL ratio range is recommended for less
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
LOAD-BALANCED ROUTING IN INTERCONNECTION NETWORKS
LOAD-BALANCED ROUTING IN INTERCONNECTION NETWORKS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
AQA GCSE in Computer Science Computer Science Microsoft IT Academy Mapping
AQA GCSE in Computer Science Computer Science Microsoft IT Academy Mapping 3.1.1 Constants, variables and data types Understand what is mean by terms data and information Be able to describe the difference
MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport
MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies
Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:
Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):
Documentation. M-Bus 130-mbx
Documentation M-Bus 130-mbx Introduction The mx M-Bus module is part of the mx Smart Slot communications family. With the integrated SmartSlot technology, mx systems ag offers automatic consumer data read-out
C20.0001 Information Systems for Managers Fall 1999
New York University, Leonard N. Stern School of Business C20.0001 Information Systems for Managers Fall 1999 Networking Fundamentals A network comprises two or more computers that have been connected in
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct
IST 220 Exam 3 Notes Prepared by Dan Veltri
Concepts to know: IST 220 Exam 3 Notes Prepared by Dan Veltri The Final Exam is scheduled for Wednesday, December 15 th from 4:40PM 6:30 PM in 112 Chambers. Chapters covered: 12, 13, 15, 16, 17, 18, 20,
Computer Networking: A Survey
Computer Networking: A Survey M. Benaiah Deva Kumar and B. Deepa, 1 Scholar, 2 Assistant Professor, IT Department, Sri Krishna College of Arts and Science College, Coimbatore, India. Abstract- Computer
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
2 Basic Concepts. Contents
2. Basic Concepts Contents 2 Basic Concepts a. Link configuration b. Topology c. Transmission mode d. Classes of networks 1 a. Link Configuration Data links A direct data link is one that establishes a
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
Municipal Mesh Network Design
White Paper Municipal Mesh Network Design Author: Maen Artimy 1 Summary This document provides a wireless mesh network design for the downtown area of the Town of Wolfville, Nova Scotia. This design serves
