A Color Placement Support System for Visualization Designs Based on Subjective Color Balance

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Color Placement Support System for Visualization Designs Based on Subjective Color Balance"

Transcription

1 A Color Placement Support System for Visualization Designs Based on Subjective Color Balance Eric Cooper and Katsuari Kamei College of Information Science and Engineering Ritsumeikan University Abstract: Color placement is a key factor in the effectiveness of design. We develop systems that assist novice designers in placing effective colors. These systems are developed to be broadly applicable to any desktop application and with the ultimate goal of designs that are rated highly for ease-of-use by independent viewers. This paper details the construction of the color conspicuity model for color placement support. This system supports users by giving direct recommendations on color placement for any given color in a design based on the inferred relative conspicuity of every other color in the design. The core of this system is the conspicuity inference system that has been constructed to have a high correlation with ease-of-use evaluation. The system supports designers without interfering, by working with the color choices given. Keywords: color placement, color conspicuity, color design 1 Introduction Color design requires a high degree of color placement expertise. Yet desktop design systems usually provide one or several default palettes for all designs. Although most studies of the subject agree that ease-of-use is the main goal of design and that color placement plays a large role in ease-of-use, there varying opinions on which color placement choices are best. Color placement remains a case-by-case challenge for designers with experience and a great difficulty for those who do not. We develop color systems with the goal of producing systems that will work equally well on any visualization design, in coordination with designers needs. This is an effort to reduce the huge number of human factors involved in color placement (Silverstein) to a few generalized factors, forming a broad base for color placement support. 2 Development Process The goal of this research is to develop systems which can be used in nearly any desktop system and for any visualization design. This broad range requires some limitations of scope. We limit the visualization designs to flatly colored designs. We limit the accessible information to the post-rendered image and the device dependent RGB-derived display values. These are properties available in most programming environments. We do not exclude complex pixel-by-pixel operations such as might be done in image processing but all operations must be done in real-time, as the user places colors. From these inputs, the systems we develop output advice to the user on color placement. Allowing only advice to be given to the user allows the system to work directly with the designers own goals, such as the general use of color in the field and designer or viewer preferences. The final designs, those which were designed with support from the system and those were not, are rated comparatively for ease-of-use by independent viewers in surveys. This development process supports our goals of broad generality for any type of system and any type of visualization, the interaction with the user, as well as the ultimate goals of visualizations that are ease to use.

2 3 Background 3.1 Conspicuity The system described here is based on the concept of color conspicuity. Conspicuity is the property of an element of the design, in this case each color, to stand out or draw attention. This color support system is designed to use a model of this property alone to provide color support. When properly implemented in an application, the system will use other elements besides conspicuity. However, the exciting results of the current system show that it achieves high correlation with ease-of-use rating using conspicuity alone. Conspicuity is defined by an experiment that gathers data on the phenomenon. The experiment does not present a perfect definition for the phenomenon of conspicuity. Instead, it offers a method of quantifying conspicuity in a way that is both simple and useful. In the color conspicuity survey, a GUI (graphical user interface) displays two rectangular figures on one rectangular ground as shown in Fig. 1. The subject uses a mouse and a pointer on screen to click one or the other of the two figures, whichever the subject sees as most conspicuous. The selected figure becomes one-fifth smaller and the other becomes one-fifth larger. possible. This is the point at which the two figures appear to have equal conspicuity. The responses are calculated as the area of one figure divided by the sum of both areas, so the possible responses are the area ratios 0.1, 0.2, , each calculated as Aa Rab = (1) A + A a where A is the total area of the subscripted plane in pixels. The corresponding definition of conspicuity is as follows may seem a bit awkward: The relative area of one figure two another, on a different colored ground, when both appear to stand out equally. This definition provides a method of quantifying conspicuity that is both simple enough to model and complex enough to involve these necessary aspects: 1) Conspicuity is relative to at least one other color. 2) Conspicuity is relative to ground. 3) Conspicuity is linked to another element of design (in this case, relative area) to have a useful purpose in design. These experiments have provided data for several models of conspicuity, including the one described in the next subsection. This data is in the form of 7,995 responses to the experiment described, for with various combinations of hue, saturation, and lightness, as previously described. The goal of modeling conspicuity as defined here is to construct a system which responds to any individual response on the color balance experiment with a high degree of correlation with actual responses to the experiment. b 3.2 System Objective Fig. 1. The Color Conspicuity Survey Since conspicuity has been shown to be related to relative area (Ashizawa, 1981), the selected figure is expected to lose some conspicuity as its area becomes smaller. The subject repeats these actions until finding the most balanced response of the nine A previous quantification of conspicuity, using the data from the experiments described briefly above, defined a set of rules for related to simple color relationships. Each rule was constructed to quantify conspicuity by linear regression, and each rule had an effectiveness determined by its correlation with the actual responses on the experiments. The sum of each inference multiplied by its effectiveness gave a response very close to the individual responses on the color conspicuity surveys. For all 7,995 responses, this method had a

3 correlation coefficient of 0.59, fairly high for this somewhat subjective response. An advantage of this rule-based method was that the predictability of the rules could theoretically inform the user of important aspects of conspicuity. Such extrapolation would be necessary for the linguistic advice that had been proposed. However, testing of a prototype showed that the linguistic advice was most probably not going to be useful in color support because it left the user in a familiar place: knowing that there is some problem with the design but not knowing how to fix it. In order for a text-based system to effective, it was determined, the system would practically have to tell the user which colors might lead to greater ease-of-use. For this purpose, the best interface is not the text box, but the palette. A palette-based support system shows the user colors that have a high probability to leading to greater ease-of-use. Generating a set of recommended color changes requires a more effective conspicuity inference than the previous model and something that the previous model did not contain, conspicuity optimums directly linking conspicuity to ease-of-use. The trade-off for providing this increase in efficiency is that elimination of the text-based support allows for so-called "black box" methods of conspicuity. A neural network is a network of nodes that are weighted to provide non-linear modeling of data. A new conspicuity model based on a neural network provides more accurate response to any given color conspicuity survey set of three colors. This neural network is described in the following subsection. The object of the system described in this paper is to give the designer a small set of possible color changes for any given color in a flatly-colored visualization. These recommended colors will be optional and will be varied enough to give the designer a good deal of flexibility. More importantly, the system will infer ease-of-use from each color change and only display the better colors inferred to improve the current overall ease-of-use for the visualization. 3.3 Conspicuity Neural Network We constructed a small neural network to model conspicuity from the experimental data described briefly above. This neural network is central to the design and implementation of the system described below. This section provides a brief description to show how this network fits in with the other parts of the support system. (For a general treatment of neural networks see Van Camp, This network is built to very similar specifications.) The conspicuity neural network accepts nine inputs, the RGB values of each color in the conspicuity surveys. There is an input later, one hidden layer of nine neural units, and a single output unit. The output of the network, is the inferred ratio of the area of the two figures in the survey. So the data from the experiment trains the network directly. The training algorithm is the back-propagation algorithm, which has been widely applied to a great variety of problems. The basic layout of inputs and outputs is shown in Fig. 2. In this figure, z R, z G, and z B are the RGB values of the ground, and the other inputs are the RGB values for a and b. The output o ( z, a, b) is the networks inference for the relative area of a and b at balance, as described above and the network is trained to output a value close to y i, the actual response from the color balance experiments. Fig. 2. Conspicuity network inputs and outputs. The neural network models the conspicuity responses far better than the previous rule-based

4 system. It achieves a near perfect correlation with the average score for any given set of three colors and a correlation of 0.72 for any individual response to the 7,995 data sets. 4 System Construction 4.1 Image Storage The image storage in this system is designed to store a simple bitmap image in RGB (red, green and blue color model) integers. In this implementation, images are stored in a method convenient to the scope of this research. Since the research deals only with flatly-colored images, all pixels of one color are placed in a bitmap called a color plane. The color plane format is not rare for image formats. Also, images using this system do not have to be stored in any particular format. An image object or application using this system needs only to construct an image information object, as described here. The image information object is constructed with a top level holding information that changes with color placement, the RGB values of every color plane in the image. The bottom layer holds information that does not change with color placement, the relative size ratios of every color plane. From this simple information, the system must infer ease-of-use of an entire visualization image. 4.2 List Generator Core to the current palette, or to the user's preferred palette. The recommended_list first makes a temporary list of possible color changes from the selected color. The recommended_list object first sends the current color scheme through the generator to compute the current inferred ease-of-use. Here we will describe this method, which is exactly the same for every trial color scheme. The generator forms one color plane triad {a,b,z}, where a is the color plane for which the system is inferring conspicuity, b is another plane, and z is a third plane representing the ground, just as in the color conspicuity surveys. Next, the triad's nine RGB values from image_information go in to the conspicuity neural network to obtain an inferred area ratio between the two colors a and b. The generator does this for planes a and b for every plane z and sums these results for inferred relative area of a for a and b. Next, the generator obtains the actual relative area from image_information and takes the difference. The inferred area ratio of color plane a as it relates to b is calculated by the sum of all weighted outputs of the network for all ground planes z. Summarizing these steps, the inferred ratio K ab for the two color planes is given as K ab = # o(z,a,b) " g z (2) z The core of the conspicuity-based color placement support system is a recommended color change list generator, as shown in Fig. 3. An image information object creates a new instance of the recommended color change list object, recommended_list, by sending the number of the selected color which is to be changed and a reference to itself, the image information. Every recommended_list object has a reference to the color model to be used. Some applications may limit the user's colors to the current color table,

5 " b q size ( K R ) ab Qa ( size) = (4) n 1 ab where size = { L, S}, R ab is the actual ratio of plane a to plane b as given for the conspicuity surveys, K ab is as given above and q size is the best conspicuity difference described in the following section. There are two possible reasons for different optimums for large and small figures, one being that conspicuity inference in this system relies heavily on size in area and there may be a discrepancy here. Another quite likely reason is that large figures, for example background colors and large areas must be inconspicuous. The best values are set less than zero for the large figures, at q L =-0.13 and q S =0.18 for small figures. These best values are constants which give the direct connection to ease-of use. The method for determining these best values and the preliminary evaluation of the system are discussed briefly in the following subsection. The total conspicuity differences are weighted and added to two totals, one for large color planes and another for small planes. Fig. 4 shows the subsets that weight the planes by size, using the same total area ratio that was used to calculate ground. Fig. 3. Generating the recommended_list. Where o(z,a,b) is the output of the conspicuity network. g z is a weight for how much plane z acts as a ground to planes a and b and is given as Az g z = (3) A i where A i is the area in pixels of the subscripted color plane. This is the ratio of plane z to the total area of the visualization. Next the generator calculates total conspicuity differences Q al and Q as for large planes and small planes, respectively. i Fig. 4. The weight of a plane according to size. Finally, the two best totals are combined to form one total and the whole ease-of-use score for the visualization. The list generator exchanges the selected color with a color from the trial color list and calculates an

6 ease-of-use inference Q a from for the modified color a in the new trial scheme. Trial color selections with a lower score (closer to the best conspicuity ) are added to the recommended color list. The list may be returned to the caller, the module or program that requested it, in order of increasing total weighted difference from the best values so the caller may adjust its size appropriately. When the list is complete, the caller (a palette, color picker, color support system) uses this list to create a new palette of recommended colors. 4.3 Best Conspicuity As described above, the best values for conspicuity are determined beforehand by testing conspicuity values for their direct correlation with ease-of-use. To set these best values, we use data from previous color placement support testing. The method of evaluation, the type of visualizations, and the scores have been detailed in previous work (Cooper, Kamei, 1999). Here we provide a description of the type of evaluation data that forms the basis of the conspicuity optimums. On an earlier prototype placement system, twenty novice designers placed colors for ten visualizations each. These visualizations were chosen to represent a variety of typical flatly-colored visualizations as might be created on a desktop computer. The types of visualization are shown in Table 1. Table 1. Ten visual objects evaluated type of visual object planes line graph with vertical indices 8 line graph with five variables 7 quartile box-plot 5 stacked totals bar-plot 6 scatter plot with one index 5 satellite weather map 7 apartment floor plan 6 wire molecule projection 4 CAD contour drawing 4 3D wire and shadow graph 8 The resulting 200 designs were evaluated by comparison in sets of ten, by ten viewers each. With this comparison method, the viewer first browses a set of ten designs. Then reduced versions of the designs appear on the screen and the viewer uses the GUI to manipulate the order in which the reduced versions appear. At any time, the viewer is able to access the full-sized versions. After determining the order of descending ease-of-use, the viewer clicks a GUI button and the survey automatically records the response. We tune the best values in the system described above to have high correlation with the ease-of-use scores. Previous systems were set to a conspicuity value of zero. Using conspicuity alone, the previous system was able to achieve a correlation with ease-of-use of To improve this, the optimums q L and q S, mentioned in the previous section were found by testing values from maximum of 1.0 to minimum of These best values allow the system to predict ease-of-use with a correlation coefficient of for large planes and of 0.25 for small planes. The relationship is negative because as the conspicuity value differs from the optimum, the ease-of-use score drops. These correlations are much higher than those of the previous implementations that also used only conspicuity inference. These conspicuity values seem to be quantifying other factors of ease-of-use such as visibility and contrast. This gives the system a much more powerful and broad base, one that is an effective improvement of conspicuity alone. 5 Conclusions We constructed a system that generates a small palette of recommended colors for a selected color in a flatly-colored visualization. At the core of this system is a neural network that effectively models conspicuity better than any previous system. The other powerful component is a conspicuity optimizing process that links conspicuity values directly to ease-of-use scores.

7 The main characteristics of the evaluation system are comparative and subjective ease-of-use evaluation. Since we aim to create systems which assist the user in finding the best color scheme for a particular design, comparative evaluation is the most suitable. Subjective ease-of-use evaluation is prone to questions of validity. The relationship between these subjective evaluations and actual ease-of-use must be investigated in future work. This system is designed to help designers find colors schemes that viewers rate highly for ease-of-use and this limited goal is satisfied by subjective evaluation. The use of small palette to give advice seems simple enough. This simplicity is deceptive because we do not have any idea how the novice designers and those with more experience will react to the system. We certainly would be disappointed if this support system was considered another unnecessary feature to be turned off in the application preferences. The system requires rigorous testing to ensure the interaction produces easy to use visualization images, as outlined in the development process. Color placement support in one form or another will eventually make its way into the features of every application concerned with design. This highly-generalized research provides a base on which more targeted systems can be constructed to assist designers in one of the most difficult tasks they face. References Silverstein, L. Human Factors for Color Display Systems: Concepts, Methods, and Research. Color and the Computer. Orlando, FL: Academic Press; pp Cooper, E, Kamei, K. (1999). Development of a Color Balance Support System. Journal of Human Interface Society;. Vol. 1, No. 4, pp E. Cooper and K. Kamei (2002). A Study of Color Conspicuity for Ease-Of-Use Inference in Visualization, Color Research and Application, Vol. 27, No. 2, pp Ashizawa, I (1981). Size Effect in Color Conspicuity. Journal of the Color Science Association of Japan;. Vol. 18, No. 3. pp Van Camp, D (1992). The Amateur Scientist: Neurons for Computers. Scientific American; September 1992 pp

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs TracePro Opto-Mechanical Design Software s Fluorescence Property Utility TracePro s Fluorescence Property

More information

Application of Neural Network in User Authentication for Smart Home System

Application of Neural Network in User Authentication for Smart Home System Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Interactive Voting System. www.ivsystem.nl. IVS-Basic IVS-Professional 4.4

Interactive Voting System. www.ivsystem.nl. IVS-Basic IVS-Professional 4.4 Interactive Voting System www.ivsystem.nl IVS-Basic IVS-Professional 4.4 Manual IVS-Basic 4.4 IVS-Professional 4.4 1213 Interactive Voting System The Interactive Voting System (IVS ) is an interactive

More information

Figure 1. An embedded chart on a worksheet.

Figure 1. An embedded chart on a worksheet. 8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the

More information

Assignment objectives:

Assignment objectives: Assignment objectives: Regression Pivot table Exercise #1- Simple Linear Regression Often the relationship between two variables, Y and X, can be adequately represented by a simple linear equation of the

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Visually Encoding Program Test Information to Find Faults in Software

Visually Encoding Program Test Information to Find Faults in Software Visually Encoding Program Test Information to Find Faults in Software James Eagan, Mary Jean Harrold, James A. Jones, and John Stasko College of Computing / GVU Center Georgia Institute of Technology Atlanta,

More information

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

More information

Adding Animation With Cinema 4D XL

Adding Animation With Cinema 4D XL Step-by-Step Adding Animation With Cinema 4D XL This Step-by-Step Card covers the basics of using the animation features of Cinema 4D XL. Note: Before you start this Step-by-Step Card, you need to have

More information

DISK DEFRAG Professional

DISK DEFRAG Professional auslogics DISK DEFRAG Professional Help Manual www.auslogics.com / Contents Introduction... 5 Installing the Program... 7 System Requirements... 7 Installation... 7 Registering the Program... 9 Uninstalling

More information

6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

More information

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your

More information

ACADEMIC TECHNOLOGY SUPPORT

ACADEMIC TECHNOLOGY SUPPORT ACADEMIC TECHNOLOGY SUPPORT Adobe Photoshop Introduction Part 1 (Basics- Image Manipulation) ats@etsu.edu 439-8611 www.etsu.edu/ats Table of Contents: Overview... 1 Objectives... 1 Basic Graphic Terminology...

More information

4. Are you satisfied with the outcome? Why or why not? Offer a solution and make a new graph (Figure 2).

4. Are you satisfied with the outcome? Why or why not? Offer a solution and make a new graph (Figure 2). Assignment 1 Introduction to Excel and SPSS Graphing and Data Manipulation Part 1 Graphing (worksheet 1) 1. Download the BHM excel data file from the course website. 2. Save it to the desktop as an excel

More information

TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE...

TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... Starting Guide TABLE OF CONTENTS INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... 7 ADVANCE CONCRETE USER INTERFACE... 7 Other important

More information

Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query.

Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query. Quick Start Tutorial 1-1 Quick Start Tutorial This quick start tutorial will cover some of the basic features of Settle3D. A circular load is applied to a single soil layer and settlements are examined.

More information

ANNMD - Artificial Neural Network Model Developer. Jure Smrekar

ANNMD - Artificial Neural Network Model Developer. Jure Smrekar ANNMD - Artificial Neural Network Model Developer Jure Smrekar June 2010 University of Stavanger N-4036 Stavanger NORWAY wwwuisno 2010 Jure Smrekar ISBN: 978-82-7644-416-2 Abstract This booklet presents

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA

More information

Instructions for Use. CyAn ADP. High-speed Analyzer. Summit 4.3. 0000050G June 2008. Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835

Instructions for Use. CyAn ADP. High-speed Analyzer. Summit 4.3. 0000050G June 2008. Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 Instructions for Use CyAn ADP High-speed Analyzer Summit 4.3 0000050G June 2008 Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 Overview Summit software is a Windows based application that

More information

You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week. Week 1 2 3 4 5 6 7 8 9

You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week. Week 1 2 3 4 5 6 7 8 9 Warm Up: You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week Week 1 2 3 4 5 6 7 8 9 Money Owed 900 800 700 600 500 400 300 200 100

More information

PentaMetric battery Monitor System Sentry data logging

PentaMetric battery Monitor System Sentry data logging PentaMetric battery Monitor System Sentry data logging How to graph and analyze renewable energy system performance using the PentaMetric data logging function. Bogart Engineering Revised August 10, 2009:

More information

Using Excel for Statistics Tips and Warnings

Using Excel for Statistics Tips and Warnings Using Excel for Statistics Tips and Warnings November 2000 University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID Contents 1. Introduction 3 1.1 Data Entry and

More information

Getting Started With SPSS

Getting Started With SPSS Getting Started With SPSS To investigate the research questions posed in each section of this site, we ll be using SPSS, an IBM computer software package specifically designed for use in the social sciences.

More information

Utilizing spatial information systems for non-spatial-data analysis

Utilizing spatial information systems for non-spatial-data analysis Jointly published by Akadémiai Kiadó, Budapest Scientometrics, and Kluwer Academic Publishers, Dordrecht Vol. 51, No. 3 (2001) 563 571 Utilizing spatial information systems for non-spatial-data analysis

More information

DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7

DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 UNDER THE GUIDANCE Dr. N.P. DHAVALE, DGM, INFINET Department SUBMITTED TO INSTITUTE FOR DEVELOPMENT AND RESEARCH IN BANKING TECHNOLOGY

More information

Data quality in Accounting Information Systems

Data quality in Accounting Information Systems Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania

More information

Dealing with Data in Excel 2010

Dealing with Data in Excel 2010 Dealing with Data in Excel 2010 Excel provides the ability to do computations and graphing of data. Here we provide the basics and some advanced capabilities available in Excel that are useful for dealing

More information

an introduction to VISUALIZING DATA by joel laumans

an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data

More information

Joomla Article Advanced Topics: Table Layouts

Joomla Article Advanced Topics: Table Layouts Joomla Article Advanced Topics: Table Layouts An HTML Table allows you to arrange data text, images, links, etc., into rows and columns of cells. If you are familiar with spreadsheets, you will understand

More information

Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine

Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining

More information

ACE: Illustrator CC Exam Guide

ACE: Illustrator CC Exam Guide Adobe Training Services Exam Guide ACE: Illustrator CC Exam Guide Adobe Training Services provides this exam guide to help prepare partners, customers, and consultants who are actively seeking accreditation

More information

ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION

ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION 1 ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION B. Mikó PhD, Z-Form Tool Manufacturing and Application Ltd H-1082. Budapest, Asztalos S. u 4. Tel: (1) 477 1016, e-mail: miko@manuf.bme.hu

More information

Realizeit at the University of Central Florida

Realizeit at the University of Central Florida Realizeit at the University of Central Florida Results from initial trials of Realizeit at the University of Central Florida, Fall 2014 1 Based on the research of: Dr. Charles D. Dziuban, Director charles.dziuban@ucf.edu

More information

Utah Core Curriculum for Mathematics

Utah Core Curriculum for Mathematics Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

More information

Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th

Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th Standard 3: Data Analysis, Statistics, and Probability 6 th Prepared Graduates: 1. Solve problems and make decisions that depend on un

More information

Microsoft Publisher 2010 What s New!

Microsoft Publisher 2010 What s New! Microsoft Publisher 2010 What s New! INTRODUCTION Microsoft Publisher 2010 is a desktop publishing program used to create professional looking publications and communication materials for print. A new

More information

Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

More information

Lession: 2 Animation Tool: Synfig Card or Page based Icon and Event based Time based Pencil: Synfig Studio: Getting Started: Toolbox Canvas Panels

Lession: 2 Animation Tool: Synfig Card or Page based Icon and Event based Time based Pencil: Synfig Studio: Getting Started: Toolbox Canvas Panels Lession: 2 Animation Tool: Synfig In previous chapter we learn Multimedia and basic building block of multimedia. To create a multimedia presentation using these building blocks we need application programs

More information

KaleidaGraph Quick Start Guide

KaleidaGraph Quick Start Guide KaleidaGraph Quick Start Guide This document is a hands-on guide that walks you through the use of KaleidaGraph. You will probably want to print this guide and then start your exploration of the product.

More information

The event of processing an image on the computer is where pixel information is thrown away! Okay, so just what does that mean? Let's take a look...

The event of processing an image on the computer is where pixel information is thrown away! Okay, so just what does that mean? Let's take a look... 10/05 The Event Processing images on the computer has brought us the responsibility to learn a new way to control color and tone from previous methods of cc filters, densitometer readings, and so on. The

More information

Visualization of 2D Domains

Visualization of 2D Domains Visualization of 2D Domains This part of the visualization package is intended to supply a simple graphical interface for 2- dimensional finite element data structures. Furthermore, it is used as the low

More information

Manual for simulation of EB processing. Software ModeRTL

Manual for simulation of EB processing. Software ModeRTL 1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended

More information

SPSS: Getting Started. For Windows

SPSS: Getting Started. For Windows For Windows Updated: August 2012 Table of Contents Section 1: Overview... 3 1.1 Introduction to SPSS Tutorials... 3 1.2 Introduction to SPSS... 3 1.3 Overview of SPSS for Windows... 3 Section 2: Entering

More information

Machine Learning Equalization Techniques for High Speed PAM4 Fiber Optic Communication Systems

Machine Learning Equalization Techniques for High Speed PAM4 Fiber Optic Communication Systems Machine Learning Equalization Techniques for High Speed PAM4 Fiber Optic Communication Systems I. Lyubomirsky CS229 Final Project Report, email: lyuboptics@gmail.com Abstract In this work, we apply machine

More information

Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006

Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006 Introduction: Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006 Illustrator is a vector-based imaging program. Unlike PhotoShop, which deals in

More information

SAS / INSIGHT. ShortCourse Handout

SAS / INSIGHT. ShortCourse Handout SAS / INSIGHT ShortCourse Handout February 2005 Copyright 2005 Heide Mansouri, Technology Support, Texas Tech University. ALL RIGHTS RESERVED. Members of Texas Tech University or Texas Tech Health Sciences

More information

Adaptive information source selection during hypothesis testing

Adaptive information source selection during hypothesis testing Adaptive information source selection during hypothesis testing Andrew T. Hendrickson (drew.hendrickson@adelaide.edu.au) Amy F. Perfors (amy.perfors@adelaide.edu.au) Daniel J. Navarro (daniel.navarro@adelaide.edu.au)

More information

Integrated Sensor Analysis Tool (I-SAT )

Integrated Sensor Analysis Tool (I-SAT ) FRONTIER TECHNOLOGY, INC. Advanced Technology for Superior Solutions. Integrated Sensor Analysis Tool (I-SAT ) Core Visualization Software Package Abstract As the technology behind the production of large

More information

Module 3: Correlation and Covariance

Module 3: Correlation and Covariance Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

More information

Adobe Illustrator CS5 Part 1: Introduction to Illustrator

Adobe Illustrator CS5 Part 1: Introduction to Illustrator CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Illustrator CS5 Part 1: Introduction to Illustrator Summer 2011, Version 1.0 Table of Contents Introduction...2 Downloading

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Spreadsheet software for linear regression analysis

Spreadsheet software for linear regression analysis Spreadsheet software for linear regression analysis Robert Nau Fuqua School of Business, Duke University Copies of these slides together with individual Excel files that demonstrate each program are available

More information

Basic Intensity Quantification with ImageJ

Basic Intensity Quantification with ImageJ Basic Intensity Quantification with ImageJ Pretty pictures are nice, but many times we need to turn our images into quantifiable data. ImageJ is useful for getting information from images, including pixel

More information

Quantifying Westerns. ODYSSEY QuickCard. 1. Image Optimization

Quantifying Westerns. ODYSSEY QuickCard. 1. Image Optimization ODYSSEY QuickCard Quantifying Westerns 1. Image Optimization Most blots after scanning will require some adjustments in order to visualize the relevant portions of the images on the computer monitor. This

More information

Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach

Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden smakadir@csc.kth.se,

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Maya 2014 Basic Animation & The Graph Editor

Maya 2014 Basic Animation & The Graph Editor Maya 2014 Basic Animation & The Graph Editor When you set a Keyframe (or Key), you assign a value to an object s attribute (for example, translate, rotate, scale, color) at a specific time. Most animation

More information

Minitab Guide. This packet contains: A Friendly Guide to Minitab. Minitab Step-By-Step

Minitab Guide. This packet contains: A Friendly Guide to Minitab. Minitab Step-By-Step Minitab Guide This packet contains: A Friendly Guide to Minitab An introduction to Minitab; including basic Minitab functions, how to create sets of data, and how to create and edit graphs of different

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-213 737 Letter Recognition Data Using Neural Network Hussein Salim Qasim Abstract The letters dataset from the UCI repository

More information

Plotting: Customizing the Graph

Plotting: Customizing the Graph Plotting: Customizing the Graph Data Plots: General Tips Making a Data Plot Active Within a graph layer, only one data plot can be active. A data plot must be set active before you can use the Data Selector

More information

PREPARING PHOTOS for PRINTING

PREPARING PHOTOS for PRINTING PREPARING PHOTOS for PRINTING GENERAL WORKFLOW Open a PSD file SAVE AS a TIFF File Resize to Printer Resolution using IMAGE SIZE Sharpen with Layer Sharpen Add a Black Border using CANVAS SIZE Set the

More information

Polynomial Neural Network Discovery Client User Guide

Polynomial Neural Network Discovery Client User Guide Polynomial Neural Network Discovery Client User Guide Version 1.3 Table of contents Table of contents...2 1. Introduction...3 1.1 Overview...3 1.2 PNN algorithm principles...3 1.3 Additional criteria...3

More information

Choosing Colors for Data Visualization Maureen Stone January 17, 2006

Choosing Colors for Data Visualization Maureen Stone January 17, 2006 Choosing Colors for Data Visualization Maureen Stone January 17, 2006 The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward Tufte:

More information

Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds. Overview. Data Analysis Tutorial

Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds. Overview. Data Analysis Tutorial Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds Overview In order for accuracy and precision to be optimal, the assay must be properly evaluated and a few

More information

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

More information

GAZETRACKERrM: SOFTWARE DESIGNED TO FACILITATE EYE MOVEMENT ANALYSIS

GAZETRACKERrM: SOFTWARE DESIGNED TO FACILITATE EYE MOVEMENT ANALYSIS GAZETRACKERrM: SOFTWARE DESIGNED TO FACILITATE EYE MOVEMENT ANALYSIS Chris kankford Dept. of Systems Engineering Olsson Hall, University of Virginia Charlottesville, VA 22903 804-296-3846 cpl2b@virginia.edu

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

Graphing an Interaction in SPSS version 15: LINE GRAPH

Graphing an Interaction in SPSS version 15: LINE GRAPH Graphing an Interaction in SPSS version 15: LINE GRAPH There is a good chance that sometime during your career you will be asked to graph an interaction. Briefly defined, an interaction is when the effect

More information

ART 170: Web Design 1

ART 170: Web Design 1 Banner Design Project Overview & Objectives Everyone will design a banner for a veterinary clinic. Objective Summary of the Project General objectives for the project in its entirety are: Design a banner

More information

Compression and Image Formats

Compression and Image Formats Compression Compression and Image Formats Reduce amount of data used to represent an image/video Bit rate and quality requirements Necessary to facilitate transmission and storage Required quality is application

More information

Omnitapps Cloud Request Version 1.0 Manual

Omnitapps Cloud Request Version 1.0 Manual Omnitapps Cloud Request Version 1.0 Manual rev: 1.1 1. Start here 3 2. Configure Omnirequest with a cloud account 3 2.1 Licenses 4 2.2 Systems 5 2.3 Configurations 6 2.3.1 General settings 7 2.3.2 Startpage

More information

The MaXX Desktop. Workstation Environment. Revised Road Map Version 0.7. for Graphics Professionals

The MaXX Desktop. Workstation Environment. Revised Road Map Version 0.7. for Graphics Professionals The MaXX Desktop Workstation Environment for Graphics Professionals Revised Road Map Version 0.7 Document History Author Date Version Comments Eric Masson 01/11/2007 0.5 First Draft Eric Masson 18/11/2007

More information

How-to Guide: MIT DLC Drupal Cloud Theme

How-to Guide: MIT DLC Drupal Cloud Theme How-to Guide: MIT DLC Drupal Cloud Theme This guide will show you how to take your initial Drupal Cloud site... and turn it into something more like this, using the MIT DLC Drupal Cloud theme. See this

More information

Course 2000020 Advanced Life Science 7th Grade Curriculum Extension

Course 2000020 Advanced Life Science 7th Grade Curriculum Extension Course 2000020 Advanced Life Science 7th Grade Curriculum Extension Laboratory investigations which include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and

More information

Improved Interaction Interpretation: Application of the EFFECTPLOT statement and other useful features in PROC LOGISTIC

Improved Interaction Interpretation: Application of the EFFECTPLOT statement and other useful features in PROC LOGISTIC Paper AA08-2013 Improved Interaction Interpretation: Application of the EFFECTPLOT statement and other useful features in PROC LOGISTIC Robert G. Downer, Grand Valley State University, Allendale, MI ABSTRACT

More information

Can SAS Enterprise Guide do all of that, with no programming required? Yes, it can.

Can SAS Enterprise Guide do all of that, with no programming required? Yes, it can. SAS Enterprise Guide for Educational Researchers: Data Import to Publication without Programming AnnMaria De Mars, University of Southern California, Los Angeles, CA ABSTRACT In this workshop, participants

More information

Microsoft Office 2010

Microsoft Office 2010 Word Tutorial 4 Desktop Publishing and Mail Merge Microsoft Office 2010 Objectives Identify desktop publishing features Format text in columns Insert drop caps Insert symbols and special characters Create

More information

Introducing SketchBook Designer s UI

Introducing SketchBook Designer s UI Autodesk Design Suite 2012 Autodesk SketchBook Designer 2012 Tip Guides Introducing SketchBook Designer s UI In this section you will learn the following: Components of the toolbar Navigation Properties

More information

Hierarchical Clustering Analysis

Hierarchical Clustering Analysis Hierarchical Clustering Analysis What is Hierarchical Clustering? Hierarchical clustering is used to group similar objects into clusters. In the beginning, each row and/or column is considered a cluster.

More information

Expert Color Choices for Presenting Data

Expert Color Choices for Presenting Data Expert Color Choices for Presenting Data Maureen Stone, StoneSoup Consulting The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward

More information

About the NeuroFuzzy Module of the FuzzyTECH5.5 Software

About the NeuroFuzzy Module of the FuzzyTECH5.5 Software About the NeuroFuzzy Module of the FuzzyTECH5.5 Software Ágnes B. Simon, Dániel Biró College of Nyíregyháza, Sóstói út 31, simona@nyf.hu, bibby@freemail.hu Abstract: Our online edition of the software

More information

EdgeLap: Identifying and discovering features from overlapping sets in networks

EdgeLap: Identifying and discovering features from overlapping sets in networks Project Title: EdgeLap: Identifying and discovering features from overlapping sets in networks Names and Email Addresses: Jessica Wong (jhmwong@cs.ubc.ca) Aria Hahn (hahnaria@gmail.com) Sarah Perez (karatezeus21@gmail.com)

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

Files Used in this Tutorial

Files Used in this Tutorial Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete

More information

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT A Study on M2M-based AR Multiple Objects Loading Technology using PPHT Sungmo Jung, Seoksoo Kim * Department of Multimedia Hannam University 133, Ojeong-dong, Daedeok-gu, Daejeon-city Korea sungmoj@gmail.com,

More information

222 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 particular pixels. High pass filter and low pass filter are gen

222 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 particular pixels. High pass filter and low pass filter are gen The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 221 A New Approach for Contrast Enhancement Using Sigmoid Function Naglaa Hassan 1&2 and Norio Akamatsu 1 1 Department

More information

PERFORMING REGRESSION ANALYSIS USING MICROSOFT EXCEL

PERFORMING REGRESSION ANALYSIS USING MICROSOFT EXCEL PERFORMING REGRESSION ANALYSIS USING MICROSOFT EXCEL John O. Mason, Ph.D., CPA Professor of Accountancy Culverhouse School of Accountancy The University of Alabama Abstract: This paper introduces you to

More information

Basic Data Analysis Using JMP in Windows Table of Contents:

Basic Data Analysis Using JMP in Windows Table of Contents: Basic Data Analysis Using JMP in Windows Table of Contents: I. Getting Started with JMP II. Entering Data in JMP III. Saving JMP Data file IV. Opening an Existing Data File V. Transforming and Manipulating

More information

Digital Image Processing

Digital Image Processing 1 Introduction in IMAQ Vision. Structure of Digital Image Processing Applications Using IMAQ Vision 1.1 Introduction A grey level image is a function expressing the spatial variation of the light intensity

More information

An Analysis of the NRC's Assessment of the Doctoral Programs in Public Affairs

An Analysis of the NRC's Assessment of the Doctoral Programs in Public Affairs An Analysis of the NRC's Assessment of the Doctoral Programs in Public Affairs Göktuğ Morçöl & Sehee Han Pennsylvania State University Prepared for the NASPAA Annual Conference November 2014, Albuquerque,

More information

Virtual Mouse Implementation using Color Pointer Detection

Virtual Mouse Implementation using Color Pointer Detection International Journal of Research Studies in Science, Engineering and Technology Volume 1, Issue 5, August 2014, PP 23-32 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Virtual Mouse Implementation using

More information

CREATING EXCEL PIVOT TABLES AND PIVOT CHARTS FOR LIBRARY QUESTIONNAIRE RESULTS

CREATING EXCEL PIVOT TABLES AND PIVOT CHARTS FOR LIBRARY QUESTIONNAIRE RESULTS CREATING EXCEL PIVOT TABLES AND PIVOT CHARTS FOR LIBRARY QUESTIONNAIRE RESULTS An Excel Pivot Table is an interactive table that summarizes large amounts of data. It allows the user to view and manipulate

More information

Optimizing graphic files

Optimizing graphic files Optimizing graphic files Introduction As soon as I started using web-authoring tools, I realized that I should be careful to use graphics on the web. Well-designed graphics usually make the web site more

More information

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley P1.1 AN INTEGRATED DATA MANAGEMENT, RETRIEVAL AND VISUALIZATION SYSTEM FOR EARTH SCIENCE DATASETS Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University Xu Liang ** University

More information

Data Visualization. BUS 230: Business and Economic Research and Communication

Data Visualization. BUS 230: Business and Economic Research and Communication Data Visualization BUS 230: Business and Economic Research and Communication Data Visualization 1/ 16 Purpose of graphs and charts is to show a picture that can enhance a message, or quickly communicate

More information

QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT)

QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT) Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT) Student Manual Table of Contents

More information