Multivariate Data Visualization
|
|
|
- Leo Ford
- 10 years ago
- Views:
Transcription
1 Multivariate Data Visualization VOTech/Universities of Leeds & Edinburgh Richard Holbrey
2 Outline Focus on data exploration Joined VOTech in June, so informal introduction Examine some definitions and assumptions Describe visual & data mining approaches in general Open discussion Some demos of simple vis tools Feedback
3 Definition: Visualization Born as a computing discipline in 1987 with publication of NSF Report Gurus tell us: use of computer-supported, interactive, visual representations of data to amplify cognition (Card, McKinlay, Shneiderman) Emphasises human brain as pattern recognition tool...but can only accept so much input eg. active region of the eye update rate (c. 25Hz eye, 1000Hz touch)
4 Building mental maps HCI FilmFinder tool (Shneiderman et al) Web maps
5 Data mining Cynical view Statistics with better marketing More mainstream Practical way of dealing with large data sets employing computing power to handle complexity (n^?)
6 In practice Classification rules/decision tree eg. if a and b then x Association/Dissociation rules eg. loyalty cards multiple, categorical data items Numeric data clustering regression neural nets ( black box ) Statistical modelling needed where uncertainty occurs
7 Straw poll I do pattern matching by eye likely many spurious correlations otherwise Some tools popular with astronomers IDL in the UK Mirage cf Weka cf Topcat (RM & MA) need to handle various formats manipulate/add columns to table data overlay sources and models graphically SRM doc need for models, function setting visualization as an endpoint
8 My assumptions Background bone density study and real-time VR surgical simulation Working in 3D or higher difficult 6dof, focus, context 2D much more obvious.....but can t lose 3D Sound? Haptics?
9 Some example techniques
10 Projections from nd 2D One of the oldest vis tricks Visual techniques Parallel coordinates, dendrograms, MDS, stacking Projections PCA, Kohonen maps, Sammon maps Problem: tend to lose relationship with original variates Class-preserving CViz approach
11 Parallel coordinates Xmdvtool originally limited to 20 columns of data practical limit Brushing and clustering to compensate for screen real-estate
12 Class-projection CViz aim is to tour through the data, through a series of 2D projections only a sample of the data is shown Authors tested 26 variables with some difficulty
13 Clustering-centred HCE: Hierarchical Clustering Explorer linked trees and display tools Copes well with ~10 variates
14 R ( Large statistically-oriented library with many contributed packages Powerful vectorized scripting can do almost anything Scales to large number of variates Command-line oriented: graphics, but noninteractive in the usual sense Can run under CEA!
15 Work at Leeds - Hypercell Extends hyperslice method (2D plots of all variates) Each attribute has a range of interest and a focus value These values can be dynamically changed
16 Re-thinking Joint study Leeds/Bob Mann SuperCOSMOS archive..made us rethink some ideas! Only looked at subset of 57 attributes and 1000 observations Analytical task: Calibration of SSA data Look for expected and unexpected correlations
17 A result.. Subspace (l, b, ebmv) with colouring by meanclass attribute An outlier is evident
18 ..and a plane in 3D Subspace defined by (classmag(b-r1), gcormag(b-r1), scormag(b-r1))
19 Also, gviz Developed at Leeds Grid-based collaborative visualization..but not tied to grid Can push geometry or data In principle, client can be any capable renderer (eg. Iris explorer, Matlab, VTK,...)
20 gviz Allowing steering or collaboration
21 Discuss... These and other tools? 3D, 4D, hyperslice? Black-box techniques? Intuitive nature of interface?
22 Some demos
23 Conclusions? Visualization demands high level of interaction (and good HCI) Interactivity on AG does tied to specific applications could we make use of pipe/svg model? 3D can be challenging, but can t afford to lose focus, context, manipulation Using R within AG demonstrated several problems passing files, security, interactivity Gap between moving from 100s of variates to 10s can we prioritize data? Preliminary survey of data mining tools:
Data Visualization - A Very Rough Guide
Data Visualization - A Very Rough Guide Ken Brodlie University of Leeds 1 What is This Thing Called Visualization? Visualization Use of computersupported, interactive, visual representations of data to
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS Koua, E.L. International Institute for Geo-Information Science and Earth Observation (ITC).
3D Interactive Information Visualization: Guidelines from experience and analysis of applications
3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, [email protected] 1. EXPERT
An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values
Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns John Aogon and Patrick J. Ogao Telecommunications operators in developing countries are faced with a problem of knowing
Big Data: Rethinking Text Visualization
Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important
Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine
Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining
Exploratory Data Analysis with MATLAB
Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton
Visualization methods for patent data
Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Interactive Data Mining and Visualization
Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives
DATA VISUALIZATION. Lecture 1 Introduction. Lin Lu http://vr.sdu.edu.cn/~lulin/ [email protected]
DATA VISUALIZATION Lecture 1 Introduction Lin Lu http://vr.sdu.edu.cn/~lulin/ [email protected] Visualization 可 视 化 Visualization now seen as key part of modern computing High performance computing generates
Clustering & Visualization
Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
The Value of Visualization 2
The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate
CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19
PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations
Exploratory Data Analysis for Ecological Modelling and Decision Support
Exploratory Data Analysis for Ecological Modelling and Decision Support Gennady Andrienko & Natalia Andrienko Fraunhofer Institute AIS Sankt Augustin Germany http://www.ais.fraunhofer.de/and 5th ECEM conference,
Outline. Fundamentals. Rendering (of 3D data) Data mappings. Evaluation Interaction
Outline Fundamentals What is vis? Some history Design principles The visualization process Data sources and data structures Basic visual mapping approaches Rendering (of 3D data) Scalar fields (isosurfaces
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Analysis Tools and Libraries for BigData
+ Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
Tutorial 2 Online and offline Ship Visualization tool Table of Contents
Tutorial 2 Online and offline Ship Visualization tool Table of Contents 1.Tutorial objective...2 1.1.Standard that will be used over this document...2 2. The online tool...2 2.1.View all records...3 2.2.Search
Data Mining Introduction
Data Mining Introduction Bob Stine Dept of Statistics, School University of Pennsylvania www-stat.wharton.upenn.edu/~stine What is data mining? An insult? Predictive modeling Large, wide data sets, often
Big Data Analytics. Tools and Techniques
Big Data Analytics Basic concepts of analyzing very large amounts of data Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research
Monitoring chemical processes for early fault detection using multivariate data analysis methods
Bring data to life Monitoring chemical processes for early fault detection using multivariate data analysis methods by Dr Frank Westad, Chief Scientific Officer, CAMO Software Makers of CAMO 02 Monitoring
DHL Data Mining Project. Customer Segmentation with Clustering
DHL Data Mining Project Customer Segmentation with Clustering Timothy TAN Chee Yong Aditya Hridaya MISRA Jeffery JI Jun Yao 3/30/2010 DHL Data Mining Project Table of Contents Introduction to DHL and the
Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis
Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis M. Kreuseler, T. Nocke, H. Schumann, Institute of Computer Graphics University of Rostock, D-18059 Rostock, Germany
TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:
Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap
TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM
TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam
Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar
Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar Prepared by Louise Francis, FCAS, MAAA Francis Analytics and Actuarial Data Mining, Inc. www.data-mines.com [email protected]
Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics
Predictive Analytics Powered by SAP HANA Cary Bourgeois Principal Solution Advisor Platform and Analytics Agenda Introduction to Predictive Analytics Key capabilities of SAP HANA for in-memory predictive
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
Data Mining mit der JMSL Numerical Library for Java Applications
Data Mining mit der JMSL Numerical Library for Java Applications Stefan Sineux 8. Java Forum Stuttgart 07.07.2005 Agenda Visual Numerics JMSL TM Numerical Library Neuronale Netze (Hintergrund) Demos Neuronale
COC131 Data Mining - Clustering
COC131 Data Mining - Clustering Martin D. Sykora [email protected] Tutorial 05, Friday 20th March 2009 1. Fire up Weka (Waikako Environment for Knowledge Analysis) software, launch the explorer window
Data Mining: STATISTICA
Data Mining: STATISTICA Outline Prepare the data Classification and regression 1 Prepare the Data Statistica can read from Excel,.txt and many other types of files Compared with WEKA, Statistica is much
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE. Luigi Grimaudo 178627 Database And Data Mining Research Group
RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE Luigi Grimaudo 178627 Database And Data Mining Research Group Summary RapidMiner project Strengths How to use RapidMiner Operator
Application of Data Visualization
Application of Data Visualization Lunteren Conference Landelijk Netwerk Mathematische Besliskunde (LNMB) January 15 2015, Lunteren dr.ir. Danny Holten Lead Visualization Scientist & Co-Founder [email protected]
Visualization of Software
Visualization of Software Jack van Wijk Plenary Meeting SPIder Den Bosch, March 30, 2010 Overview Software Vis Examples Hierarchies Networks Evolution Visual Analytics Application data Visualization images
Geovisual Analytics Exploring and analyzing large spatial and multivariate data. Prof Mikael Jern & Civ IngTobias Åström. http://ncva.itn.liu.
Geovisual Analytics Exploring and analyzing large spatial and multivariate data Prof Mikael Jern & Civ IngTobias Åström http://ncva.itn.liu.se/ Agenda Introduction to a Geovisual Analytics Demo Explore
Model Deployment. Dr. Saed Sayad. University of Toronto 2010 [email protected]. http://chem-eng.utoronto.ca/~datamining/
Model Deployment Dr. Saed Sayad University of Toronto 2010 [email protected] http://chem-eng.utoronto.ca/~datamining/ 1 Model Deployment Creation of the model is generally not the end of the project.
ICT Perspectives on Big Data: Well Sorted Materials
ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in
Computer Science Electives and Clusters
Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted
Data Visualization Principles: Interaction, Filtering, Aggregation
Data Visualization Principles: Interaction, Filtering, Aggregation CSC444 Acknowledgments for today s lecture: What if there s too much data? Sometimes you can t present all the data in a single plot (Your
Interactive Visual Data Analysis in the Times of Big Data
Interactive Visual Data Analysis in the Times of Big Data Cagatay Turkay * gicentre, City University London Who? Lecturer (Asst. Prof.) in Applied Data Science Started December 2013 @ the gicentre (gicentre.net)
COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com
SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING
Nagarjuna College Of
Nagarjuna College Of Information Technology (Bachelor in Information Management) TRIBHUVAN UNIVERSITY Project Report on World s successful data mining and data warehousing projects Submitted By: Submitted
An In-Depth Look at In-Memory Predictive Analytics for Developers
September 9 11, 2013 Anaheim, California An In-Depth Look at In-Memory Predictive Analytics for Developers Philip Mugglestone SAP Learning Points Understand the SAP HANA Predictive Analysis library (PAL)
Confidently Anticipate and Drive Better Business Outcomes
SAP Brief Analytics s from SAP SAP Predictive Analytics Objectives Confidently Anticipate and Drive Better Business Outcomes See the future more clearly with predictive analytics See the future more clearly
Dynamic Data in terms of Data Mining Streams
International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining
Visualization of large data sets using MDS combined with LVQ.
Visualization of large data sets using MDS combined with LVQ. Antoine Naud and Włodzisław Duch Department of Informatics, Nicholas Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland. www.phys.uni.torun.pl/kmk
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學. Self-Organizing Map: Visualization and Data Handling 自 組 織 神 經 網 絡 : 可 視 化 和 數 據 處 理
CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學 Self-Organizing Map: Visualization and Data Handling 自 組 織 神 經 網 絡 : 可 視 化 和 數 據 處 理 Submitted to Department of Electronic Engineering 電 子 工 程 學 系 in Partial Fulfillment
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes
Knowledge Discovery and Data Mining Lecture 19 - Bagging Tom Kelsey School of Computer Science University of St Andrews http://tom.host.cs.st-andrews.ac.uk [email protected] Tom Kelsey ID5059-19-B &
Data mining as a tool of revealing the hidden connection of the plant
Data mining as a tool of revealing the hidden connection of the plant Honeywell AIDA Advanced Interactive Data Analysis Introduction What is AIDA? AIDA: Advanced Interactive Data Analysis Developped in
Data Mining Clustering (2) Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering (2) Toon Calders Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining Outline Partitional Clustering Distance-based K-means, K-medoids,
from Larson Text By Susan Miertschin
Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.
SIMCA 14 MASTER YOUR DATA SIMCA THE STANDARD IN MULTIVARIATE DATA ANALYSIS
SIMCA 14 MASTER YOUR DATA SIMCA THE STANDARD IN MULTIVARIATE DATA ANALYSIS 02 Value From Data A NEW WORLD OF MASTERING DATA EXPLORE, ANALYZE AND INTERPRET Our world is increasingly dependent on data, and
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
High-dimensional labeled data analysis with Gabriel graphs
High-dimensional labeled data analysis with Gabriel graphs Michaël Aupetit CEA - DAM Département Analyse Surveillance Environnement BP 12-91680 - Bruyères-Le-Châtel, France Abstract. We propose the use
Customer and Business Analytic
Customer and Business Analytic Applied Data Mining for Business Decision Making Using R Daniel S. Putler Robert E. Krider CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint
Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees
Statistical Data Mining Practical Assignment 3 Discriminant Analysis and Decision Trees In this practical we discuss linear and quadratic discriminant analysis and tree-based classification techniques.
The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA
Paper 156-2010 The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Abstract JMP has a rich set of visual displays that can help you see the information
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Multi-Dimensional Data Visualization. Slides courtesy of Chris North
Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca [email protected] Spain Manuel Martín-Merino Universidad
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Today's Topics. COMP 388/441: Human-Computer Interaction. simple 2D plotting. 1D techniques. Ancient plotting techniques. Data Visualization:
COMP 388/441: Human-Computer Interaction Today's Topics Overview of visualization techniques 1D charts, 2D plots, 3D+ techniques, maps A few guidelines for scientific visualization methods, guidelines,
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is
VisIVO, a VO-Enabled tool for Scientific Visualization and Data Analysis: Overview and Demo
Claudio Gheller (CINECA), Marco Comparato (OACt), Ugo Becciani (OACt) VisIVO, a VO-Enabled tool for Scientific Visualization and Data Analysis: Overview and Demo VisIVO: Visualization Interface for the
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Scalable Developments for Big Data Analytics in Remote Sensing
Scalable Developments for Big Data Analytics in Remote Sensing Federated Systems and Data Division Research Group High Productivity Data Processing Dr.-Ing. Morris Riedel et al. Research Group Leader,
Chapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained
Chapter 3 - Multidimensional Information Visualization II
Chapter 3 - Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data Vorlesung Informationsvisualisierung Prof. Dr. Florian Alt, WS 2013/14 Konzept und Folien
Spatial Data Analysis
14 Spatial Data Analysis OVERVIEW This chapter is the first in a set of three dealing with geographic analysis and modeling methods. The chapter begins with a review of the relevant terms, and an outlines
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
DEA implementation and clustering analysis using the K-Means algorithm
Data Mining VI 321 DEA implementation and clustering analysis using the K-Means algorithm C. A. A. Lemos, M. P. E. Lins & N. F. F. Ebecken COPPE/Universidade Federal do Rio de Janeiro, Brazil Abstract
What is Data mining?
STAT : DATA MIIG Javier Cabrera Fall Business Question Answer Business Question What is Data mining? Find Data Data Processing Extract Information Data Analysis Internal Databases Data Warehouses Internet
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
ADVANCED VISUALIZATION
Cyberinfrastructure Technology Integration (CITI) Advanced Visualization Division ADVANCED VISUALIZATION Tech-Talk by Vetria L. Byrd Visualization Scientist November 05, 2013 THIS TECH TALK Will Provide
ADVANCED DATA VISUALIZATION
If I can't picture it, I can't understand it. Albert Einstein ADVANCED DATA VISUALIZATION REDUCE TO THE TIME TO INSIGHT AND DRIVE DATA DRIVEN DECISION MAKING Mark Wolff, Ph.D. Principal Industry Consultant
