Nuclear Power Plant Beznau. Reliable, environmentally compatible electricity production

Size: px
Start display at page:

Download "Nuclear Power Plant Beznau. Reliable, environmentally compatible electricity production"

Transcription

1 Nuclear Power Plant Beznau Reliable, environmentally compatible electricity production

2 Axpo electricity for Switzerland Nuclear Power Plant Beznau is part of the pool of power giants operated by Axpo, the Swiss energy utility with strong local roots and a presence in Europe. Axpo is 100 percent owned by the cantons of Northeastern Switzerland, and together with partners supplies electricity to about 3 million people in Switzerland. Axpo is active along the entire value chain, from electricity generation to transmission grids, trading, sales and services. Axpo/Kantonswerke CKW Delémont Lausanne Basel Solothurn Neuchâtel Berne Fribourg Liestal Schaffhausen Aarau Zurich Zug Schwyz Lucerne Stans Sarnen Altdorf Frauenfeld St. Gallen Herisau Appenzell Glarus Vaduz Chur Axpo has an environmentally compatible pool of power plants with largely CO 2 -free electricity production. Nuclear power plants, river-based hydroelectric plants and biomass power plants cover the base load of the electricity supply. High-pressure pumped storage power plants with their reservoirs are used to compensate fluctuations and peaks in demand. This pool of power plants is perfectly aligned with the requirements of safe and cost-efficient electricity production. Geneva Sion Bellinzona Electricity for about 3 million people in Switzerland. Axpo/Cantonal power plants Centralschweizerische Kraftwerke (CKW) View of Beznau Island with the nuclear power plant in the background. Nuclear Power Plant Beznau 2 3

3

4 Electricity production around the clock Nuclear Power Plant Beznau comprises two largely identical plants, Unit 1 and Unit 2, each with an output of 365 megawatts (MW). Both plants are designed for 8000 full-load hours or approximately 355 days a year. Together they generate approximately 6000 gigawatt-hours (GWh) a year. This corresponds to around twice the electricity consumption of the city of Zurich. First nuclear power plant with environmental product declaration Nuclear Power Plant Beznau is the first power plant in Switzerland for which an EPD, Environmental Product Declaration, has been drawn up in accordance with ISO The key feature of the environmental product declaration is a life cycle assessment. It enables the quantification and estimation of emissions into the environment and also of the utilization of resources along the entire process chain of electricity production. As further environmental information, a survey was made of biodiversity in the area around the nuclear power plant, radiation exposure of the staff and the electromagnetic fields. Together with the run-of-river hydroelectric plants, Nuclear Power Plant Beznau is thus one of Switzerland s most environmentally compatible power plants. Vital base load capacity Apart from a few weeks each year during which refueling, maintenance and annual inspections take place, the nuclear power plant produces electricity around the clock. Nuclear power and river-based hydroelectric plants cover the base load of the electricity supply. When the system goes offline each summer for maintenance, the electricity demand can be met by the hydroelectric plants. Over 500 people work at the nuclear power plants. The plants are monitored by a team of specialized operating staff working in a three-shift pattern. In the control room, the settings, values and changes relating to all components are indicated and displayed. The slightest deviations from the defined set points are announced immediately, both acoustically and visually, so that the correct precautions can be taken. Containment building of Nuclear Power Plant Beznau. Nuclear Power Plant Beznau 4 5

5

6 Electricity from kinetic energy Nuclear power plants are basically steam power plants. The heat necessary for evaporation of the water is not, however, the result of a combustion process but is obtained in a nuclear reactor. The steam is routed to a turbine that drives a generator. In the process, the rotor of the generator turns on the same shaft as the turbine, at 3000 revolutions per minute. At this high speed, its magnetic field generates an electrical voltage in the windings of the fixed stator. As a result, the kinetic energy is converted into electrical energy in exactly the same way as in a bicycle dynamo. The generator voltage is 15.5 kilovolts (kv). It is increased to 220 kv by a transformer and thus rendered transportable. The electricity is ultimately delivered to the high-voltage grid via a switching station. Transformers in operation. Nuclear Power Plant Beznau 6 7

7 Machine hall with turbines and generator.

8 View inside the nuclear power plant The two round containment buildings dominate the image of Nuclear Power Plant Beznau. The primary systems, in which steam is generated from nuclear power, are situated in these double-walled buildings with a height of 67.5 m and a diameter of 38 m. They are surrounded by a gas-tight welded steel containment (3). It is 30 mm thick. The steel containment is completely enclosed by a concrete containment (1), which is 90 cm thick, with an intermediate space of 1.5 m. The concrete containment has on the inside a gas-tight steel liner (2), which is 6 mm thick. The air from the cavity is sucked into the interior of the steel liner where a vacuum is created. This prevents air and radioactivity from accidentally escaping to the outside. Accommodated in the machine hall are the secondary systems and the turbine generator assemblies, which first convert the heat generated into mechanical energy and then into electrical energy. The heat for the Refuna district heating supply is also taken off here. 1 Concrete containment 2 Steel liner 3 Steel containment 4 Reactor pressure vessel 5 Control rod drive 6 Steam generator 7 Reactor main coolant pump 8 High-pressure turbine 9 Moisture separator reheate 10 Low-pressure turbines 11 Generator 12 Transformer 13 Condenser 14 Feedwater tank Nuclear Power Plant Beznau 8 9

9 1 2 3 Containment building 14 Machine hall 9 6 Fuel store 12 Control room Spent-fuel storage pool

10 The energy cycle 1 Control rod drive 2 Reactor pressure vessel 3 Pressurizer 4 Control rods 5 Fuel assemblies 6 Reactor main coolant pump 7 Steam generator 8 High-pressure feedwater heater 9 Feedwater tank 10 Feedwater pump 11 Low-pressure feed heater 12 Condensate pump 13 Condenser 14 High-pressure turbine 15 Low-pressure turbines 16 Generator 17 Transformer 18 Moisture separator reheater 19 Refuna steam cogeneration 20 Refuna heat exchanger View into the open reactor pressure vessel. Nuclear Power Plant Beznau 10 11

11 Kreislaufschema Containment building 7 Concrete containment Steel liner Steel containment shell Machine hall Refuna district heating bar, 270 C C 120 C 230 kv bar, 300 C bar, 247 C 15.5 kv bar, 30 C Cooling water extraction Cooling water return

12 Steam generation The two units at Nuclear Power Plant Beznau are equipped with pressurized water reactors, i.e. they have two separate water circulation systems. The pressurizer system ensures such a high pressure in the primary loop that the water in the core cannot boil, despite a temperature of 312 C. In the steam generators, the water in the primary loop releases the absorbed heat to the secondary loop. The steam produced by the low pressure drives turbines connected to steam generators. In the condenser, the steam is converted back into water ready for another cycle of steam generation. 1 Flywheel 2 Pump motor 3 Pump impeller 4 Control rod drive 5 Pressure vessel lid 6 Control rod 7 Fuel assembly 8 Core support plate 9 Main steam outlet 10 Steam dryer 11 Manhole cover 12 Moisture separator 13 Main steam to turbines 14 Feedwater to steam generator 15 Feedwater inlet 16 U-tube bundle 17 Tube plate 18 Water chamber Nuclear Power Plant Beznau 12 13

13 Steam generator Pressurizer Reactor pressure vessel Reactor main coolant pump

14 Cooling by water from the River Aare The steam must be cooled down in the condensers to convert it back into water after passing through the turbines. In full-load operation this means taking 40 m 3 of cooling water per second from the River Aare. As the drop between the headrace channel and the lower course of the Aare is 6 m, the cooling water does not need to be conveyed through the condensers using pumps, as is usual in other nuclear power plants. In Beznau it runs naturally from the headrace channel of the hydroelectric power plant to the Aare riverbed further down. This was one of the reasons why the site on Beznau Island was chosen at the time Temperaturerhöhung increase durch due to KKB NPP Beznau nach after Durchmischung mixing with the mit water dem of Aarewasser the River Aare Monatsmaximum Monthly Monatsminimum Monthly 0 Jan. Feb. March Apr. May June July Aug. Sept. Oct. Nov. Dec. Nuclear Power Plant Beznau 14 15

15 1 Unit Unit 2 3 Cooling water inlets in the headrace channel 7 4 Cooling water outlets in the natural riverbed of the Aare 3 5 Hydroelectric power plant 6 Weir power plant Substation (connection to electricity transmission network) Following pages: In the control room, electricity production is monitored continuously.

16

17

18 Safety first and foremost For Axpo, safety takes top priority. Nuclear Power Plant Beznau is protected against earthquakes, floods, and airplane crashes. Critical systems and sections of buildings function independently, have multiple redundancies built in and are spatially separated. In addition, Nuclear Power Plant Beznau invests in safety technology and replacement on an ongoing basis. Six barriers Radioactive products are created during nuclear fission. These highly radioactive materials may not escape into the environment. Several barriers ensure that this cannot happen: The fission products are virtually unable to leave the microstructure of the hard sintered fuel pellets. The gas-tight welded cladding tubes of the fuel assemblies prevent fission products from escaping into the cooling water. The fuel assemblies are enclosed in the reactor pressure vessel and water circulates around them. This remains in the enclosed primary loop. The entire primary loop is encased inside the steel containment made of 30 mm thick steel plates that are welded gas-tight. The vacuum in the space between the steel containment and the concrete containment prevents radioactive gases from escaping. A steel liner seals off the inside of the concrete containment. Shielding of the radioactive radiation The 3 m thick biological shield and the shielding concrete effectively prevent the escape of radioactive radiation. The concrete containment has a wall thickness of 90 cm. Operational safety Maximum attention is paid to operational safety not just during normal operation but also in the event of any extraordinary events, such as unforeseeable defects in plant components. For this reason, the most important plant components, such as controllers and alarm releasers, are present in duplicate or in multiple form. If one fails, there is always a second or a third available that can perform the same function. Nuclear Power Plant Beznau 18 19

19 Double-walled containment building 67.5 m high, 38 m outer diameter Steel containment (3 cm) Intermediate space with vacuum Steel liner (0.6 cm) Concrete containment (90 cm) Shielding concrete Biological shield Fuel pellets Cladding tube Reactor pressure vessel Fuel assemblies

20 Uranium as a fuel How long will uranium reserves last? Uranium is the raw material that fuels today s nuclear power plants. It is a metal found nearly everywhere in terrestrial volcanic rocks and in substantial quantities in the oceans. The globally known uranium reserves, which can be mined economically for a price of 130 US dollars per kilo, are sufficient for the next 100 years at current usage levels. Actual uranium reserves are substantially higher. A rise in market prices would make it worthwhile to develop new deposits or use new means of extraction. The available alternatives include extracting uranium from phosphates or seawater, two approaches that have already been proved. Under these conditions, reserves should last for many centuries or even millennia. Recycling of nuclear fuel by means of reprocessing and increasingly enhanced utilization of the fuel in reactor operation are reducing the consumption of fresh uranium and thus significantly extending the ranges referred to. Even a rise in price could be absorbed since uranium costs amount to only 5 to 10 percent of the cost of generating electricity in a nuclear power plant. Higher energy content One metric tonne of ore yields on average approximately 1 to 5 kilos of natural uranium. The uranium s high energy content one metric tonne of uranium can generate the same amount of energy as 10,000 metric tonnes of crude oil even makes it profitable to develop deposits with a relatively low uranium content. Natural uranium consists mainly of a mixture of two atoms that differ merely in their physical properties. Only uranium 235, which is present in natural uranium in a concentration of 0.7 percent, is fissile in light water reactors. The remainder consists of nonfissile uranium 238. To be able to operate nuclear reactors, the proportion of fissile uranium 235 must be increased from 0.7 percent to 3 to 5 percent, i.e. it must be enriched. Once extracted, the ore is crushed. The uranium is leached from the ore using acid and subsequently processed into uranium concentrate (U 3 O 8 ). This is also referred to as yellow cake because of its yellowish color. The next processing step is conversion of the uranium concentrate into gaseous uranium hexafluoride (UF 6 ). Nuclear Power Plant Beznau 20 21

21 From enrichment to fuel assembly Gas centrifuges are used primarily for the next refining step enrichment. After enrichment, the uranium hexafluoride is converted into powdered uranium dioxide (UO 2 ), pressed into pellets and sintered at 1700 C, i.e. transformed into ceramic material. To manufacture fuel rods, the pellets are loaded into zirconium tubes. The fuel rods are welded gas-tight, grouped into assemblies of different sizes depending on the type of power plant and, after a rigorous outgoing inspection by a plant representative, delivered to the power plant. There they can be used to produce energy without further processing. Two fuel pellets of uranium dioxide (UO 2 ) will supply electricity for a four-person household for one year..

22 Careful waste handling At Nuclear Power Plant Beznau waste is produced with varying levels of radioactivity. 99 percent of the radioactivity remains in the irradiated fuel assemblies which are stored in the water-cooled spent-fuel storage pool for at least six months. They are then removed to storage containers and taken to the interim storage facility of Nuclear Power Plant Beznau (Zwibez). Here low-level waste is stored before being carted away to a geological repository. Solid radioactive nuclear waste is transported to the central interim storage facility in Würenlingen (Zwilag) where it is incinerated or melted down. This process reduces the volume and improves final disposability through vitrification. Control panel of the NPP Beznau interim storage facility for low-level waste. View onto the low-level waste in the NPP Beznau interim storage facility. Nuclear Power Plant Beznau 22 23

23 Wastewater Ion-exchange resins Combustible material Fusible objects Spent-fuel assemblies From operation, laboratory, showers, laundry etc. From chemical water purification Preservatives, cleaning materials etc. Pumps, valves, pipes, insulating materials etc. Cleaning with chemical precipitation, centrifuging, microfiltration Incineration in the incineration and melting plant in Zwilag Melting down in the incineration and melting plant in Zwilag At least six months storage in the water-filled spent-fuel storage pool Solidified with synthetic polymer, placed into canisters Residue (sludge) solidified with concrete, placed into canisters Ash solidified with glass in molds, placed into canisters Melt solidified in molds, placed into canisters Transport to the Zwibez for interim storage Each year the operation of NPP Beznau produces approximately one hundred 200-liter canisters of solidified low-level residues amounting to a volume of around 20 m 3. They are carted away to geological repositories in NPP Beznau or put into interim storage in Zwilag. Highly radioactive residues are vitrified and placed in special flasks around 1.5 m 3 per year from NPP Beznau

24 District heating for the region Das Refunda Refuna Fernwärme-Leitungsnetz Fernwärme-Leistungsnetz Hot feed Cooled-down return Standby heating plants Booster pump stations The Regionale Fernwärme Unteres Aaretal (Refuna) supplies 11 municipalities in the region and around 15,000 residents with heat from the Nuclear Power Plant Beznau. The connected load in 2010/11 was approximately 81 MW. This means that 12,000 tonnes of fuel oil can be saved annually. In winter 1983/84 the Paul Scherrer Institute (PSI) was connected to the environmentally compatible heating system. The first private customers followed a year later. Today, the length of the main network is 31 km and that of the local network 103 km. Leuggern Nuclear Power Plant Beznau Main pumping station Paul Scherrer Institute (PSI) Kleindöttingen Aare Klingnau Döttingen Endingen Heat is extracted between the high- and low-pressure section of the turbine where steam with a temperature of 127 C is extracted and routed to a heat exchanger. There, the heat contained in the steam is transferred to the district heating network, whose water heats up in the process to 120 C. As each of the two power plants has such a heat extraction system, district heating is available at all times, including during the annual inspection. The power station s electrical output decreases by up to 7.5 MW during heat extraction. Riniken Rüfenach Villigen Stilli The main lines are 31 km long and the local lines are 103 km long. Aare Würenlingen Siggenthal station Limmat ABB Turgi Refuna pipe bridge over the Aare Canal. Nuclear Power Plant Beznau 24 25

25

26 Energie mit allen Sinnen! Axporama Visitor Center Visitor Center Axpo Axporama Schlossweg 16 CH-5315 Böttstein T F axporama@axpo.com Axporama opening times Monday to Friday 9 a.m. 5 p.m. Saturday, Sunday, holidays 11 a.m. 5 p.m. Unrestricted viewing for individuals and families. Free entry. Guided tours for booked groups are also possible outside the opening hours. Please contact the center in good time. Plant tour of Nuclear Power Plant Beznau Visitor groups may tour NPP Beznau with an experienced guide. Please contact the Axporama visitor center if you are interested. Your application should be made at least two weeks prior to the desired date. Axporama 8 I 9 Axporama_Imagebroschuere_ indd :08 Nuclear Power Plant Beznau 26 27

27 The Axporama visitor center is situated close to NPP Beznau. The exhibition offers an exciting insight into the world of energy and provides extensive information about the energy mix of Axpo.

28 Axpo Nuclear Power Plant Beznau Beznau CH-5312 Döttingen T F

Boiling Water Reactor Systems

Boiling Water Reactor Systems Boiling Water (BWR) s This chapter will discuss the purposes of some of the major systems and components associated with a boiling water reactor (BWR) in the generation of electrical power. USNRC Technical

More information

HOW IT WORKS ELECTRICITY GENERATION

HOW IT WORKS ELECTRICITY GENERATION 10 2 ELECTRICITY IN ONTARIO Ontario gets its electricity from a mix of energy sources. About half of our electricity comes from nuclear power. The remainder comes from a mix of hydroelectric, coal, natural

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Electric Power Systems An Overview Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Overview Power Generation Conventional power generation Power generation from renewables

More information

Current state of plant Functioning as a peak and emergency centre. Statistics Accumulated operating hours:

Current state of plant Functioning as a peak and emergency centre. Statistics Accumulated operating hours: Current state of plant Functioning as a peak and emergency centre Statistics Accumulated operating hours: D1-2-3-6-7: 43000 to 48000 hrs D4-5: 53000 to 57000 hrs D8: 33000 hrs Layout of the plant Index:

More information

How To Clean Up A Reactor Water Cleanup

How To Clean Up A Reactor Water Cleanup General Electric Systems Technology Manual Chapter 2.8 Reactor Water Cleanup System TABLE OF CONTENTS 2.8 REACTOR CLEANUP SYSTEM... 1 2.8.1 Introduction... 2 2.8.2 System Description... 2 2.8.3 Component

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

ELECTRODE BOILERS VAPOR POWER INTERNATIONAL

ELECTRODE BOILERS VAPOR POWER INTERNATIONAL ELECTRODE BOILERS WITH JET-FLO Technology VAPOR POWER INTERNATIONAL ELECTRODE boilers The Electrode Steam Boiler with Jet-Flo technology consists of an insulated pressure vessel and is fully enclosed in

More information

NUCLEAR POWER PLANT SYSTEMS and OPERATION

NUCLEAR POWER PLANT SYSTEMS and OPERATION Revision 4 July 2005 NUCLEAR POWER PLANT SYSTEMS and OPERATION Reference Text Professor and Dean School of Energy Systems and Nuclear Science University of Ontario Institute of Technology Oshawa, Ontario

More information

INTRODUCTION. Three Mile Island Unit 2

INTRODUCTION. Three Mile Island Unit 2 INTRODUCTION here was an accident at Three Mile Island Unit 2 on March 28,1979. It caused extensive damage to the plant's nuclear fuel core. Most of the plant's major systems were relatively undamaged.

More information

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems 1 Boiling Water Reactor (BWR) Public domain image by US NRC. 2 The BWR is

More information

Nuclear Design Practices and the Case of Loviisa 3

Nuclear Design Practices and the Case of Loviisa 3 Nuclear Design Practices and the Case of Loviisa 3 Harri Tuomisto Fortum Power, Finland Third Nuclear Power School, 20-22 October 2010, Gdańsk, Poland 22 October 2010 Harri Tuomisto 1 Objectives The objective

More information

of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C

of 11,000 households Steam temperature, boiler 400 C Steam pressure, boiler Incineration temperature 1,100 C refuse collection energy incineration waste REFA Waste-to-Energy Plant from waste to energy REFA Waste-to-Energy Plant - a Facility for waste incineration and energy generation REFA Waste-to-Energy Plant

More information

University of Iowa Power Plant

University of Iowa Power Plant University of Iowa Power Plant Contents Purpose... 2 History... 3 Cogeneration... 6 Boilers... 7 Environmental Impact... 10 Steam Turbine Generators... 12 Modernization... 14 Biomass Fuel Initiative...

More information

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY Introduction Canadians are among the highest energy consumers in the world. Why? (list 3 possible reasons) Northern climate/very cold temperatures

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

April 30, 2013 E M. Environmental Management. www.em.doe.gov. safety performance cleanup closure

April 30, 2013 E M. Environmental Management. www.em.doe.gov. safety performance cleanup closure April 30, 2013 1 Facility Stabilization and Deactivation C.1.3 - (Period 3) After facilities are turned over by USEC and accepted by DOE: Perform minimal stabilization and deactivation activities for facilities

More information

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS LEARNING OBJECTIVES By the end of this section, participants will be able to: Identify three types of packaging for radioactive

More information

Three Mile Island Unit 2 Overview and Management Issues

Three Mile Island Unit 2 Overview and Management Issues Three Mile Island Unit 2 Overview and Management Issues OECD-Nuclear Energy Agency 12 th Meeting of the WPDD November 2011 Paris France Andrew P. Szilagyi U.S. Department of Energy Office of 1 Subjects

More information

Power Plant Electrical Distribution Systems

Power Plant Electrical Distribution Systems PDH Course E184 Power Plant Electrical Distribution Systems Gary W Castleberry, PE 2008 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com

More information

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11.

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11. Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions Nici Bergroth, Fortum Oyj FORS-seminar 26.11.2009, Otaniemi Loviisa 3 CHP Basis for the Loviisa 3 CHP alternative Replacement

More information

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district PLANT TORINO NORD Iren Energia is the company in the Iren Group whose core businesses are the production and distribution of electricity, the production and distribution of thermal energy for district

More information

A clean energy solution from cradle to grave

A clean energy solution from cradle to grave Environmental Product Declaration A clean energy solution from cradle to grave Offshore wind power plant employing SWT-6.0-154 siemens.com / wind 2 Assessing the performance of a wind power plant The environmental

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

Pressurized Water Reactor Systems

Pressurized Water Reactor Systems Pressurized Water Reactor (PWR) Systems For a nuclear power plant to perform the function of generating electricity, many different systems must perform their functions. These functions may range from

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Physics and Economy of Energy Storage

Physics and Economy of Energy Storage International Conference Energy Autonomy through Storage of Renewable Energies by EUROSOLAR and WCRE October 30 and 31, 2006 Gelsenkirchen / Germany Physics and Economy of Energy Storage Ulf Bossel European

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Wir schaffen Wissen heute für morgen Paul Scherrer Institut Reinhard David Heat Recycling at PSI, a Project to Cover up to 75% of the Campus`s Heat Consumption PSI, 24. Oktober 2013 Introduction Target

More information

Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

More information

Outlook for RWE s nuclear operations. Prof. Dr. Gerd Jäger London, 16 January 2012

Outlook for RWE s nuclear operations. Prof. Dr. Gerd Jäger London, 16 January 2012 Outlook for RWE s nuclear operations Prof. Dr. Gerd Jäger London, 16 January 2012 Overview of German nuclear power plants Power plant Net capacity MW Commercial commissioning Shutdown German nuclear power

More information

Pressurized Water Reactor B&W Technology Crosstraining Course Manual. Chapter 9.0. Integrated Control System

Pressurized Water Reactor B&W Technology Crosstraining Course Manual. Chapter 9.0. Integrated Control System Pressurized Water Reactor B&W Technology Crosstraining Course Manual Chapter 9.0 Integrated Control System TABLE OF CONTENTS 9.0 INTEGRATED CONTROL SYSTEM... 1 9.1 Introduction... 1 9.2 General Description...

More information

T@W Good Practice Form

T@W Good Practice Form T@W Good Practice Form Setting Title: Public-private Partnership Leading to a New CHP Plant Utilising Fibre Sludge and Biomass Country: Location: Sweden Mariestad in West Sweden Region Start date: 1999

More information

Fire Protection Program Of Chashma Nuclear Power Generating Station Pakistan Atomic Energy Commission 5/28/2015 1

Fire Protection Program Of Chashma Nuclear Power Generating Station Pakistan Atomic Energy Commission 5/28/2015 1 Fire Protection Program Of Chashma Nuclear Power Generating Station Pakistan Atomic Energy Commission 5/28/2015 1 Nuclear Power in Pakistan Nuclear Power Plants Capacity (MWe) Year of Commissioning In

More information

Cooking at the Speed of light!

Cooking at the Speed of light! Cooking at the Infrared Cooking & Colouring Infrabaker is a modular infrared continuous cooking system developed by Infrabaker International. The machine is designed to cook and/or put colour on a wide

More information

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 1 (2014), pp. 1-8 Research India Publications http://www.ripublication.com/ijame.htm A Review on Power Generation

More information

PHOENIX ENERGY of NEVADA, LLC (PENV) (PENV)

PHOENIX ENERGY of NEVADA, LLC (PENV) (PENV) PHOENIX ENERGY of NEVADA, LLC (PENV) INDUCTION FIELD ENERGY POWERED INDUCED FEED WATER RE-HEAT ING STEAM WASTE HEAT ENERGY RECOVERY DRY COOLING REVERSE CONDENSER REGENERATIVE STEAM CYCLE ELECTRIC POWER

More information

Solar Hot Water Heaters

Solar Hot Water Heaters Solar Hot Water Heaters Three High Vacuum Water inlet Stainless Steel screw Gel seal and insulation Water outlet Dust proof seals Non Pressure Models Details ASWH-1b ( Color Painted 304 ) ASWH-1c ( stainless

More information

Decommissioning situation of Nuclear Power Plant in Japan

Decommissioning situation of Nuclear Power Plant in Japan Decommissioning situation of Nuclear Power Plant in Japan April, 2015 The Japan Atomic Power Co. The Kansai Electric Power Co., Inc. General Description 1 Operational years of commercial NPP in Japan 40

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question 2 The Fremont School District uses oil to heat school buildings. Go Green! is a new project the district will implement. The superintendent has

More information

Olkiluoto 3 Basic Facts

Olkiluoto 3 Basic Facts Olkiluoto 3 Basic Facts TVO a world-class nuclear power company Teollisuuden Voima Oy (TVO) is a Finnish limited liability company established in 1969. The operating idea of the Company is to produce electricity

More information

Treatment Centers for Radioactive Waste

Treatment Centers for Radioactive Waste Treatment Centers for Radioactive Waste TREATMENT CENTERS FOR RADIOACTIVE WASTE Introduction Nuclear facilities such as nuclear power plants, reprocessing plants, nuclear fuel cycle production units, laboratories

More information

Fukushima Daini Nuclear Power Station: Progress Status Based on the Recovery Plan (As of the End of April 2013)

Fukushima Daini Nuclear Power Station: Progress Status Based on the Recovery Plan (As of the End of April 2013) Attachment 1 Progress milestone dates are defined as follows: : The date when an equipment is removed power station: The date when an equipment is carried into the relevant building within the premises

More information

Top Technology for Industry, Agriculture, Business and Communities

Top Technology for Industry, Agriculture, Business and Communities Top Technology for Industry, Agriculture, Business and Communities CHP The Technology with a Potential for Saving Energy Combined Heat and Power (CHP) is a highly efficient technology for the conversion

More information

Public SUMMARY OF EU STRESS TEST FOR LOVIISA NUCLEAR POWER PLANT

Public SUMMARY OF EU STRESS TEST FOR LOVIISA NUCLEAR POWER PLANT 1 (8) SUMMARY OF EU STRESS TEST FOR LOVIISA NUCLEAR POWER PLANT 1 LOVIISA NUCLEAR POWER PLANT Loviisa town is located approximately 90 km eastwards from Helsinki at the coast of Gulf of Finland. Loviisa

More information

Radioactive waste managment in Estonia past, present and future

Radioactive waste managment in Estonia past, present and future Radioactive waste managment in Estonia past, present and future Ivo Tatrik ivo.tatrik@alara.ee Content 1. Status of ALARA 2. Decomission of Paldiski Former Navy Submarine Training Centre 3. Decomission

More information

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY Mariana Geta TOMESCU (cas. Cismarescu) *, Carol CSATLOS** * Faculty of Food and Tourism, Transilvania University of Braşov, Braşov, Romania ** Faculty

More information

MODULE 1. Thermodynamics cycles can be divided into two generation categories :

MODULE 1. Thermodynamics cycles can be divided into two generation categories : MODULE 1 1. STEAM POWER PLANT: Two important area of application of thermodynamics are power generation and refrigeration. Both power generation and refrigeration are usually accomplished by a system that

More information

FLASH TANK ECONOMIZER PRODUCT GUIDE

FLASH TANK ECONOMIZER PRODUCT GUIDE FLASH TANK ECONOMIZER PRODUCT GUIDE Overview A flash tank is used to recover blowdown energy in the form of flash steam and blowdown. This can only be used with a deaerator or some other pressurized device.

More information

Room for your success

Room for your success Room for your success Welcome to the InnovationTower. An attractive office building that combines modern architecture with green building standards is being built in at the intersection of German-speaking

More information

C. starting positive displacement pumps with the discharge valve closed.

C. starting positive displacement pumps with the discharge valve closed. KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

More information

BIOPOWER 5 CEX. 1 Wärtsilä 10 January 2012 Presentation name / Author

BIOPOWER 5 CEX. 1 Wärtsilä 10 January 2012 Presentation name / Author BIOPOWER 5 CEX 1 Wärtsilä 10 January 2012 Presentation name / Author GENERAL INFORMATION ELECTRICAL OUTPUT 4.3 5.5 MWe HEAT OUTPUT Up to 10 MWth (16 t/h steam 1,3 bara) FUEL TYPE Wood chips, bark, saw

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION ADESSO ENERGIA SRL AE BIO SOLAR THE BEGINNING OF A NEW ENERGY PRESENTATION Tel.0918887364 14.05.2014 fax 0917480735 Pagina 1 INTRODUCTION Adesso Energia is an innovative startup based in Palermo created

More information

Prospect of Hitachi Nuclear Business (Boiling Water Reactor)

Prospect of Hitachi Nuclear Business (Boiling Water Reactor) Prospect of Hitachi Nuclear Business (Boiling Water Reactor) 42 Prospect of Hitachi Nuclear Business (Boiling Water Reactor) Masahito Yoshimura Shoichiro Kinoshita Hiroshi Arima Nobuo Tada OVERVIEW: To

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 23 Rev: 01 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 DEFINITIONS

More information

Introduction to Waste Treatment Technologies. Contents. Household waste

Introduction to Waste Treatment Technologies. Contents. Household waste Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting

More information

Sea Water Heat Pump Project

Sea Water Heat Pump Project Sea Water Heat Pump Project Alaska SeaLife Center, Seward, AK Presenter: Andy Baker, PE, YourCleanEnergy LLC Also Present is ASLC Operations Manager: Darryl Schaefermeyer ACEP Rural Energy Conference Forum

More information

Factory owners must ensure the boiler is:

Factory owners must ensure the boiler is: Factory owners must ensure the boiler is: * Registered with the Boilers and Pressure Vessels Division, Labour Department * Examined by an appointed examiner and has a valid certificate of fitness * Supervised

More information

Types of Engineering Jobs

Types of Engineering Jobs What Do Engineers Do? Engineers apply the theories and principles of science and mathematics to the economical solution of practical technical problems. I.e. To solve problems Often their work is the link

More information

Bioenergy. A sustainable energy source.

Bioenergy. A sustainable energy source. Bioenergy. A sustainable energy source. The natural energy cycle Skellefteå Kraft strongly believes that bioenergy will play an important role in future Swedish energy production. Its raw material consists

More information

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008

University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 University of Melbourne Symposium on ICT Sustainability Dan Pointon 25 November 2008 Contents Welcome and Introduction Chapter 1: Data centre energy recap Chapter 2: Co-generation Chapter 3: CTC case study

More information

High-performance steam boiler and hot water boiler plants for industry

High-performance steam boiler and hot water boiler plants for industry High-performance steam boiler and hot water boiler plants for industry Information 2/3 HKB leading manufacturer of industrial boiler plants in Europe and Asia Steam boilers with outputs up to 120 t/h and

More information

May 23, 2011 Tokyo Electric Power Company

May 23, 2011 Tokyo Electric Power Company Analysis and evaluation of the operation record and accident record of Fukushima Daiichi Nuclear Power Station at the time of Tohoku-Chihou-Taiheiyou-Oki-Earthquake (summary) May 23, 2011 Tokyo Electric

More information

An innovative approach combining industrial process data analytics and operator participation to implement lean energy programs: A Case Study

An innovative approach combining industrial process data analytics and operator participation to implement lean energy programs: A Case Study An innovative approach combining industrial process data analytics and operator participation to implement lean energy programs: A Case Study Philippe Mack, Pepite SA Joanna Huddleston, Pepite SA Bernard

More information

Natural Gas Information Contents

Natural Gas Information Contents Natural Gas Information Contents What is natural gas Natural Gas Components Physical Properties of Natural Gas Different Forms of Natural Gas The Use of Natural Gas Co-generation System Natural Gas and

More information

Babcock & Wilcox Pressurized Water Reactors

Babcock & Wilcox Pressurized Water Reactors Babcock & Wilcox Pressurized Water Reactors Course Description Gary W Castleberry, PE This course provides an overview of the reactor and major reactor support systems found in a Babcock & Wilcox (B&W)

More information

PLANT LOCATION AND LAYOUT

PLANT LOCATION AND LAYOUT PLANT LOCATION AND LAYOUT The Location Of The Plant Can Have A Crucial Effect On The Profitability Of A Project, And The Scope For Future Expansion. Many Factors Must Be Considered When Selecting A Suitable

More information

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site Amherst County Public Schools AP Environmental Science Curriculum Pacing Guide College Board AP Environmental Science Site REV: 8/12 1 st 9 weeks AP Objectives Energy Resources and Consumption A. Energy

More information

How To Use A Water Source Heat Pump

How To Use A Water Source Heat Pump Geothermal Energy Using Water-Source Heat Pumps By VIRSTAR Corporation Geothermal Expertise Since 1978 All information contained herein is the exclusive property of VIRSTAR Corporation, all rights reserved.

More information

Facility Support Services

Facility Support Services Facility Support Services The Precision Group has a breadth of experience delivering innovative, first class facility support service solutions to clients across the public and private sectors. Our expert

More information

Mechanical shaft seal types and sealing systems

Mechanical shaft seal types and sealing systems Chapter 2 Mechanical shaft seal types and sealing systems 1. Mechanical shaft seal types 2. Sealing systems 3. Selecting a mechanical shaft seal Mechanical shaft seal types and sealing systems 1. Mechanical

More information

Energy Efficiency in Steam Systems

Energy Efficiency in Steam Systems Energy Efficiency in Steam Systems Fundamentals of Energy Efficiency: An Introductory Workshop April 2008 John S. Raschko, Ph.D. Mass. Office of Technical Assistance www.mass.gov/envir/ota (617) 626-1093

More information

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace Content 1. Technical overview cogeneration plant and heating network 2. Investment of the facility 3. Experiences

More information

MEDICAL WASTE DISPOSAL POLICY. EFFECTIVE DATE: January 31, 1991 REVISED DATE: April 1, 2008 I. AUTHORITY TO ESTABLISH DISPOSAL POLICY:

MEDICAL WASTE DISPOSAL POLICY. EFFECTIVE DATE: January 31, 1991 REVISED DATE: April 1, 2008 I. AUTHORITY TO ESTABLISH DISPOSAL POLICY: MEDICAL WASTE DISPOSAL POLICY EFFECTIVE DATE: January 31, 1991 REVISED DATE: April 1, 2008 I. AUTHORITY TO ESTABLISH DISPOSAL POLICY: The authority by which the Municipality of Anchorage, Solid Waste Services

More information

Mission 4: Fossil Fuel Power Stations

Mission 4: Fossil Fuel Power Stations Mission 4: Fossil Fuel Power Stations What are Fossil Fuels? It says here that electricity is made in a big factory called a power station. It is made by burning fossil fuels. So what is a fossil fuel?

More information

Summary technical description of the SUNSTORE 4 plant in Marstal

Summary technical description of the SUNSTORE 4 plant in Marstal Summary technical description of the SUNSTORE 4 plant in Marstal The purpose of the SUNSTORE concept implemented in Marstal is to show that district heating can be produced with 100 % RES of which solar

More information

15 April 2015 Nuclear Regulation Authority, Japan. 1. Overview

15 April 2015 Nuclear Regulation Authority, Japan. 1. Overview Evaluation of the report of the Tokyo Electric Power Company regarding the leakage from the double strainer differential manometer for the water transfer pipes of the desalination system at Fukushima Daiichi

More information

How To Understand And Understand Tvo

How To Understand And Understand Tvo Nuclear Power Plant Unit Olkiluoto Contents TVO a pioneer in its own field Olkiluoto One unit, many buildings n PRIMARY CIRCUIT Reactor pressure vessel and internal structures Reactor core and fuel Reactor

More information

DIETRISOL SOLAR WATER HEATING SYSTEMS ENERGY SAVINGS AND ECOLOGICAL BENEFITS SUSTAINED COMFORT SIMPLICITY AND RELIABILITY INNOVATIVE, MODULAR SYSTEMS

DIETRISOL SOLAR WATER HEATING SYSTEMS ENERGY SAVINGS AND ECOLOGICAL BENEFITS SUSTAINED COMFORT SIMPLICITY AND RELIABILITY INNOVATIVE, MODULAR SYSTEMS DIETRISOL SOLAR WATER HEATING SYSTEMS ENERGY SAVINGS AND ECOLOGICAL BENEFITS SUSTAINED COMFORT SIMPLICITY AND RELIABILITY INNOVATIVE, MODULAR SYSTEMS DIETRISOL SOLAR WATER HEATING SYSTEMS NON-POLLUTING,

More information

Life cycle energy analysis of water use system in Ara river watershed

Life cycle energy analysis of water use system in Ara river watershed Life cycle energy analysis of water use system in Ara river watershed Hiroaki FURUMAI Professor, Research Center for Environment Technology University of Tokyo IWA Workshop on and & Loss Tokyo, 8 April

More information

Economics of Thorium and Uranium Reactors

Economics of Thorium and Uranium Reactors Sherman Lam HSA 10-05 The Economics of Oil and Energy April 30, 2013 Economics of Thorium and Uranium Reactors In February 2012, the Nuclear Regulatory Commission (NRC) approved a license for two new nuclear

More information

Hydraulic control unit series 0086-372-01

Hydraulic control unit series 0086-372-01 Technical Product Information No. 1290 EN Hydraulic control unit series 0086-372-01 Contents Page About this Technical Product Information (TPI) 2 The ORTLINGHAUS numbering system 2 About the product 3

More information

DOCUMENTATION FOR QUALIFICATION SYSTEM

DOCUMENTATION FOR QUALIFICATION SYSTEM DOCUMENTATION FOR QUALIFICATION SYSTEM MATERIAL GROUP: PRESSURE EQUIPMENT MAINTENANCE, REPAIR INTERNAL CODE OF MATERIAL GROUP: MM10300 New code according the registration on myhome: MMGV03 CPV CODE: 45259000-7,

More information

Welcome to our open house. Thanks for coming. Please sign in and help yourself to refreshments. Energizing your community. www.fortisbc.

Welcome to our open house. Thanks for coming. Please sign in and help yourself to refreshments. Energizing your community. www.fortisbc. Welcome to our open house Thanks for coming Please sign in and help yourself to refreshments Integrated System Plan (ISP) Looks ahead 20 years to identify the energy and infrastructure needs of our customers

More information

Office for Nuclear Regulation

Office for Nuclear Regulation ONR GUIDE CONTAINMENT: CHEMICAL PLANTS Document Type: Nuclear Safety Technical Assessment Guide Unique Document ID and Revision No: NS-TAST-GD-021 Revision 2 Date Issued: March 2013 Review Date: March

More information

Heat Trace Fundamentals. Monte Vander Velde, P.E. President, Interstates Instrumentation

Heat Trace Fundamentals. Monte Vander Velde, P.E. President, Interstates Instrumentation Heat Trace Fundamentals Monte Vander Velde, P.E. President, Interstates Instrumentation Contents Introduction... 3 Purpose of Heat Trace... 3 Types of Heat Trace... 4 Steam Trace vs. Electric Trace...

More information

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Parallel session Producing more with less: Efficiency in Power Generation EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Johann Gimmelsberger Linz Strom GmbH EFFICIENT ENERGY

More information

How To Evaluate Cogeneration

How To Evaluate Cogeneration Power topic #7018 Technical information from Cummins Power Generation Inc. Evaluating cogeneration for your facility: A look at the potential energy-efficiency, economic and environmental benefits > White

More information

Integrated Solar Radiant Systems

Integrated Solar Radiant Systems Integrated Solar Radiant Systems William Shady PE President Topics Radiant heating Indoor air quality Radiant Cooling Project Photos Questions and answers The goal for our clients Healthy Comfort Why Radiant

More information

BOILER FEED AND CONDENSATE RECOVERY SYSTEMS Extend the life and efficiency of your boiler system

BOILER FEED AND CONDENSATE RECOVERY SYSTEMS Extend the life and efficiency of your boiler system BOILER FEED AND CONDENSATE RECOVERY SYSTEMS Extend the life and efficiency of your boiler system INTEGRATE BOILER FEED AND RECOVERY TO GET THE MOST FROM YOUR BOILER SYSTEM. Increase the safety, reliability,

More information

INTEC Engineering GmbH Heating Solutions for the Marine Industry

INTEC Engineering GmbH Heating Solutions for the Marine Industry INTEC Engineering GmbH Heating Solutions for the Marine Industry Thermal Oil Heaters Heating Solutions for the Marine Industry Compared to conventional plants using hot water or steam, thermal oil as a

More information

Session 2: Hot Water Supply

Session 2: Hot Water Supply MEBS6000 Utility Services http://www.hku.hk/mech/msc-courses/mebs6000/index.html Session 2: Hot Water Supply Dr. Benjamin P.L. Ho Department of Mechanical Engineering The University of Hong Kong E-mail:

More information

Environmental Product Declaration

Environmental Product Declaration Environmental Product Declaration PVDF-System According to EN 15804 Circling and distribution of purified water in a pharmaceutical plant Georg Fischer Piping Systems Ltd. Ebnatstrasse 111 CH-8201 Schaffhausen

More information

Waste to Energy in Düsseldorf. for a clean city.

Waste to Energy in Düsseldorf. for a clean city. Waste to Energy in Düsseldorf for a clean city. Waste Management in Düsseldorf. Düsseldorf s public utilities company known as Stadtwerke Düsseldorf operates a waste to energy plant (WtE) that has been

More information

Peaks of Electric and Wind Power - Where to go? Power-to-Liquid (Silicon Fire-Methanol)

Peaks of Electric and Wind Power - Where to go? Power-to-Liquid (Silicon Fire-Methanol) Peaks of Electric and Wind Power - Where to go? Power-to-Liquid (Silicon Fire-Methanol) Univ.-Prof. i.r. Dr.-Ing. Roland Meyer-Pittroff Contents: 1 Solar and Wind in the Electric Power Supply of Germany

More information

What are the Benefits?

What are the Benefits? Micro hydro power system introduction Not everyone is lucky enough to have a source of running water near their homes. But for those with river-side homes or live-on boats, small water generators (micro-hydro

More information

FIELD TRIP TO A POWER PLANT - A Reading Guide

FIELD TRIP TO A POWER PLANT - A Reading Guide TITLE: TOPIC: FIELD TRIP TO A POWER PLANT - A Reading Guide Energy and the sources of energy used in power plants GRADE LEVEL: Secondary CONTENT STANDARD: Earth and Space Science CONTENT OBJECTIVE: For

More information