Boiling Water Reactor Systems
|
|
- Antonia Tate
- 4 years ago
- Views:
Transcription
1 Boiling Water (BWR) s This chapter will discuss the purposes of some of the major systems and components associated with a boiling water reactor (BWR) in the generation of electrical power. USNRC Technical Training Center
2 Dryer & Moisture Separator Containment/Drywell Vessel Line Turbine Building Turbine Throttle Valve Electrical Generator Core Condenser Jet Containment Suppression Chamber Recirculation To/From River Boiling Water Plant Inside the boiling water reactor (BWR) vessel, a steam water mixture is produced when very pure water (reactor coolant) moves upward through the core absorbing heat. The major difference in the operation of a BWR from other nuclear systems is the steam void formation in the core. The steam-water mixture leaves the top of the core and enters the two stages of moisture separation, where water droplets are removed before the steam is allowed to enter the steam line. The steam line, in turn, directs the steam to the main turbine causing it to turn the turbine and the attached electrical generator. The unused steam is exhausted to the condenser where it is condensed into water. The resulting water is pumped out of the condenser with a series of pumps and back to the reactor vessel. The recirculation pumps and jet pumps allow the operator to vary coolant flow through the core and change reactor power. USNRC Technical Training Center
3 BWR Vessel The reactor vessel assembly, shown on page 3-4, consists of the reactor vessel and its internal components, including the core support structures, core shroud, moisture removal equipment, and jet pump assemblies. The purposes of the reactor vessel assembly are to: House the reactor core, Serve as part of the reactor coolant pressure boundary, Support and align the fuel and control rods, Provide a flow path for circulation of coolant past the fuel, Remove moisture from the steam exiting the core, and Provide a refloodable volume for a loss of coolant accident. The reactor vessel is vertically mounted within the drywell and consists of a cylindrical shell with an integral rounded bottom head. The top head is also rounded in shape but is removable via the stud and nut arrangement to facilitate refueling operations. The vessel assembly is supported by the vessel support skirt (20) which is mounted to the reactor vessel support pedestal. The internal components of the reactor vessel are supported from the bottom head and/or vessel wall. The reactor core is made up of fuel assemblies (15), control rods (16), and neutron monitoring instruments (24). The structure surrounding the active core consists of a core shroud (14), core plate (17), and top guide (12). The components making up the remainder of the reactor vessel internals are the jet pump assemblies (13), steam separators (6), steam dryers (3), feedwater spargers (8), and core spray spargers (11). The jet pump assemblies are located in the region between the core shroud and the vessel wall, submerged in water. The jet pump assemblies are arranged in two semicircular groups of ten, with each group being supplied by a separate recirculation pump. The emergency core cooling systems, penetrations number 5 and 9, and the reactor vessel designs are compatible to ensure that the core can be adequately cooled following a loss of reactor coolant. The worst case loss of coolant accident, with respect to core cooling, is a recirculation line break (penetrations number 18 and 19). In this event, reactor water level decreases rapidly, uncovering the core. However, several emergency core cooling systems automatically provide makeup water to the nuclear core within the shroud, providing core cooling. The control cell assembly (page 3-5) is representative for boiling water reactor 1 through 6. Each control cell consists of a control rod (7) and four fuel assemblies that surround it. Unlike the pressurized water reactor fuel assemblies, the boiling water reactor fuel bundle is enclosed in a fuel channel (6) to direct coolant up through the fuel assembly and act as a bearing surface for the control rod. In addition, the fuel channel protects the fuel during refueling operations. The power of the core is regulated by movement of bottom entry control rods. USNRC Technical Training Center
4 BWR 6 Vessel USNRC Technical Training Center
5 BWR 6 Fuel USNRC Technical Training Center
6 Containment/Drywell Safety/Relief Valve Dryer Separator Core Main Line Recirculation Loop (Typical of 2) Main Feedwater Line To Main Turbine Filter/ Demineralizer Recirculation Water Cleanup Non-Regenerative Heat Exchanger Containment Suppression Chamber Regenerative Heat Exchanger Building Cooling Water Water Cleanup The purpose of the reactor water cleanup system (RWCU) is to maintain a high reactor water quality by removing fission products, corrosion products, and other soluble and insoluble impurities. The reactor water cleanup pump takes water from the recirculation system and the vessel bottom head and pumps the water through heat exchangers to cool the flow. The water is then sent through filter/demineralizers for cleanup. After cleanup, the water is returned to the reactor vessel via the feedwater piping. USNRC Technical Training Center 3-6 Rev 0200
7 Containment/Drywell Vessel Line Electrical Generator Dryer Turbine Bypass Line Core Jet To/From River Recirculation Containment Suppression Chamber Residual Heat Removal Residual Heat Removal Heat Exchanger Service Water Decay Heat Removal Heat is removed during normal power operation by generating steam in the reactor vessel and then using that steam to generate electrical energy. When the reactor is shutdown, the core will still continue to generate decay heat. The heat is removed by bypassing the turbine and dumping the steam directly to the condenser. The shutdown cooling mode of the residual heat removal (RHR) system is used to complete the cooldown process when pressure decreases to approximately 50 psig. Water is pumped from the reactor recirculation loop through a heat exchanger and back to the reactor via the recirculation loop. The recirculation loop is used to limit the number of penetrations into the reactor vessel. USNRC Technical Training Center 3-7 Rev 0200
8 Containment/Drywell Safety/Relief Valve Dryer Separator Core Main Line Recirculation Loop (Typical of 2) Main Feedwater Line To Main Turbine Condensate Storage Tank Recirculation RCIC RCIC Turbine Containment Suppression Chamber Core Isolation Cooling The reactor core isolation cooling (RCIC) system provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system consists of a turbine-driven pump, piping, and valves necessary to deliver water to the reactor vessel at operating conditions. The turbine is driven by steam supplied by the main steam lines. The turbine exhaust is routed to the suppression pool. The turbine-driven pump supplies makeup water from the condensate storage tank, with an alternate supply from the suppression pool, to the reactor vessel via the feedwater piping. The system flow rate is approximately equal to the steaming rate 15 minutes after shutdown with design maximum decay heat. Initiation of the system is accomplished automatically on low water level in the reactor vessel or manually by the operator. USNRC Technical Training Center 3-8 Rev 0200
9 Containment/Drywell Dryer Separator Core Main Line Recirculation Loop (Typical of 2) Main Feedwater Line To Main Turbine Recirculation Explosive Valve Poison Tank (Boron) Containment Suppression Chamber Standby Liquid Control The standby liquid control system injects a neutron poison (boron) into the reactor vessel to shutdown the chain reaction, independent of the control rods, and maintains the reactor shutdown as the plant is cooled to maintenance temperatures. The standby liquid control system consists of a heated storage tank, two positive displacement pumps, two explosive valves, and the piping necessary to inject the neutron absorbing solution into the reactor vessel. The standby liquid control system is manually initiated and provides the operator with a relatively slow method of achieving reactor shutdown conditions. USNRC Technical Training Center 3-9 Rev 0200
10 Emergency Core Cooling s The emergency core cooling systems (ECCS) provide core cooling under loss of coolant accident conditions to limit fuel cladding damage. The emergency core cooling systems consist of two high pressure and two low pressure systems. The high pressure systems are the high pressure coolant injection (HPCI) system and the automatic depressurization system (ADS). The low pressure systems are the low pressure coolant injection (LPCI) mode of the residual heat removal system and the core spray (CS) system. The manner in which the emergency core cooling systems operate to protect the core is a function of the rate at which reactor coolant inventory is lost from the break in the nuclear system process barrier. The high pressure coolant injection system is designed to operate while the nuclear system is at high pressure. The core spray system and low pressure coolant injection mode of the residual heat removal system are designed for operation at low pressures. If the break in the nuclear system process barrier is of such a size that the loss of coolant exceeds the capability of the high pressure coolant injection system, reactor pressure decreases at a rate fast enough for the low pressure emergency core cooling systems to commence coolant injection into the reactor vessel in time to cool the core. Automatic depressurization is provided to automatically reduce reactor pressure if a break has occurred and the high pressure coolant injection system is inoperable. Rapid depressurization of the reactor is desirable to permit flow from the low pressure emergency core cooling systems so that the temperature rise in the core is limited to less than regulatory requirements. If, for a given break size, the high pressure coolant injection system has the capacity to make up for all of the coolant loss, flow from the low pressure emergency core cooling systems is not required for core cooling protection until reactor pressure has decreased below approximately 100 psig. The performance of the emergency core cooling systems as an integrated package can be evaluated by determining what is left after the postulated break and a single failure of one of the emergency core cooing systems. The remaining emergency core cooling systems and components must meet the 10 CFR requirements over the entire spectrum of break locations and sizes. The integrated performance for small, intermediate, and large sized breaks is shown on pages 3-11 and USNRC Technical Training Center 3-10 Rev 0200
11 Small or Intermediate Break LOCA Single Failure HPCI ADS Remaining ECCS Any RHR 2 CS 1 CS ADS 2 CS Core Cooling Achieved Any RHR 2 RHR 1 CS 2 CS HPCI Small Break Only ECCS Integrated Performance Remaining ECCS 1 CS 1 RHR 2(1) RHR 2(1) CS Large Break LOCA Single Failure 1(2) RHR 1(2) CS USNRC Technical Training Center 3-11 Rev 0200
12 Diesel Generator A Diesel Generator A Shutdown Board Shutdown Board A C RHR 1 Recirculation B T HPCI Feedwater Line C A Core Spray 1 Vessel B D Core Spray 2 Line ADS Recirculation A B To Suppression Pool D RHR 2 Emergency Core Cooling Network USNRC Technical Training Center 3-12 Rev 0200
13 Containment/Drywell Safety/Relief Valve Dryer Separator Core Main Line Recirculation Loop (Typical of 2) Main Feedwater Line To Main Turbine Condensate Storage Tank Recirculation HPCI HPCI Turbine Containment Suppression Chamber High Pressure Emergency Core Cooling s The high pressure coolant injection (HPCI) system is an independent emergency core cooling system requiring no auxiliary ac power, plant air systems, or external cooling water systems to perform its purpose of providing make up water to the reactor vessel for core cooling under small and intermediate size loss of coolant accidents. The high pressure coolant injection system can supply make up water to the reactor vessel from above rated reactor pressure to a reactor pressure below that at which the low pressure emergency core cooling systems can inject. The automatic depressurization system (ADS) consists of redundant logics capable of opening selected safety relief valves, when required, to provide reactor depressurization for events involving small or intermediate size loss of coolant accidents if the high pressure coolant injection system is not available or cannot recover reactor vessel water level. USNRC Technical Training Center 3-13 Rev 0200
14 Containment/Drywell Containment Spray Dryer Main Line Main Feedwater Line Core Recirculation Loop (Typical of 2) Jet LPCI RHR Heat Exchanger Recirculation Service Water Containment Spray RHR s (LPCI Mode) Containment Suppression Chamber Core Spray Low Pressure Emergency Core Cooling s The low pressure emergency core cooling systems consist of two separate and independent systems, the core spray system and the low pressure coolant injection (LPCI) mode of the residual heat removal system. The core spray system consists of two separate and independent pumping loops, each capable of pumping water from the suppression pool into the reactor vessel. Core cooling is accomplished by spraying water on top of the fuel assemblies. The low pressure coolant injection mode of the residual heat removal system provides makeup water to the reactor vessel for core cooling under loss of coolant accident conditions. The residual heat removal system is a multipurpose system with several operational modes, each utilizing the same major pieces of equipment. The low pressure coolant injection mode is the dominant mode and normal valve lineup configuration of the residual heat removal system. The low pressure coolant injection mode operates automatically to restore and, if necessary, maintain the reactor vessel coolant inventory to preclude fuel cladding temperatures in excess of 2200EF. During low pressure coolant injection operation, the residual heat removal pumps take water from the suppression pool and discharge to the reactor vessel. USNRC Technical Training Center 3-14 Rev 0200
15 Boiling Water Containments The primary containment package provided for a particular product line is dependent upon the vintage of the plant and the cost-benefit analysis performed prior to the plant being built. During the evolution of the boiling water reactors, three major types of containments were built. The major containment designs are the Mark I (page 3-16), Mark II (page 3-17), and the Mark III (page 3-18). Unlike the Mark III, that consists of a primary containment and a drywell, the Mark I and Mark II designs consist of a drywell and a wetwell (suppression pool). All three containment designs use the principle of pressure suppression for loss of coolant accidents. The primary containment is designed to condense steam and to contain fission products released from a loss of coolant accident so that offsite radiation doses specified in 10 CFR 100 are not exceeded and to provide a heat sink and water source for certain safetyrelated equipment. The Mark I containment design consists of several major components, many of which can be seen on page These major components include: The drywell, which surrounds the reactor vessel and recirculation loops, A suppression chamber, which stores a large body of water (suppression pool), An interconnecting vent network between the drywell and the suppression chamber, and The secondary containment, which surrounds the primary containment (drywell and suppression pool) and houses the spent fuel pool and emergency core cooling systems. The Mark II primary containment consists of a steel dome head and either a post-tensioned concrete wall or reinforced concrete wall standing on a base mat of reinforced concrete. The inner surface of the containment is lined with a steel plate that acts as a leak-tight membrane. The containment wall also serves as a support for the floor slabs of the reactor building (secondary containment) and the refueling pools. The Mark II design is an over-under configuration. The drywell, in the form of a frustum of a cone or a truncated cone, is located directly above the suppression pool. The suppression chamber is cylindrical and separated from the drywell by a reinforced concrete slab. The drywell is topped by an elliptical steel dome called a drywell head. The drywell inerted atmosphere is vented into the suppression chamber through as series of downcomer pipes penetrating and supported by the drywell floor. The Mark III primary containment consists of several major components, many of which can be seen on page The drywell (13) is a cylindrical, reinforced concrete structure with a removable head. The drywell is designed to withstand and confine steam generated during a pipe rupture inside the containment and to channel the released steam into the suppression pool (10) via the weir wall (11) and the horizontal vents (12). The suppression pool contains a large volume of water for rapidly condensing steam directed to it. A leak tight, cylindrical, steel containment vessel (2) surround the drywell and the suppression pool to prevent gaseous and particulate fission products from escaping to the environment following a pipe break inside containment. USNRC Technical Training Center 3-15 Rev 0200
16 Mark I Containment USNRC Technical Training Center 3-16 Rev 0200
17 Mark II Containment USNRC Technical Training Center 3-17 Rev 0200
18 Mark III Containment USNRC Technical Training Center 3-18 Rev 0200
General Electric Systems Technology Manual. Chapter 2.8. Reactor Water Cleanup System
General Electric Systems Technology Manual Chapter 2.8 Reactor Water Cleanup System TABLE OF CONTENTS 2.8 REACTOR CLEANUP SYSTEM... 1 2.8.1 Introduction... 2 2.8.2 System Description... 2 2.8.3 Component
Pressurized Water Reactor Systems
Pressurized Water Reactor (PWR) Systems For a nuclear power plant to perform the function of generating electricity, many different systems must perform their functions. These functions may range from
C. starting positive displacement pumps with the discharge valve closed.
KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the
May 23, 2011 Tokyo Electric Power Company
Analysis and evaluation of the operation record and accident record of Fukushima Daiichi Nuclear Power Station at the time of Tohoku-Chihou-Taiheiyou-Oki-Earthquake (summary) May 23, 2011 Tokyo Electric
IV. Occurrence and Progress of Accidents in Fukushima Nuclear Power Stations and Other Facilities
IV. Occurrence and Progress of Accidents in Fukushima Nuclear Power Stations and Other Facilities 1. Outline of Fukushima Nuclear Power Stations (1) Fukushima Daiichi Nuclear Power Station Fukushima Daiichi
EMERGENCY PREPAREDNESS FREQUENTLY ASKED QUESTION (EPFAQ) NEI 99 01 REVISIONS 4 THROUGH 6; NUMARC/NESP 007
EPFAQ Number: 2015 001 DATE ACCEPTED 20 Apr 15 ORIGINATOR DAVID YOUNG ORGANIZATION Nuclear Energy Institute (NEI) PHONE # 202 739 8016 RELEVANT GUIDANCE: NEI 99 01 REVISIONS 4 THROUGH 6; NUMARC/NESP 007
HOW DOES A NUCLEAR POWER PLANT WORK?
HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does
U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION
U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION NUREG-0800 (Formerly NUREG-75/087) 9.2.2 REACTOR AUXILIARY COOLING WATER SYSTEMS REVIEW RESPONSIBILITIES Primary
Nuclear power plant systems, structures and components and their safety classification. 1 General 3. 2 Safety classes 3. 3 Classification criteria 3
GUIDE 26 June 2000 YVL 2.1 Nuclear power plant systems, structures and components and their safety classification 1 General 3 2 Safety classes 3 3 Classification criteria 3 4 Assigning systems to safety
BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering
BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems 1 Boiling Water Reactor (BWR) Public domain image by US NRC. 2 The BWR is
NUCLEAR POWER PLANT SYSTEMS and OPERATION
Revision 4 July 2005 NUCLEAR POWER PLANT SYSTEMS and OPERATION Reference Text Professor and Dean School of Energy Systems and Nuclear Science University of Ontario Institute of Technology Oshawa, Ontario
SAFETY STANDARDS. of the. Nuclear Safety Standards Commission (KTA) KTA 3301. Residual Heat Removal Systems of Light Water Reactors.
SAFETY STANDARDS of the Nuclear Safety Standards Commission (KTA) KTA 3301 Residual Heat Removal Systems of Light Water Reactors (November 1984) Editor: Geschäftsstelle des Kerntechnischen Ausschusses
7.1 General 5 7.2 Events resulting in pressure increase 5
GUIDE YVL 2.4 / 24 Ma r ch 2006 Primary and secondary circuit pressure control at a nuclear power plant 1 Ge n e r a l 3 2 General design requirements 3 3 Pressure regulation 4 4 Overpressure protection
Boiling Water Reactor Power Plant
Boiling Water Reactor Power Plant This material was, for a purpose to be used in a nuclear education, compiled comprehensively with a caution on appropriateness and neutrality of information, based on
ABWR. 3.4 Water Level (Flood) Design
3.4 Water Level (Flood) Design Criteria for the design basis for protection against external flooding of an ABWR plant site shall conform to the requirements of RG 1.59. The types and methods used for
Operational Reactor Safety 22.091/22.903
Operational Reactor Safety 22.091/22.903 Professor Andrew C. Kadak Professor of the Practice Lecture 19 Three Mile Island Accident Primary system Pilot operated relief valve Secondary System Emergency
SOLVING REACTOR WATER CLEAN-UP SYSTEM ANOMALIES USING RELAP5 MOD3.3
11 th International Conference on Nuclear Engineering Tokyo, JAPAN, April 20-23, 2003 ICONE11-36149 SOLVING REACTOR WATER CLEAN-UP SYSTEM ANOMALIES USING RELAP5 MOD3.3 Joseph S. Miller EDA, Inc 6397 True
ADDITIONAL INFORMATION ON MODERN VVER GEN III TECHNOLOGY. Mikhail Maltsev Head of Department JSC Atomenergoproekt
ADDITIONAL INFORMATION ON MODERN VVER GEN III TECHNOLOGY Mikhail Maltsev Head of Department JSC Atomenergoproekt February 12, 2015 Introduction The main intention of this presentation is to provide: -
Dynamic Behavior of BWR
Massachusetts Institute of Technology Department of Nuclear Science and Engineering 22.06 Engineering of Nuclear Systems Dynamic Behavior of BWR 1 The control system of the BWR controls the reactor pressure,
Improving reactor safety systems using component redundancy allocation technique
NUKLEONIKA 2005;50(3):105 112 ORIGINAL PAPER Improving reactor safety systems using component redundancy allocation technique Aziz Shafik Habib, Hoda Abd-el Monem Ashry, Amgad Mohamed Shokr, Azza Ibrahim
This occurrence is considered to be of no significance with respect to the health and safety of the public.
Serial No. MNS-15-072 September 10, 2015,. DUKESteven Vice D. President Capps, ENERGYMcGuire Nuclear Station Duke Energy MGOIVP 1 12700 Hagers Ferry Road Huntersville, NC 28078 0: 980.875.4805 f: 980.875.4809
Babcock & Wilcox Pressurized Water Reactors
Babcock & Wilcox Pressurized Water Reactors Course Description Gary W Castleberry, PE This course provides an overview of the reactor and major reactor support systems found in a Babcock & Wilcox (B&W)
V K Raina. Reactor Group, BARC
Critical facility for AHWR and PHWRs V K Raina Reactor Group, BARC India has large reserves of Thorium Critical facility Utilisation of Thorium for power production is a thrust area of the Indian Nuclear
Government Degree on the Safety of Nuclear Power Plants 717/2013
Translation from Finnish. Legally binding only in Finnish and Swedish. Ministry of Employment and the Economy, Finland Government Degree on the Safety of Nuclear Power Plants 717/2013 Chapter 1 Scope and
SAFETY EVALUATION OF INDIAN NUCLEAR POWER PLANTS. BWRs AT TARAPUR ATOMIC POWER STATION (TAPS-1&2)
A1 SAFETY EVALUATION OF INDIAN NUCLEAR POWER PLANTS BWRs AT TARAPUR ATOMIC POWER STATION (TAPS-1&2) A1 SAFETY EVALUATION OF INDIAN NUCLEAR POWER PLANTS BWRs AT TARAPUR ATOMIC POWER STATION (TAPS-1&2) 1.0
Development Study of Nuclear Power Plants for the 21st Century
Development Study of Nuclear Power Plants for the 21st Century Hitachi Review Vol. 50 (2001), No. 3 61 Kumiaki Moriya Masaya Ohtsuka Motoo Aoyama, D.Eng. Masayoshi Matsuura OVERVIEW: Making use of nuclear
AP1000 Overview. 2011 Westinghouse Electric Company LLC - All Rights Reserved
AP1000 Overview AP1000 is a registered trademark in the United States of Westinghouse Electric Company LLC, its subsidiaries and/or its affiliates. This mark may also be used and/or registered in other
Fukushima & Three Mile Island Reactor Accidents: Recovery, Cleanup, Lessons, & Future
Fukushima & Three Mile Island Reactor Accidents: Recovery, Cleanup, Lessons, & Future Foundation For Nuclear Studies Congressional Briefing May 18, 2012 Lake H. Barrett Lake@Lbarrett.com Disclaimer: Fukushima
INTRODUCTION. Three Mile Island Unit 2
INTRODUCTION here was an accident at Three Mile Island Unit 2 on March 28,1979. It caused extensive damage to the plant's nuclear fuel core. Most of the plant's major systems were relatively undamaged.
Boiling Water Reactor Basics
Boiling Water Reactor Basics Larry Nelson November 2008 Overview Big Picture - BWR Plants Major Components BWR Evolution BWR Features vs. PWR Features Electrochemical Potential (ECP) Concept ECP Monitoring
2. System Based Design Descriptions and ITAAC AP1000 Design Control Document
2.3.2 Chemical and Volume Control System Design Description The chemical and volume control system (CVS) provides reactor coolant system (RCS) purification, RCS inventory control and makeup, chemical shim
Boiling Water Reactor Simulator with Active Safety Systems
Boiling Water Reactor Simulator with Active Safety Systems User Manual October 2009 INTERNATIONAL ATOMIC ENERGY AGENCY, 2009 The originating Section of this publication in the IAEA was: Nuclear Power Technology
RADIATION MONITORING SYSTEMS
RADIATION MONITORING SYSTEMS Area monitors Process monitors In-line, Adjacent-to-Line monitors Local/remote processors, Data Acquisition Systems NUPIC Certified, NRC Approved Vendor Wide Range Sensitivity
L.S. de Carvalho, J. M de Oliveira Neto 1. INTRODUCTION IAEA-CN-164-5P01
IAEA-CN-164-5P01 Advanced Technology Application Station Blackout Core Damage Frequency Reduction The Contribution of AN AC Independent Core Residual Heat Removal System L.S. de Carvalho, J. M de Oliveira
Public SUMMARY OF EU STRESS TEST FOR LOVIISA NUCLEAR POWER PLANT
1 (8) SUMMARY OF EU STRESS TEST FOR LOVIISA NUCLEAR POWER PLANT 1 LOVIISA NUCLEAR POWER PLANT Loviisa town is located approximately 90 km eastwards from Helsinki at the coast of Gulf of Finland. Loviisa
THREE MILE ISLAND ACCIDENT
THREE MILE ISLAND ACCIDENT M. Ragheb 4/12/2011 1. INTRODUCTION The Three Mile Island (TMI) Accident at Harrisburg, Pennsylvania in the USA is a severe and expensive incident that has seriously affected,
Special Report on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station
Special Report INPO 11-005 November 2011 Special Report on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station Revision 0 OPEN DISTRIBUTION Open Distribution: Copyright 2011 by the Institute
The 1250 MWe Boiling Water Reactor
The 1250 MWe Boiling Water Reactor Gundremmingen B+C, operating since 1984 and 1985 3 The need to secure long-term energy supplies, stabilize energy costs and combat global warming, argues in favor of
TOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?
KNOWLEDGE: K1.01 [3.3/3.5] P21 Which one of the following contains indications of cavitation in an operating centrifugal pump? A. Low flow rate with low discharge pressure. B. Low flow rate with high discharge
Contractor s Guide Outage O3 2015
Contractor s Guide Outage O3 2015 1 Main Control Room Unit O3 0491-78 60 03 0491-78 60 33 0491-78 63 33 The Work Permit Office, ABH O3 0491-78 65 77 0491-78 65 74 OKG s Telephone Exchange 0491-78 60 00
DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING
By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,
FLASH TANK ECONOMIZER PRODUCT GUIDE
FLASH TANK ECONOMIZER PRODUCT GUIDE Overview A flash tank is used to recover blowdown energy in the form of flash steam and blowdown. This can only be used with a deaerator or some other pressurized device.
Belgian Stress tests specifications Applicable to all nuclear plants, excluding power reactors 22 June 2011
Belgian Stress tests specifications Applicable to all nuclear plants, excluding power reactors 22 June 2011 Introduction Considering the accident at the Fukushima nuclear power plant in Japan, the European
CFD Topics at the US Nuclear Regulatory Commission. Christopher Boyd, Ghani Zigh Office of Nuclear Regulatory Research June 2008
CFD Topics at the US Nuclear Regulatory Commission Christopher Boyd, Ghani Zigh Office of Nuclear Regulatory Research June 2008 Overview Computational Fluid Dynamics (CFD) is playing an ever increasing
Source Term Determination Methods of the Slovenian Nuclear Safety Administration Emergency Response Team
IAEA TM on Source Term Evaluation for Severe Accidents, Vienna, 21-23 October 2013 Source Term Determination Methods of the Slovenian Nuclear Safety Administration Emergency Response Team Tomaž Nemec Slovenian
Peach Bottom Atomic Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos.
Exelon Generation 200 Exelo11 Way Kennett Square. PA 19348 www.pxeloncoroi.c cm 10 CFR 50.55a August 13, 2015 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001 Peach
The integrity evaluation of the reactor building at unit4 in the Fukushima Daiichi nuclear power station
The integrity evaluation of the reactor building at unit4 in the Fukushima Daiichi nuclear power station May 2012 Government and TEPCO s Mid-to Long Term Countermeasure Meeting Management Council Outline
IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making. System Analysis. Lecturer. Workshop Information IAEA Workshop
IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making System Analysis Lecturer Lesson Lesson IV IV 3_2.3 3_2.3 Workshop Information IAEA Workshop City, XX XX - City -XX, Country Month,
Belgian Stress tests specifications Applicable to power reactors 17 May 2011
Belgian Stress tests specifications Applicable to power reactors 17 May 2011 Introduction Considering the accident at the Fukushima nuclear power plant in Japan, the European Council of March 24 th and
Pressurized Water Reactor B&W Technology Crosstraining Course Manual. Chapter 9.0. Integrated Control System
Pressurized Water Reactor B&W Technology Crosstraining Course Manual Chapter 9.0 Integrated Control System TABLE OF CONTENTS 9.0 INTEGRATED CONTROL SYSTEM... 1 9.1 Introduction... 1 9.2 General Description...
Nuclear Safety Council Instruction number IS- 23 on in-service inspection at nuclear power plants
Nuclear Safety Council Instruction number IS- 23 on in-service inspection at nuclear power plants Published in the Official State Gazette (BOE) No 283 of November 24 th 2009 Nuclear Safety Council Instruction
Introductions: Dr. Stephen P. Schultz
Introductions: Dr. Stephen P. Schultz Vienna, Austria 1 3 September 2015 Work Experience Current Member Advisory Committee on Reactor Safeguards, U.S. Nuclear Regulatory Commission, 12/2011 Chair, Fukushima
Rev. 02. STD DEP T1 3.4-1 (Table 7.6-5 and Figures 7.6-1, 7.6-2, 7.6-4a) STD DEP 7.2-1 (Table 7.6-5 and Figures 7.6-1, 7.6-2)
7.6 All Other Instrumentation Systems Required for Safety The information in this section of the reference ABWR DCD, including all subsections, tables, and figures, is incorporated by reference with the
GEH Safety Enhancement Services
GEH Safety Enhancement Services 2012 LAS/ANS SYMPOSIUM July 5, 2012 Isidro de la Fuente Vice President, Sales Copyright 2012 GE Hitachi Nuclear Energy - All rights reserved CURRENT US REGULATORY LANDSCAPE
Olkiluoto 3 Basic Facts
Olkiluoto 3 Basic Facts TVO a world-class nuclear power company Teollisuuden Voima Oy (TVO) is a Finnish limited liability company established in 1969. The operating idea of the Company is to produce electricity
A PROCESS-INHERENT, ULTIMATE-SAFETY (PIUS), BOILING-WATER REACTOR
A PROCESS-INHERENT, ULTIMATE-SAFETY (PIUS), BOILING-WATER REACTOR Charles W. Forsberg Oak Ridge National Laboratory* P.O. Box X Oak Ridge, Tennessee 37831 (615) 574-6783 Summary fcr 1985 American Nuclear
9.4 Air Conditioning, Heating, Cooling and Ventilating Systems
9.4 Air Conditioning, Heating, Cooling and Ventilating Systems 9.4.1 Control Building HVAC The Control Building (C/B) Heating, Ventilating and Air-Conditioning (HVAC) System is divided into two separate
Results and Insights of Internal Fire and Internal Flood Analyses of the Surry Unit 1 Nuclear Power Plant during Mid-Loop Operations*
BNL-NUREG-61792 Results and Insights of Internal Fire and Internal Flood Analyses of the Surry Unit 1 Nuclear Power Plant during Mid-Loop Operations* Tsong-Lun Chu, Zoran Musicki, and Peter Kohut Brookhaven
Subpart 1. Installation. All plumbing systems must be. installed and tested according to this chapter and chapter 4715,
4658.4500 PLUMBING SYSTEMS; NEW CONSTRUCTION. Subpart 1. Installation. All plumbing systems must be installed and tested according to this chapter and chapter 4715, the Minnesota Plumbing Code. Subp. 2.
Application of Nuclear and Aerospace Industry Experience to Offshore Barrier Integrity Management
Application of Nuclear and Aerospace Industry Experience to Offshore Barrier 8 th International Conference on Integrated Operations in the Petroleum Industry Bill Nelson, Mariana Dionisio, Sondre Øie,
COMPRESSED GASES. 1.2 The contents of each cylinder and container must be clearly identified (by tag or stamp) on the cylinder.
Page 1 of 5 COMPRESSED GASES A compressed gas is defined as any mixture of gases in a container with a pressure exceeding 40 psi. at 70 o F, or 104 psi. at 130 o F; or any flammable liquid with an absolute
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 24 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia S TABLE OF CONTENT SCOPE 2 DEFINITIONS
U.S. EPR Design Overview
U.S. EPR Design Overview Brian A. McIntyre U.S. EPR Design Certification Project Manager WM2009 Conference March 4, 2009 The EPR Story 1989: Agreement between Framatome and Siemens on development of common
Heating Water by Direct Steam Injection
Heating Water by Direct Steam Injection Producing hot water by direct steam injection provides a solution where large volumes of hot water at precise temperatures are required, and where energy and space
Tritium Gas Processing for Magnetic Fusion
Tritium Gas Processing for Magnetic Fusion SRNL-STI-2014-00168 The views and opinions expressed herein do not necessarily reflect those of any international organization, the US Government Bernice Rogers
Safety-Related Air Conditioning, Heating, Cooling, and Ventilation Systems Calculations
US-APWR Safety-Related Air Conditioning, Heating, Non-Proprietary Version March 2013 C2013 Mitsubishi Heavy Industries, Ltd. All Rights Reserved Mitsubishi Heavy Industries, LTD. Revision History (Sheet
TRANSIENT AND ACCIDENT ANALYSES FOR JUSTIFICATION OF TECHNICAL SOLUTIONS AT NUCLEAR POWER PLANTS
TRANSIENT AND ACCIDENT ANALYSES FOR JUSTIFICATION OF TECHNICAL SOLUTIONS AT NUCLEAR POWER PLANTS 1 GENERAL 3 2 EVENTS TO BE ANALYSED 3 2.1 General requirements 3 2.2 Analyses of plant behaviour 4 2.3 Analyses
Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called...
KNOWLEDGE: K1.01 [2.7/2.8] B558 Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... A. fissile materials. B. fission product poisons.
IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI
Original English MISSION REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE
Cyber Security Design Methodology for Nuclear Power Control & Protection Systems. By Majed Al Breiki Senior Instrumentation & Control Manager (ENEC)
Cyber Security Design Methodology for Nuclear Power Control & Protection Systems By Majed Al Breiki Senior Instrumentation & Control Manager (ENEC) 1. INTRODUCTION In today s world, cyber security is one
UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REACTOR REGULATION WASHINGTON, DC 20555-0001. June 16, 2011
UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REACTOR REGULATION WASHINGTON, DC 20555-0001 June 16, 2011 NRC INFORMATION NOTICE 2011-12: REACTOR TRIPS RESULTING FROM WATER INTRUSION INTO
This document is the property of and contains Proprietary Information owned by Westinghouse Electric Company LLC and/or its subcontractors and
This document is the property of and contains Proprietary Information owned by Westinghouse Electric Company LLC and/or its subcontractors and suppliers. It is transmitted to you in confidence and trust,
(2) Action taken at the main control rooms a. General
IV. Accident response at TEPCO's Fukushima Dai-ichi NPS 1. Situation and response from the time the earthquake hit until the arrival of the tsunami (from approximately 14:46 to 15:35 on March 11, 2011)
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 38 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia CAUSTIC AND CHEMICAL TABLE OF CONTENT
Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel
Fukushima 2011 Safety of Nuclear Power Plants Earthquake and Tsunami Accident initiators and progression Jan Leen Kloosterman Delft University of Technology 1 2 Nuclear fission Distribution of energy radioactive
Report WENRA Safety Reference Levels for Existing Reactors - UPDATE IN RELATION TO LESSONS LEARNED FROM TEPCO FUKUSHIMA DAI-ICHI ACCIDENT
Report WENRA Safety Reference Levels for Existing Reactors - UPDATE IN RELATION TO LESSONS LEARNED FROM TEPCO FUKUSHIMA DAI-ICHI ACCIDENT 24 th September 2014 Table of Content WENRA Safety Reference Levels
Great East Japan Earthquake and the seismic damage to the NPSs
Great East Japan Earthquake and the seismic damage to the NPSs As of 15:30 July 3rd, 2011 (JST) Ministry of Economy, Trade and industry Earthquake and automatic shut-down of nuclear reactors The Great
Status report 75 - Advanced Passive pressurized water reactor (AP-600)
Status report 75 - Advanced Passive pressurized water reactor (AP-600) Overview Full name Acronym Reactor type Coolant Moderator Neutron spectrum Thermal capacity Electrical capacity Design status Designers
5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.
413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above
Spent Fuel Project Office Interim Staff Guidance - 17 Interim Storage of Greater Than Class C Waste
Spent Fuel Project Office Interim Staff Guidance - 17 Interim Storage of Greater Than Class C Waste Issue: Guidance is necessary on the interim storage of greater than Class C (GTCC) waste due to the revision
SAMPLE CHAPTERS UNESCO EOLSS
STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing
Mechanical Seal Piping Plans
Mechanical Seal Piping Plans Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54, 55 Quench Seals plans 62, 65A, 65B, 66A, 66B Gas Seals plans 72, 74, 75,
Fukushima Daiichi Accident Study (Status as of April 2012)
SANDIA REPORT SAND2012-6173 Unlimited Release Printed August 2012 Fukushima Daiichi Accident Study (Status as of April 2012) Randall Gauntt, Donald Kalinich, Jeff Cardoni, Jesse Phillips, Andrew Goldmann,
The Safety of Borssele Nuclear Power Station
The Safety of Borssele Nuclear Power Station First report of the Borssele Benchmark Committee 2 September 2013 Table of Contents Executive Summary and Conclusions 4 Abbreviations 11 1 Introduction 12 2
Examination of Accident at Tokyo Electric Power Co., Inc. s Fukushima Daiichi Nuclear Power Station and Proposal of Countermeasures
Examination of Accident at Tokyo Electric Power Co., Inc. s Fukushima Daiichi Nuclear Power Station and Proposal of Countermeasures. October 2011 Japan Nuclear Technology Institute Examination Committee
BEST-ESTIMATE TRANSIENT ANALYSIS WITH SKETCH-INS/TRAC-BF1, ASSESSMENT AGAINST OECD/NEA BWR TURBINE TRIP BENCHMARK ABSTRACT
BEST-ESTIMATE TRANSIENT ANALYSIS WITH SKETCH-INS/TRAC-BF1, ASSESSMENT AGAINST OECD/NEA BWR TURBINE TRIP BENCHMARK Hideaki Utsuno, Fumio Kasahara Nuclear Power Engineering Corporation (NUPEC) Fujita kanko
COOLING SYSTEM Section Page
5 COOLING SYSTEM Section Page 5.1 COOLANT PRE-HEATER... 5-3 5.2 COOLANT PUMP NON-EGR ENGINE... 5-7 5.3 COOLANT PUMP EGR ENGINE... 5-13 5.4 FRONT CONNECTOR HOUSING NON-EGR ENGINE... 5-17 5.5 FRONT CONNECTOR
10 Nuclear Power Reactors Figure 10.1
10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of
Overview of Heat Recovery Boiler Systems and Operating Costs Factors Effecting Blowdown Blowdown Heat Recovery The Energy Tank
Overview of Heat Recovery Boiler Systems and Operating Costs Factors Effecting Blowdown Blowdown Heat Recovery The Energy Tank Unbiased, Third-Party, Water & Energy Management Consulting Firm: - Not affiliated
Response to NRC Request for Additional Information for the Review of the Fermi 2 License Renewal Application - Set 37
Vito A. Kaminskas Site Vice President DTE Energy Company 6400 N. Dixie Highway, Newport, MI 48166 Tel: 734.586.6515 Fax: 734.586.4172 Email: kaminskasv@dteenergy.com DTE Ensergy- 10 CFR 54 September 24,
Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com
Generation IV Fast Reactors Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Contents The Generation IV international research programme on advanced reactors The case for fast reactors The technology:
Nuclear Energy: Nuclear Energy
Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of
FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER G: INSTRUMENTATION AND CONTROL
SUB-CHAPTER: G.5 PAGE : 1 / 37 SUB CHAPTER G.5 INSTRUMENTATION 0. SAFETY REQUIREMENTS 0.1. SAFETY FUNCTIONS The instrumentation is directly involved in the three fundamental safety functions: Reactivity
Steam System Best Practices Condensate System Piping
Steam System Best Practices Condensate System Piping Summary The best method for improving steam system energy efficiency, reducing chemical costs, and reducing make-up water costs is to return the maximum
NEW JERSEY CENTER OF EXCELLENCE
Overview NEW JERSEY Page 1 The Plant (CUP) provides electricity via a cogeneration system, chilled water for environmental cooling, steam for heating, and compressed air primarily for HVAC control Serves
IGEMA BOILER LEVEL & TDS CONTROLS
IGEMA BOILER LEVEL & TDS CONTROLS IGEMA offers boiler level and TDS control products of the highest quality standard, being certified to ISO 9001. Made in Germany, IGEMA products are manufactured in compliance
Glossary of Heating, Ventilation and Air Conditioning Terms
Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment
The Piping System Model a New Life Cycle Document. Elements of the Piping System Model
Piping System Model as a Life Cycle Document White Paper Introduction When designing piping systems, a variety of documents are created providing the details necessary to design, purchase, build, and test
10% or 500,000 gallons/year of Crude Glycerine. Shutdown: 2009 B100 BioDiesel or Crude Glycerine Soybean Oil or Animal Tallow, Methanol
IMMEDIATELY AVAILABLE FROM IPP BioDiesel Plant 5 MM Gallons/Year Brief Overview Capacity: 5,000,000 gallons/year Byproduct: 10% or 500,000 gallons/year of Crude Glycerine Built: 2007 Shutdown: 2009 Product:
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain