Söderströmtunnel: immersion in downtown Stockholm, Sweden

Size: px
Start display at page:

Download "Söderströmtunnel: immersion in downtown Stockholm, Sweden"

Transcription

1 Söderströmtunnel: immersion in downtown Stockholm, Sweden J. Glückert Dipl.-Ing, Züblin Ground Engineering, Stuttgart, Germany N.H.J. Vink MSe, M. Reijm BSc, P.T. van Westendorp BSc Strukton Immersion Projects, Utrecht, The Netherlands ABSTRACT: The Söderströmstunneln is one of the most challenging parts of the new Citybanan, a 6 km long railway tunnel crossing the ancient centre of Stockholm. Major parts of this underground link can be executed using the common drill and blast method. But this does not apply to the 450m long immersed Söderströmstunnel crossing the Söderström, connecting the islands Riddarholmen and Södermalm. Unique in the immersion operation is the use of external temporary jack supports on the piled and raft foundations and sliding plates underneath the tunnel elements, to support and slide the elements to their final position. Other aspects are the temporary underwater parking of the Riddarholmen element inside the joint house, to create space for the immersion operation of the centre element, and the usage of two different immersion pontoons, to deal with the different lengths of the elements and the reduced space around the abutments of the tunnel. 1 INTRODUCTION The immersed tunnel comprises of three prefabricated elements. The two straight tunnel elements TE1 and TE2 have a length of 107,5m and the slightly curved element TE3 has a length of 85m. Since the soft subsoil did not allow support directly on the seabed the tunnel was founded on four piled and one raft foundation. Once the construction was completed the tunnel was forming an underwater bridge with a free connection in the so called joint house in the North at Riddarholmen and a fixed restraint at the South side at Södermalm, formed by massive rock anchoring. underneath the tunnel elements, to support and slide the elements to their final position. Other aspects were the temporary underwater parking of TE1 in the Riddarholmen abutment partly inside the joint house, to create space for the immersion operation of the centre element and the usage of two different immersion pontoons, to deal with the different lengths of the elements and the reduced space around the abutments of the tunnel. 2 TUNNEL ELEMENTS AND IMMERSION TRENCH 2.1 Tunnel elements The tunnel cross section comprised of a track tunnel and a service tunnel. Figure 1.Section Söderströmstunneln Unique in the immersion operation was the use of external temporary jack supports on the piled and raft foundations and sliding plates 1 Figure 2. Cross section

2 The tunnel elements were constructed as self floating steel shells in Estonia and transported on a barge over the Baltic sea into lake Mälaren. There the steel shell have been launched into water by submerging the transport barge. Figure 3. Transport of steel hull The floating steel shells were then transformed into three concrete tunnel elements. The concrete base slab and part of the walls have been cast inside the steel shell on a construction area outside Stockholm. Then the half-finished tunnel elements have been brought to Riddarfjärden in central Stockholm were the concrete works have been finalized by casting the rest of the walls and the roof sections. Once ready, external and internal temporary works were mounted such as access towers, guide beams, ballast tanks and wire guides. 2.2 Immersion trench The trench in which the elements are placed slopes with about 3% from South down to North. Installation level of TE3 South is -13m to -23m at TE1 North, resulting in a general height difference of app. 10m. The trench is excavated with grab dredgers and the rock parts are removed using the blasting method. The trench is fitted with 4 pile groups (PG1 to 4) held together with cast in situ capping beams and 1 raft foundation (RF). The tunnel elements are immersed straight on the pile foundations, making the immersed tunnel look like a large under water bridge. The conditions for immersion were quite favorable, with almost no currents and a sheltered work area, in the historic city centre of Stockholm. 2 However the lack of space and the tight tolerances up to 25mm for landing the tunnel elements on the jack foundations were quite challenging. 2.3 Pile foundations Both temporary and permanent support was founded on top of the pile foundations which were constructed inside the Riddarfjärden lake bed. The piles were driven down to the bedrock soil, and held together by a concrete capping beam. The piles needed to cope with the loads from a flooded tunnel, but should also be flexible enough to compensate for elongation and shortening of the tunnel by shrinkage, creep and temperature differences. The final support was made by filling grout bags (installed before immersion) and removing the temporary hydraulic jacks. High level accuracy of the top of the capping beams was required to minimize the construction height of the jacks and grout bags. All jacks were successfully removed from underneath the immersed elements. Special foundations were located near the Riddarholmen abutment. Here special concrete catchers were constructed on top of the higher level bedrock. These transverse catchers were used during the immersion and moving of TE1 inside and outside the joint house. 2.4 Jacks and sliding plates All capping beam foundations support a temporary support system with 250 ton hydraulic jacks. Each tunnel element has been supported by 4 jacks. Figure 4. Detail hydraulic jack support

3 To prevent the jacks from suffering from horizontal loads, sliding bearings are applied (Teflon/stainless steel) and steel housings are applied around the jack to which the remaining loads are distributed. girders special winch frames were mounted to accommodate for the immersion winches. Figure 6. Immersion pontoon principle. Figure 5. Hydraulic jack + housing with Teflon plate The housings are positioned and bolted to the capping beams by divers. The hydraulic jacks were placed and connected just prior to immersion of an element. Two out of four jacks are interconnected (hydraulic coupling) in order to create a 3 point support. 3 IMMERSION 3.1 Transport system The tunnel elements were finalized right next to the immersion location. The elements were moved to the immersion trench using two longitudinal winches installed on the North and South abutment with steel wires connected to the tunnel element - and four transversal winches on the floaters of the immersion pontoons with wires connected to the anchor points around the immersion location. The strength and stability of all parts of the immersion pontoon was checked in different phases. The nominal immersion loads (20 tons per lifting lug), extreme loads on South end (50 tons per lug) combined with minimum 15 tons on North end. Main goal was to check whether the pontoon would remain above water, and what the deflection of the cross beams would become. The overall floating stability of the pontoon as a catamaran layout was also guaranteed due to the large length. An unwanted event as happened with the 17th century Vasa vessel (capsized on her maiden voyage) would not occur in this situation. 3.3 Immersion pontoon configurations For the immersion operations, two different immersion pontoon configurations were used. The immersion pontoon used for the first tunnel element TE3 was much smaller than the pontoon used for TE1 and TE2. Governing was available space around the tunnel elements during the immersion operations. 3.2 Design immersion pontoon The immersion pontoons were made of 2 cross beams mounted on support racks, built on two container pontoon based floaters. The cross beams were made up from two 42m HEB1000 girders with connections in 2 places (for transportation reasons). On top of the 3

4 Proceedings of the World Tunnel Congress 2014 Tunnels for a better Life. Foz do Iguaçu, Brazil. 3.4 Ballast tanks Especially with TE3 the space was very limited in the final stages of immersion. The quay line of Södermallarstrand ended up about 0,5m from the pontoon edge. Also the rock excavations left a narrow trench to move in the tunnel element. To stabilize and trim the element to the required floating situation, 3 ballast tanks including pumping / piping system were manufactured inside the elements. Due to the asymmetrical transverse layout of the element, two tanks were placed inside the track tunnel bore and one long tank was built inside the center of the service tunnel. Figure 7. Immersion pontoon for TE3. To deal with the circumstances, the floaters of the pontoon were made approx. 20m shorter than the TE1 and 2 pontoon. Also the immersion weight was reduced and the position of the lifting lugs and cross beams were positioned exocentric to be able to move in TE3 The floater was a rigid beam made from container pontoons. Figure 9: Ballast water layout The immersion pontoon of TE1 and 2 was much larger. Main reason was the longer length and weight of the tunnel elements, which resulted in a higher immersion weight. To prevent the longer floater sections from overloading (hogging moment), the middle of the container pontoon floaters was fitted with heavy duty hinge connections. The surface of each tank was approximately 200m2, which generated sufficient capacity for 3% overweight in the final immersion stage, where the element rested on the support jacks. The effect on ballasting sequence and influence on immersion loads was great due to this layout. Filling the tanks was done remote controlled by use of an interface system positioned on the deck of the immersion pontoon. In and out let of water was easily done by the same system at a capacity of app. 450 m3/hr. in total. All ballast steps were designed / calculated to high level by tailor made tools in order to be certain of the suspension lug loads and support jack loads in all stages of the process. 3.5 Immersion phasing Operation 1: TE3 TE3 was the first element to be immersed, with its final position against the Södermallar strand abutment. Figure 8: Immersion pontoon TE1 and 2 with hinge 4

5 After moving the element from the mooring location to the immersion trench (at app 60m horizontal distance from final position) water was taken into the ballast tanks to trim the element and accommodate for the required nominal immersion load of 15 tons per lug. Final ballasting was done to let the element go under the water line. During the lowering under water an inclination was achieved in 2 steps. First app. 1.5% inclination and after that inclination to 2.5%. After each step some ballast water was moved from North to South (due to ullage in tanks), to hold the immersion loads equal all around. Realignment with jacks between the outer walls of the joint was not necessary. Final leveling and ballasting followed. Operation 2: TE1 phase 1 After TE3 was connected to the South abutment, the preparations for TE1 phase 1 were done. These preparations consisted of placing the vertical jacks and rebuilding the immersion pontoon. TE1 phase 1 was designed as an operation in which the element was immersed and parked under water on the 4 vertical supports, and pulled app. 4m inside the joint house. For the pulling, 2 big stroke hydraulic push/pull cylinders were connected between roof and joint house in the maximum out stroke. Figure 11: Push/pull cylinders Figure 10: Immersion spread To prevent the back end from hitting the supports in this stage, the final inclination was not yet made. Small forward movements were the key to prevent the element from colliding with the cut trench (bedrock and concrete walls). Finally the element was positioned with the guide inside the catcher and on the 4 hydraulic jacks. It was leveled and connected with the initial compression system to the abutment. Compression of the Gina gasket was checked, before the immersion joint could be emptied. The joint was sufficiently emptied and the alignment of the element was within tolerances of +/- 25mm. 5 After lowering the element on the supports, the cylinders were connected. When the system was running, slow pulling of the jacks was enough to move TE1 inside the joint house. With only cm space all around the room inside the joint house was critical. Successfully positioning the element on the support jacks, intake of final ballast water and locking of all the jacks finished this operation. The big stroke jacks controlled and secured the element in place against currents and vessel movement for the 2 months when the element was parked under water. Operation 3: TE2 With TE1 safely inside the joint house, app. 2.4 meters of space was created between TE1 and TE2, which was narrow but sufficient for TE2 to be moved in place in between the two. The operation of TE2 was similar to TE3, despite the fact of 2 Gina gaskets being mounted to the element, one on each side. This so-called indifferent element could however be placed only in one direction.

6 After emptying the joint, the element showed to be in the required tolerances and final ballasting finished the operation. Ed. Züblin AG, design department, Germany MH Poly Consultants, Netherlands Operation 4: TE1 phase 2 The fourth and final operation was pushing TE1 against TE2. For this maneuver no pontoon was necessary, since all movement was done under water, by using the push/pull cylinders, sliding the element over the support jacks. Ballast was taken out, until the immersion weights were reinstated. The cylinders pushed the element app. 2.5m back against TE2. In the final 0.5m a horizontal catcher / guide on top of the roof slab made sure that the primary end of TE1 and secondary end of TE2 were aligned. The height was controlled by the vertical supports. Once the elements were touching (Gina gasket compressed) the immersion joint could be emptied. Alignment was controlled by the vertical catchers at the secondary end of element 1 near the joint house. No realignment was required. Immersion was completed on September 5th After this, the finishing works were started. 4 CONCLUSION Part of the new Citybanan metroline in Stockholm has been constructed using the immersed tunneling method. Unique circumstances, both technical and organizational resulted in a creative, and most of all low risk approach. High safety standards and innovative solutions for supporting, connecting and constructing these tunnel elements led to a successful immersion from April to September Colophon Client: Trafikverket, Sweden Client Consultant for the immersion process: Tunnel Engineering Consultants (TEC), The Netherlands Contractor: Züblin Ground Engineering, Germany, in cooperation with Züblin Scandinavia AB, Sweden Immersion specialist: Strukton Immersion Projects, Netherlands Designers: COWI, Denmark 6

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

High Capacity Helical Piles Limited Access Projects

High Capacity Helical Piles Limited Access Projects High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices

More information

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION PART 8000 - PRECAST CONCRETE TABLE OF CONTENTS Item Number Page 8100 PRECAST CONCRETE CONSTRUCTION - GENERAL 8-3 8101 General

More information

Offshore Structures. Offshore Drilling Equipment

Offshore Structures. Offshore Drilling Equipment Offshore Structures Offshore Drilling Equipment The drill string is lowered through a conduit (riser). The drill string consists of a drill bit, drill collar and drill pipe. Drill pipe sections are added

More information

Forensic engineering of a bored pile wall

Forensic engineering of a bored pile wall NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Forensic engineering of a bored pile wall Willem Robert de Bruin Geovita AS, Norway,

More information

Member Nation Report 2010 from Denmark.

Member Nation Report 2010 from Denmark. Member Nation Report 2010 from Denmark. The has during the year 2010 arranged 6 member meetings including two technical site visits. The first technical site visit covered the 5.3 km long Leipzig City

More information

GLOSSARY OF TERMINOLOGY

GLOSSARY OF TERMINOLOGY GLOSSARY OF TERMINOLOGY AUTHORIZED PILE LENGTHS - (a.k.a. Authorized Pile Lengths letter) Official letter stating Engineer's recommended length of concrete piles to be cast for construction of foundation.

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

More information

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

More information

BUTE Department of Construction Management and Technology

BUTE Department of Construction Management and Technology BUTE Department of Construction Management and Technology 02.10.2012 Definition 1: Foundation: The structure, that transmits the load of the building to the soil Definition 2: Load bearing soil (strata):

More information

Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE)

Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE) Manual: Nearshore CPT Testing NEARSHORE CONE PENETRATION TESTING (TOP PUSH TECHNIQUE) Nearshore CPT is not as difficult as it might seem. Most CPT companies do already have most of the necessary equipment

More information

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

More information

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL 7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction

More information

Business Unit. Tunnelling & Civil Engineering. Infrastructure solutions from a single source.

Business Unit. Tunnelling & Civil Engineering. Infrastructure solutions from a single source. Business Unit Tunnelling & Civil Engineering Infrastructure solutions from a single source. 6 14 20 4 Innovative solutions on a sound basis 6 Tunnelling Setting new standards Transportation tunnels Power

More information

Geotechnical Building Works (GBW) Submission Requirements

Geotechnical Building Works (GBW) Submission Requirements Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation by Tunnelling

Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation by Tunnelling Engineering and Construction Services Division Standard Specifications for Sewers and Watermains TS 415 April 2013 Amendment to OPSS 415 (Nov 2008) Construction Specification for Pipeline and Utility Installation

More information

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT Description: This work shall consist of furnishing all materials, equipment and labor necessary for conducting an Osterberg Cell (O-Cell) Load

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC)

SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC) APPLICATIONS Process Industry Weak Acids Alkalies Compressed Air Pulp & Paper MODELS ASM - Flanged Connection OPTIONS Control Rods Oil & Gas Water & Waste Pump suction & discharge Sea water Chemical lines

More information

Emergency repair of Bridge B421

Emergency repair of Bridge B421 Emergency repair of Bridge B421 over the Olifants River after fl ood damage INTRODUCTION AND BACKGROUND Bridge B421 is located on the R555 at km 5.03 on Section 01E between Witbank (now known as emalahleni)

More information

Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing

Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing 1 Most basements show some signs of leaking and cracking. Through the years, problems with water, poor soils, grading, drainage and possible settling affect the integrity of a basement. Being able to recognize

More information

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 Brandon Chavel, PhD, P.E.,

More information

INSTALLATION. General. Important Note. Design. Transport

INSTALLATION. General. Important Note. Design. Transport General The roof trusses you are about to install have been manufactured to precise engineering standards. To ensure that the trusses perform as designed, it is essential that they be handled, erected

More information

BRIDGES ARE relatively expensive but often are

BRIDGES ARE relatively expensive but often are Chapter 10 Bridges Chapter 10 Bridges Bridg Bridges -- usually the best, but most expensive drainage crossing structure. Protect bridges against scour. BRIDGES ARE relatively expensive but often are the

More information

Chapter 3 Pre-Installation, Foundations and Piers

Chapter 3 Pre-Installation, Foundations and Piers Chapter 3 Pre-Installation, Foundations and Piers 3-1 Pre-Installation Establishes the minimum requirements for the siting, design, materials, access, and installation of manufactured dwellings, accessory

More information

Unit Price Averages Reports

Unit Price Averages Reports Unit Price Averages Reports 12/7/2015 UNIT PRICE AVERAGES REPORT Disclaimer The information provided in the following Unit Price Averages Report is only for the use of Alberta Infrastructure & Transportation

More information

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35 Packaged-Products for Less-Than-Truckload (LTL) Shipment ISTA 3 Series General Simulation Performance Test PROCEDURE VERSION DATE Last TECHNICAL Change: NOVEMBER 2012 Last EDITORIAL Change: JANUARY 2013

More information

San Francisco Oakland Bay Bridge East Span Seismic Safety Project

San Francisco Oakland Bay Bridge East Span Seismic Safety Project San Francisco Oakland Bay Bridge East Span Seismic Safety Project Presented To: Society of American Military Engineers May 16, 2013 Brian Maroney, P.E. Dr. Engr. Karen Wang, P.E. Pier E9 Following the

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

Technical feasibility of the reconfiguration of 8-m class telescopes

Technical feasibility of the reconfiguration of 8-m class telescopes Bulletin de la Société Royale des Sciences de Liège, Vol. 74, 5-6, 2005 Technical feasibility of the reconfiguration of 8-m class telescopes M. Kraus European Organisation for Astronomical Research in

More information

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

More information

Weight Measurement Technology

Weight Measurement Technology Kistler-Morse (KM) introduced bolt-on weight measuring systems three decades ago. These devices featured Walter Kistler s invention, the Microcell. Over the years, many improvements were made to the Microcell

More information

LOADING DOCK EQUIPMENT. A. Section 03100 - Concrete Forms and Accessories: Placement of anchors into concrete.

LOADING DOCK EQUIPMENT. A. Section 03100 - Concrete Forms and Accessories: Placement of anchors into concrete. LOADING DOCK EQUIPMENT PART 1 GENERAL 1.1 SECTION INCLUDES A. Loading dock equipment of the following types: 1. Dock lifts. 2. Control stations. 1.2 RELATED SECTIONS A. Section 03100 - Concrete Forms and

More information

GOWANUS EXPRESSWAY TUNNEL PRIMER

GOWANUS EXPRESSWAY TUNNEL PRIMER GOWANUS EXPRESSWAY TUNNEL PRIMER T he New York State Department of Transportation is currently studying the replacement of the Gowanus Expressway with a tunnel. This investigation involves looking at a

More information

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

More information

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA 1 REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA Verners Straupe, M.sc.eng., Rudolfs Gruberts, dipl. eng. JS Celuprojekts, Murjanu St. 7a, Riga, LV 1024, Latvia e-mail:

More information

Introduction to Minimal Excavation Foundations

Introduction to Minimal Excavation Foundations Introduction to Minimal Excavation Foundations What is a minimal excavation foundation? A construction technique that minimizes disturbance of the natural soil profile within the footprint of the structure

More information

San Antonio Water System Standard Specifications for Construction ITEM NO. 1100 SLIP-LINING SANITARY SEWERS

San Antonio Water System Standard Specifications for Construction ITEM NO. 1100 SLIP-LINING SANITARY SEWERS ITEM NO. 1100 SLIP-LINING SANITARY SEWERS 1100.1 DESCRIPTION: This item shall consist of slip-lining sanitary sewer pipe, which is accomplished by pulling or pushing liner pipe into existing sewers by

More information

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION General 7 www.meadowburke.com 877-518-7665 MB1109 CONCRETE FLOOR SLAB AND CASTING BED CONSTRUCTION Quality Construction Begins at Ground Level Everything

More information

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete

Tremie Concrete CM 420 CM 420 CM 420 CM 420. Temporary Structures. Tremie Concrete Tremie Concrete Underwater concrete plays an important role in the construction of offshore structures. It may be used to tie together various elements in composite action (i.e., to tie piling to the footing).

More information

Engineers at Liftech designed the structure of the first container crane and have designed and reviewed thousands of container cranes since.

Engineers at Liftech designed the structure of the first container crane and have designed and reviewed thousands of container cranes since. Engineers at Liftech designed the structure of the first container crane and have designed and reviewed thousands of container cranes since. Liftech is the structural review engineer of record for most

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

39HQ Airovision Air Handling Units

39HQ Airovision Air Handling Units 39HQ Airovision Air Handling Units Mounting instructions CONTENTS 1 - TRANSPORT AND LIFTING INSTRUCTIONS... 3 1.1 - General... 3 1.2 - Transport and storage... 3 1.3 - Roof edge protection during transport

More information

Investigation of Foundation Failure. Step 1 - Data Collection. Investigation Steps

Investigation of Foundation Failure. Step 1 - Data Collection. Investigation Steps Foundations on Expansive Clay Soil Part 3 - Investigation of Failed Foundations Presented by: Eric Green, P.E. Structural Engineer Slide 1 Copyright Eric Green 2005 Investigation of Foundation Failure

More information

1x90 TONS TENSIONERS TECHNICAL PROPOSAL. 1 X 90 Tons 30 m/min Tensioners TECHNICAL PROPOSAL JOB 08/059. 0 19/02/2008 Basic proposal PP GM SB

1x90 TONS TENSIONERS TECHNICAL PROPOSAL. 1 X 90 Tons 30 m/min Tensioners TECHNICAL PROPOSAL JOB 08/059. 0 19/02/2008 Basic proposal PP GM SB Pagina N.: 1 of 19 1 X 90 Tons 30 m/min Tensioners JOB 08/059 0 19/02/2008 Basic proposal PP GM SB Rev N Date Issue Description Prepared by Checked by Approved by Pagina N.: 2 of 19 TABLE OF CONTENTS:

More information

EXCAVATION AND PILING NEAR SEWERS, STORMWATER DRAINS AND WATER MAINS

EXCAVATION AND PILING NEAR SEWERS, STORMWATER DRAINS AND WATER MAINS NMP 1.4 EXCAVATION AND PILING NEAR SEWERS, STORMWATER DRAINS AND WATER MAINS Index Purpose... 2 Application... 2 Referral Agency... 2 Associated Requirements... 2 Referenced Standards...2 Definitions...

More information

Elevating Your House. Introduction CHAPTER 5

Elevating Your House. Introduction CHAPTER 5 CHAPTER 5 Elevating Your House Introduction One of the most common retrofitting methods is elevating a house to a required or desired Flood Protection Elevation (FPE). When a house is properly elevated,

More information

Moving Small Mountains Vesuvius Dam Rehab

Moving Small Mountains Vesuvius Dam Rehab Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,

More information

USACE EMSWORTH DAM SPILLWAY GATES REHABILITATION. Michael Hanley 1 ABSTRACT

USACE EMSWORTH DAM SPILLWAY GATES REHABILITATION. Michael Hanley 1 ABSTRACT USACE EMSWORTH DAM SPILLWAY GATES REHABILITATION Michael Hanley 1 ABSTRACT The U.S. Army Corps of Engineers (USACE) Pittsburgh District has been gradually replacing aging electro-mechanical drive systems

More information

Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective

Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective FHWA NATIONAL GEOTECHNICAL PROGRAM www.fhwa.dot.gov/engineering/geotech Why Geotechnical Instrumentation? Provide warning

More information

HORIZONTAL INSTALLATION

HORIZONTAL INSTALLATION THERMO/SOLAR Žiar s.r.o. MANUAL FOR INSTALLATION PV SUPPORTING FRAMES HORIZONTAL INSTALLATION Technical alternation reserved A1410 1 12/2014 CONTENT ORD.NO. PAGE Mounting information 3 Mounting, flat roof

More information

After reading this lesson you will be able to: 12.3 IMPORTANCE OF ROOF 12.4 TYPES OF ROOF IN A HOUSE

After reading this lesson you will be able to: 12.3 IMPORTANCE OF ROOF 12.4 TYPES OF ROOF IN A HOUSE 86 :: Certificate in Construction Supervision (CIVIL) 12 ROOF 12.1 INTRODUCTION The structure provided to cover the house surface (floor) is known as roof. For different situation and requirement, it is

More information

Truss. are both simple and A Matsuo Example continuous trusses. The

Truss. are both simple and A Matsuo Example continuous trusses. The Girder Bridge A girder bridge is perhaps the most common and most basic bridge. A log across a creek is an example of a girder bridge in its simplest form. In modern steel girder bridges, the two most

More information

GENERAL OCEAN TOW RECOMMENDATIONS FOR JACKUP DRILLING UNITS International Association of Drilling Contractors (I.A.D.C.) February 13, 1991

GENERAL OCEAN TOW RECOMMENDATIONS FOR JACKUP DRILLING UNITS International Association of Drilling Contractors (I.A.D.C.) February 13, 1991 GENERAL OCEAN TOW RECOMMENDATIONS FOR JACKUP DRILLING UNITS International Association of Drilling Contractors (I.A.D.C.) February 13, 1991 Manning 1. Manning should comply with U.S. Coast Guard regulations

More information

Slab Track Austria. System ÖBB-PORR elastically supported slab

Slab Track Austria. System ÖBB-PORR elastically supported slab Slab Track Austria System ÖBB-PORR elastically supported slab 5. 2. 3. 4. 7. 6. Five holes for spindles 2. ÖBB-PORR slab 3. elastomeric layer 4. concrete joint sealing compound 5. rail support seat 6.

More information

If stepping is required, step at 180mm as seen in this picture.

If stepping is required, step at 180mm as seen in this picture. Cast Foundations to standard building regulations requirements. Foundations must be cast completely level, 600mm wide by 230mm deep for single storey, double storey is not allowed by NHBRC. If stepping

More information

Fabrication, Delivery and Installation

Fabrication, Delivery and Installation Evaporator D The Modules Fabrication, Delivery and Installation Marine Access Development In order to safely deliver the modules by sea to the Sellafield site, a temporary development has been constructed

More information

Embedded Parts Introduction - Anchors

Embedded Parts Introduction - Anchors In the plant construction or process plants such as chemical, petrochemical, gas or power plants various disciplines are brought into contact and built on each other. Civil, mechanical, electro technical

More information

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and

More information

Removable Aluminium posts

Removable Aluminium posts Post Solent Sail Shades Ltd 120 Billington Gardens Hedge End Southampton SO30 2RT Tel/Fax: 01489 788243 www.solentsailshades.co.uk Email: info@solentsailshades.co.uk Removable Aluminium posts Single Pole

More information

SUPER 600. Tracked Paver SUPER 600. Pave Widths 0.5m 2.7m. Maximum Laydown Rate 200 tonnes/h. Clearance Width 1.2m

SUPER 600. Tracked Paver SUPER 600. Pave Widths 0.5m 2.7m. Maximum Laydown Rate 200 tonnes/h. Clearance Width 1.2m SUPER 600 Tracked Paver SUPER 600 Pave Widths 0.5m 2.7m Maximum Laydown Rate 200 tonnes/h Clearance Width 1.2m Mini Paver for Maximum Efficiency on Minor Job Sites T hanks to its compact size, variable

More information

NCMA TEK CONCRETE MASONRY FOUNDATION WALL DETAILS. TEK 5-3A Details (2003)

NCMA TEK CONCRETE MASONRY FOUNDATION WALL DETAILS. TEK 5-3A Details (2003) NCMA TEK National Concrete Masonry Association an information series from the national authority on concrete masonry technology CONCRETE MASONRY FOUNDATION WALL DETAILS TEK 5-3A Details (2003) Keywords:

More information

Pipelines and seabed intervention

Pipelines and seabed intervention Workshop on seabed habitats of environmental concern Jørn Spiten Content Pipeline - route design Seabed Intervention - Trenching - Ploughing - Dredging - Rock installation 2 Pipeline routes 3 Pipeline

More information

MAT 75 STRUCTURAL SUPPORT SYSTEM

MAT 75 STRUCTURAL SUPPORT SYSTEM MAT 75 STRUCTURAL SUPPORT SYSTEM A GROUP COMPANY Structural Support Applications About the Mat 75 System For decades, Mabey Bridge & Shore has served the international construction community by providing

More information

Hanson Building Products. precast basement solutions

Hanson Building Products. precast basement solutions Hanson Building Products precast basement solutions Hanson Building Products Basement Systems Add an extra dimension and combine the inherent flexible, structural and waterproof properties of concrete

More information

Virginia Approach Spans

Virginia Approach Spans Virginia Concrete Conference 2009 Woodrow Virginia Approach Spans David Tackoor, HNTB Formerly of URS Corp for Potomac Crossing Consultants Woodrow 1 Second Severn Crossing 2 Medway Crossing (Channel Tunnel

More information

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.

Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge. TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

LIFT-505. BMF Lift Kit. Yamaha Drive Gas or Electric. Installation Instructions

LIFT-505. BMF Lift Kit. Yamaha Drive Gas or Electric. Installation Instructions LIFT-505 BMF Lift Kit Yamaha Drive Gas or Electric Installation Instructions Contents of LIFT-505 Yamaha Drive BMF Lift Kit: a (1 ea.) BMF A-Arm Assembly b (1 ea.) Driver Side Shock Tower c (1 ea.) Passenger

More information

DOCKMASTER TRAINING MANUAL

DOCKMASTER TRAINING MANUAL DOCKMASTER TRAINING MANUAL By HEGER DRY DOCK, INC. June, 2005 DOCKMASTER S TRAINING SEMINAR TABLE OF CONTENTS LECTURE NOTES SECTION 1 DRY DOCK TYPES Page 1.1 Basin Dry Docks... 1-2 1.2 Floating Dry Docks...

More information

Handling, Erection and Bracing of Wood Trusses

Handling, Erection and Bracing of Wood Trusses Handling, Erection and Bracing of Wood Trusses Follow these guidelines for safe installation of Wood Trusses. These guidelines should not be considered to be the only method for erecting and bracing of

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Boom and fly capacities for this machine are listed by the following sections:

Boom and fly capacities for this machine are listed by the following sections: Lifting Capacities Telescopic Hydraulic Truck Crane HTC 8650 50 ton (45.36 metric ton) and fly capacities for this machine are listed by the following sections: Fully Extended Outriggers Working Range

More information

Guide to Carrying Out Engineering Works within Road Structure Safety Zone and Engineering Activity on Land adjoining Public Streets

Guide to Carrying Out Engineering Works within Road Structure Safety Zone and Engineering Activity on Land adjoining Public Streets Guide to Carrying Out Engineering Works within Road Structure Safety Zone and Engineering Activity on Land adjoining Public Streets January 2011 Edition All rights reserved. No part of this publication

More information

Lunette 2 Series. Curved Fixed Frame Projection Screen. User s Guide

Lunette 2 Series. Curved Fixed Frame Projection Screen. User s Guide Lunette 2 Series Curved Fixed Frame Projection Screen User s Guide Important Safety and Warning Precautions Please follow these instructions carefully to ensure proper maintenance and safety with your

More information

Technical handbook Panel Anchoring System

Technical handbook Panel Anchoring System 1 Basic principles of sandwich panels 3 Design conditions 4 Basic placement of anchors and pins 9 Large elements (muliple rows) 10 Small elements (two rows) 10 Turned elements 10 Slender elements 10 Cantilevering

More information

Brandangersundet Bridge A slender and light network arch

Brandangersundet Bridge A slender and light network arch Brandangersundet Bridge A slender and light network arch Rolf Magne Larssen Dr. ing./ Ph.D. Dr. ing A. Aas-Jakobsen AS Oslo, Norway rml@aaj.no Rolf Magne Larssen, born 1958, received his Ph.D. in structural

More information

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations

Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet

More information

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long HYDRAULICS H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long 1. General The series of channels H91.8D has been designed by Didacta Italia to study the hydrodynamic

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe

TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe TECHNICAL NOTE Lining of Casings with SaniTite HP Pipe TN 5.18 October 2015 In sanitary sewer, it is often necessary to use trenchless technology methods to install a casing pipe under high volume roads,

More information

ATLAS RESISTANCE Pier Foundation Systems

ATLAS RESISTANCE Pier Foundation Systems ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize

More information

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE By H P Gupta & D K Gupta DIFFERENT TYPES OF DAMAGES 1.Minor cracks 0.5 to 5 mm wide in load or non-load bearing walls 2.Major

More information

A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN.

A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. A Solid Foundation Solution for Homeowners from Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. Stop the damaging effects of foundation settling... Sinking foundations, cracked

More information

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell)

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell) Introduction Fugro LOADTEST Overview STATIC LOAD TESTING O-cell Bi-directional testing State of the art Dr Melvin England Fugro LOADTEST Static load tests Previous/existing technology Developments O-cell

More information

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

More information

First Power Production figures from the Wave Star Roshage Wave Energy Converter

First Power Production figures from the Wave Star Roshage Wave Energy Converter First Power Production figures from the Wave Star Roshage Wave Energy Converter L. Marquis 1, M. Kramer 1 and P. Frigaard 1 Wave Star A/S, Gammel Vartov Vej 0, 900 Hellerup, Denmark E-mail: info@wavestarenergy.com

More information

KOSCIUSZKO BRIDGE PROJECT BRIDGE PRIMER

KOSCIUSZKO BRIDGE PROJECT BRIDGE PRIMER KOSCIUSZKO BRIDGE PROJECT BRIDGE PRIMER The New York State Department of Transportation (NYSDOT) is preparing an Environmental Impact Statement (EIS) to evaluate alternatives for the rehabilitation or

More information

Guide for SOLID CONCRETE BLOCK SEALS

Guide for SOLID CONCRETE BLOCK SEALS Guide for SOLID CONCRETE BLOCK SEALS July, 2006 Mine Safety and Health Administration SOLID CONCRETE BLOCK SEAL Formersection 30 CFR 75.335(a)(1) specifies requirements for seals constructed using solid

More information

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION -SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION -Unit number- 4420798 -Unit title- CONSTRUCTION TECHNOLOGY 2: SUBSTRUCTURE AND REMEDIAL WORKS -Superclass category-

More information

Worldwide network in over 40 countries.

Worldwide network in over 40 countries. Worldwide network in over 40 countries. April 2012 56 rue de Neuilly 93136 Noisy le Sec Cedex - France Tel : +33 (0)1 49 42 72 95 Fax : +33 (0)1 48 44 00 02 E-mail : contact@ptc.fayat.com PTC s vibrodrivers

More information

Shaft Alignment. Powertrain Vibration

Shaft Alignment. Powertrain Vibration Shaft Alignment and Powertrain Vibration Chris Leontopoulos C1 Shaft Alignment Definition Most shipboard configurations of shafts and bearings are likely to be aligned when some or all of the centrelines

More information

Types of Mining - Expert Table

Types of Mining - Expert Table See page 6 Minerals Downunder Teacher Guide (2002) - Activity 4a Types of Mining - Expert Table How to Jigsaw Information 1. Divide the class into Home Groups of five for the five different types of mining

More information

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Roberto Gómez, Raul Sánchez-García, J.A. Escobar and Luis M. Arenas-García Abstract In this paper we study the

More information

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM

BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for

More information