ToappearinJ.ofParallelandDistributedProcessing. TheGeneralizedDimensionExchangeMethodforLoad Balancingink-aryn-cubesandVariants
|
|
|
- Lambert Lewis
- 10 years ago
- Views:
Transcription
1 ToappearinJ.ofParallelandDistributedProcessing TheGeneralizedDimensionExchangeMethodforLoad Balancingink-aryn-cubesandVariants DepartmentofComputerScience,TheUniversityofHongKong,HongKong DepartmentofComputerScience,ShantouUniversity,P.R.China FrancisC.M.Lau Cheng-ZhongXu 1
2 changeparameterthatgovernsthesplittingofload Abstract TheGeneralizedDimensionExchange(GDE)methodis afullydistributedloadbalancingmethodthatoperates inarelaxationfashionformulticomputerswithadirect communicationnetwork.itisparameterizedbyanex- loadbalancing.anoptimalwouldleadtothefastest betweenapairofdirectlyconnectedprocessorsduring resultedintheoptimalforthebinaryn-cubes.inthis convergenceofthebalancingprocess.previousworkhas paper,wederivetheoptimal'sforthek-aryn-cube networkanditsvariants thering,thetorus,thechain, andthemesh.weestablishtherelationshipsbetween theoptimalconvergenceratesofthemethodwhenappliedtothesestructures,andconcludethatthegde relaxation-basedmethod,thediusionmethod. revealthesuperiorityofthegdemethodtoanother theoptimal'sdospeedupthegdebalancingproceduresignicantly.becauseofitssimplicity,themethod isreadilyimplementable.wereportontheimplemen- inwhichtheimprovementinperformanceduetogde balancingissubstantial. tationofthemethodintwodata-parallelcomputations Wefurthershowthroughstatisticalsimulationsthat methodfavorshighdimensionalk-aryn-cubes.wealso ing,k-aryn-cubenetworks,messagepassingmulticom- puters,circulantmatrices. Keywords.dimensionexchangemethod,loadbalanc- Method Correspondence:DrF.C.M.Lau,Departmentof ComputerScience,TheUniversityofHongKong,PokfulamRoad,HongKong.Fax:(852) , Runninghead.GeneralizedDimensionExchange 2
3 ListofSymbols D() Pij M() G=(V;E)systemgraph (G) G=(V;E)-colorgraph;isthechromaticindexofthegraphG diusionmatrix generalizeddimensionexchangematrix setofdistinctcolorpathsfromvertexitovertexj,withtypicalelementpij. degreeofthegraphg (M) Wt opt wti opt workloaddistributionattimet workloadofnodepiattimet optimaldiusionparameter optimalexchangeparameter (D) R1(M())asymptoticconvergencerateofthesequencefMtg convergencefactorofthegdemethod convergencefactorofthediusionmethod MCk MRk MMk1;k2;:::;knGDEmatrixofthecolormeshofsizek1k2kn MTk1;k2;:::;knGDEmatrixofthecolortorusofsizek1k2kn DCk GDEmatrixofthecolorchainofsizen GDEmatrixofthecolorringofsizen DTk1;k2;:::;kndiusionmatrixofthecolortorusofsizek1k2kn DRk DMk1;k2;:::;kndiusionmatrixofthecolormeshofsizek1k2kn improvementduetoremapping diusionmatrixofthechainofsizen diusionmatrixoftheringofsizen 3
4 1Introduction Weconsidertheproblemofdynamicloadbalancingin multicomputers.multicomputersareaclassofparallel machinesthatarecomposedofmanyautonomousprocessorsinterconnectedbyacommunicationnetwork[1]. Theprocessorsdonotshareanymemoryandtheycommunicateamongthemselvesviamessagepassing.From timetotime,theworkloadthatisspreadacrossthe processorsisfoundtobeinanunbalancedstate;load balancingistheninitiatedtobalancetheworkload.dimensionexchange(de)isoneofthefewdistributedload balancingmethodsthatoperateinarelaxationfashion forpoint-to-pointnetworks(adetailedsurveycanbe foundin[20]).withthedemethod,aninstanceof loadbalancingiscarriedoutasasequenceof\sweeps". Duringeachsweep,aprocessorcomparessuccessively itsworkloadwiththatofeachofitsnearestneighbors; followingeachsuchcomparison,anexchangeoperation isexecutedtoequalizetheworkloadbetweenthisnode andtheneighboringnodeconcerned.alternatively,insteadofexchangingworkloadson-the-y,theloadbalancingprocedurecanbedividedintotwophases:inthe rstphase,deisemployedtoworkouttherevisedload \indices"thatcorrespondtoabalancedstate;thenin thesecondphase,theactualloadmigrationswouldtake place.thismakesthemethodmoreapplicabletosituationsinwhichtheworkloadinvolveslargeamountsof data. TheDEmethodwasinitiallyintensivelystudiedin hypercube-structuredmulticomputers[14,15,5].since thesetofneighborsofaprocessorcorrespondexactlyto thedimensionsofthehypercube,asweepoftheiterativeprocessisequaltogoingthroughallthedimensions once.cybenkoprovedthatregardlessoftheorderin whichthesedimensionsareconsideredinasweep,this simpleloadbalancingmethodyieldsauniformdistributionfromanyinitialworkloaddistributionafterone sweep[5].healsorevealedthesuperiorityofthede methodtoanotherrelaxation-basedmethod,thediusionmethod[3,5],whenappliedtohypercubes.this theoreticalresultwassupportedinpartbytheexperimentcarriedoutbywillebeek-lemairandreeves[18]. TheDEmethodisnotlimitedtohypercubestructures.Hosseinietal.analyzedthemethodasapplied toarbitrarystructuresbasedonedge-coloringofundirectedgraphs[8].withedge-coloring,theedgesofa givengrapharecoloredwithsomeminimumnumberof colorssuchthatnotwoadjoiningedgesareofthesame color.a\dimension"isthendenedtobethecollectionofalledgesofthesamecolor.obviously,anndimensionalhypercubecanbecoloredwithaminimum ofncolors.duringeachiterationsweep,alldimensions (colors)areconsideredinturn.sincenotwoadjoining edgeshavethesamecolor,eachprocessorneedstodeal withonlyoneneighboratatimeduringasweep.clearly, foranarbitrarystructure,thedemethodcannolonger yieldauniformworkloaddistributioninasinglesweep. Nonetheless,Hosseinietal.showedthatgivenanyarbitrarystructure,theDEmethodconvergeseventuallyto auniformdistribution[8]. TheDEmethodischaracterizedby\equalsplitting" ofworkloadbetweenapairofneighboringprocessorsat everycomparison,whichwasshowntobeoptimalinhypercubestructuresbutnotnecessarilysoinotherstructuresthroughouranalysis[21].inthatpaper,wegeneralizedthedemethodbyaddinganexchangeparametertogoverntheamountofworkload(insteadofalways half)exchangedateverystep.thismethodiscalled thegeneralizeddimensionexchange(gde)method.we modeledthisgeneralizeddemethodusingamatrixiterativeapproachandderivedthenecessaryandsucient conditionforitsconvergence. Inthispaper,wecontinueouranalysisoftheGDE methodasappliedtothefamilyofk-aryn-cubeswhich includethering,thechain,thetorus,andthemesh.a k-aryn-cubeisastructurewithndimensions,knodes ineachdimensions[6,10].theringandthehypercubearespecialcasesofthek-aryn-cube.aringof knodesisak-ary1-cube,andann-dimensionalhypercubeisa2-aryn-cube.then-dimensionaltorusisa generalizationofthek-aryn-cube,whichallowsdierentnumbersofnodesindierentdimensions.takea ringandatorusandstripthemofalltheend-round connections,wegetachainandaringrespectively.we 4
5 limitourscopetothesestructuresbecausetheyarethe mostpopularchoicesoftopologiesincommercialparallel computers[10,13,16].examplesincludethehypercubestructuredintelipsc/860andncube/2,themeshstructuredintelparagon,inteltouchstonedelta,iwarp, andametek2010. Themaincontributionofthispaperisthederivation oftheoptimalexchangeparametersinclosedformfor thefamilyofk-aryn-cubes.theoptimalsolutionsfor thesestructuresareofconsiderablevaluebecausethere isthisrealneedinpracticalsituationsofchoosingan exchangeparameterthatwouldleadtothefastestconvergenceofthebalancingprocedure.apreviewofthese optimalparameterswithoutproofshasbeenincludedin ourpreviouspaper[21].asubsetoftheproofs,whichare basedoncirculantmatrixtheory[7],willbepresentedin thispaper.wecapitalizeonthemodelingpowerofcirculantmatrices,whichismostevidentincasesinwhich thestructuresconcernedcanberecursivelydened. Theotherimportantcontributionsofthispaperincludetheestablishmentoftherelationshipsbetweenthe convergenceratesofthesestructuresandaproofofthe superiorityofthegdemethodtothediusionmethod. Thelatteriswithrespecttotheconvergenceratesof thetwomethodswhenappliedtothefamilyofk-aryncubes.thematrixanalysisrevealstheasymptoticconvergenceratesbutshedslittlelightontheexactnumber ofsweepsneededforbalancing.therefore,weusestatisticalsimulationstoobtaintheactualnumberofsweeps requiredbygdebalancinginthesestructures.this numberturnsouttobeencouraginglysmallinallthe caseswetriedwhenusingtheoptimalparameterswederived.thisaddsalotofweighttothepracticalityofthe GDEmethod.Infact,themethodhasbeenemployedin theimplementationsoftworealisticdata-parallelcomputations,andtheimprovementovertheversionswithoutloadbalancingissubstantial.wegiveabriefreport ontheseimplementations. Therestofthepaperisorganizedasfollows.InSection2,wereviewtheGDEmethodanditsconvergence propertiesforthegeneralcase.insection3,weanalyze thegdemethodforthek-aryn-cubeanditsvariants, andderivetheiroptimalexchangeparameters.insection4,wemakeacomparisonbetweenthegdemethod andthediusionmethod.section5reportsontheresultsofastatisticalsimulationconcerningthenumberof iterationsweepsaswellasndingsfrompracticalimplementations.weconcludeinsection6withasummary oftheresultsanddiscussionoffurtherwork. 2TheGDEmethod Themodeloftheunderlyingsystemandcomputation assumedinthisstudyissimilartothatin[3,5,8,21]. Specically,themulticomputerweconsiderconsistsof anitesetofhomogeneousprocessorsinterconnectedas apoint-to-pointnetwork.thecommunicationlinksare bi-directionalandtheprocessorsinteractsynchronously withoneanother.werepresentsuchasystembyasimpleconnectedgraphg=(v;e),wherevisasetof processorslabeled1throughn,andevvisa setofedges.everyedge(i;j)2ecorrespondstothe communicationlinkbetweenprocessorsiandj.the underlyingparallelprogramisassumedtocomprisea largenumberofindependentprocesseswhicharethe basicunitsofworkload.oneormoreprocessesmay berunninginaprocessoratanytime.thetotalworkloadisassumedxed i.e.,noprocessesarecreatedor killed duringtheexecutionoftheloadbalancingprocedure.wequantifytheworkloaddistributionbyavector W=(w1;w2;:::;wN)T,wherewidenotestheworkload ofprocessoriwhichisintermsofthenumberofresiding processes.weassumethenumberofprocessesislarge sothattheworkloadofanodeisaninnitelydivisiblerealquantity.itisnotdiculttoseethatwithout thisassumption(resultinginthe\integerversion"which willbediscussedinsection5)ourresultsstillhold.the loadbalancingtaskistoredistributethesystemworkloadsuchthateachnodewouldendupwiththesame w=pwi=n,i=1;2;:::;n. Notethattheloadbalancingproblemresemblesin certainwaysanotherdistributeddecisionproblem,the agreementproblem[2].thislatterproblemrequiresthe nodesofasystemtoreachanagreementonacommon 5
6 scalarvalue,suchastheaverage,themaximum,orthe minimum,basedontheirownvalues.theloadbalancingproblem,however,requiresthenodesnotonlyto ecientmanner. justtheirworkloadsaccordinglyinanautomaticand reachanagreementontheaverageload,butalsotoadlems.thestaticworkloadassumptionisvalidincasestrictive,butyetitisapplicabletomanypracticalprob- wherethecomputationistemporarilysuspendedforload balancingandresumedafterloadbalancing.thisiswhy tuningtheeciencyoftheloadbalancingisoftoppriority.exampleofsuchcasescanbeeasilyfoundindy- Thecomputationmodeljustdescribedmightseemre- isdominatedbytheexecutiontime.thepracticalapplicabilityofiterativeloadbalancingwillbedemonstratenamicremappingofmulti-phasedata-parallelcomputations[12,11].theassumptionofindependentprocesses throughimplementationofdataparallelcomputations andcommunicationineachphaseandtheperformance isalsoreasonableinthiskindofcomputationsbecause theprocessingnodeswouldalternatebetweenexecution edgesofgaresupposedtobecoloredbeforehandwith insection5. theleastnumberofcolors(,say),andnotwoadjoining withintegersfrom1to,andrepresentthe-colorgraph edgesareassignedthesamecolor.weindexthecolors asg=(v;e),ofwhicheisasetof3-tuplesofthe form(i;j;c),(i;j;c)2eifandonlyifcisthechromatic TheGDEmethodisbasedonedge-coloringofG.The indexoftheedge(i;j)2e.figure1showsexamples ofcolorgraphsofringsandchains.thenumbersin parenthesesaretheassignedchromaticindices. Figure1:Examplesofcoloredgraphs 6 1 (3) (c) (a) (b) (d) i,theexchangeofworkloadwithaneighborjisexecuted goingthroughallthechromaticindicesonce thisiswhy sweepoftheiterativeprocess.asweepcorrespondsto weneedtousetheleastnumberofcolors.forprocessor loadwitheachofitsneighborsinturnaccordingtothe orderinwhichchromaticindicesareconsideredineach WiththeGDEmethod,aprocessorwouldexchange wherewiandwjarethecurrentworkloadsofprocessorsi andjrespectively,andistheexchangeparameterchosenbeforehandforthegivennetwork.notethatwhen in[5,8,15]. =1=2,theGDEmethodisreducedtotheDEmethod wi=(1?)wi+wj calworkloadofprocessoriatsweept.thentheoverall workloaddistributionatsweeptisdenotedbythevectorwt=(wt1;wt2;:::;wtn)t.supposew0istheinitial Fora-colorgraph,asweepoftheGDEalgorithm index,t=0;1;2;3;:::,andwti(1in)bethelo- comprisesstepswhichwillcoveralltheneighborsof everynodeforworkloadexchange.lettbethesweep distributioninthesystematsweeptcanbemodeledby wherem()iscalledthegdematrixofthe-color workloaddistribution.thenthechangeoftheworkload graphg,andm()=m()m?1():::m1(). theequationwt+1=m()wt loaddistributionofthesystematstepcofsweept. EachMc()(1c)reectsthechangeofthework- Tomakedynamicloadbalancingwork,therearetwo R1(M()). latterisreectedbytheasymptoticconvergencerate, atitsterminated,load-balancedstate.theformerconcernstheconvergenceofthesequencefmt()g,andthe mainissues.oneistheterminationcondition;theother iseciency,i.e.,thetimeneededforthesystemtoarrive andsucientconditionfortheterminationofthegde 1,itcanthenbeshownthat0<<1isanecessary stochasticwhen01andprimitivewhen0<< GiventhefactthatM()isnon-negativeanddoubly
7 methodfromanyinitialloaddistribution(theorem3.1 of[21]). Regardingtheconvergencerate,theeigenvaluesof M()playafundamentalrole.Letj(M())(1 jn)betheeigenvaluesofm(),and(m())and (M())bethedominantandsubdominanteigenvaluesrespectivelyofM()inmodulus.Since(M()) isuniqueandequalto1,itfollowsthatr1(m())=?ln(m()).(m())isalsoreferredtoastheconvergencefactorofthegdemethodinthecorresponding -colorgraph.thus,thetaskhereistochooseaso that(m())isascloseto0aspossible,i.e.,r1(m()) aslargeaspossible. Tondtheminimum(M()),wehavetorstconstructtheGDEmatrixM().Therepresentationof eachelementmijinm()isbasedontheconceptof colorpath.acolorpathoflengthlfromvertexito vertexjisasequenceofedgesoftheform (i=i0;i1;c1);(i1;i2;c2);:::;(il?1;il=j;cl) whereallintermediateverticesis(1sl?1)aredistinctandc1>c2>:::>cl1.itindicatesthat processoriwillreceivesomeworkloadfromprocessorj alongthepathinaniterationsweep.twocolorpaths fromitojingaresaidtobedistinctiftheirintermediateverticesdonotcoincideatall.allthedistinct colorpathsfromitojcompriseasetpij.sincethe computationformulasfortheelementsofm()willbe referredtofrequentlyintheremainderofthispaper,we reproducebelowthelemmathatdenesthem.examplesofgdematricescanbefoundinlatersectionsof thispaper. Lemma2.1(Lemma3.2of[21])LetM()betheGDE matrixofa-colorgraphg.if0<<1,thenfor 1i;jN mij=pp2pij((1?)rplp) i6=j mii=(1?)(i)+pp2pii((1?)rplp) wherelpisthelengthofthecolorpathp2pijofthe form(i=i0;i1;c1);(i1;i2;c2);:::;(ilp?1;ilp=j;clp); andrp=plp s=0ns,wheren0isthenumberofincident edgesofiwhosechromaticindexislargerthanc1;nlpis thenumberofincidentedgesofjwhosecolornumberis smallerthanclp;andns(1slp?1)isthenumber ofincidentedgesofiswhosechromaticindexislarger thancs+1andsmallerthancs. Ourobjectiveistodeterminetheoptimalexchange parameteroptforagivengdematrix,whichwould minimize(m())andmaximizetheconvergencerate. Forarbitrarynetworks,thisisanopenprobleminmatrix theory[17].forsomenetworkswitharegulartopology, however,itispossibletoanalyzeexactlytheeectof ontheconvergencerateaswellastoderivetheoptimal exchangeparameter.in[21],weprovedthat=1=2 (equalsplittingofworkloadbetweenapairofnearest neighbors),whichwas\built-in"inthedemethod,is indeedtheoptimalchoiceforcertainstructures(thehypercube,forexample).forotherstructures,suchasthe k-aryn-cube,however,=1=2isnottheoptimalchoice, aswewillshowinthenextsection. 3Analysisofthek-aryn-cube andvariants Webeginwiththeringstructure,i.e.,ak-ary1-cube, andthengeneralizeittothen-dimensionalk1k2 kntorus.theanalysisofthetorusdependsonthe analysisoftheringastheformercanbetreatedasan assemblyofrings.themainresultforthek-aryn-cube followstriviallyfromtheresultsforthetorus. Themodelingtoolweusefortheanalysisisaspecialkindofmatricescalledblockcirculantmatrices.It happensthatthegdematricesofthe\even"casesof theabovestructures evennumberofnodesinevery dimension areblockcirculantmatrices.weconcentrateontheseevencasesfortheremainderofthispaper,andmaketheremarkherethattheresultsforthe evencasesshouldbeapplicable(approximately)tothe non-evencases.wegivesimulationresultsandasimple argumentinsection5tosupportthis.nevertheless,the analysisofthenon-evencasesshouldstillbeaninterest- 7
8 ingtheoreticalproblemtotackle. culantmatrices[7]. whichcanbeeasilyderivedbasedonthetheoryofcir- thefollowingtwolemmasconcerningblockcirculantmatricesanddirectproductsofmatrices.weomittheproofs Forthesubsequentanalysis,weneedtomakeuseof Ifr=1,ablockcirculantmatrixdegeneratestoacirculantmatrix. Lemma3.1LetmatrixA=(A1;A2;:::;Am).Then A2A3:::A11CA AmA1::::::Am?1 Thenablockcirculantmatrixisamatrixoftheform LetA1;A2;:::;Ambesquarematricesoforderr. theeigenvaluesofthematrixaarethoseofmatrices matrixa=(a1;a2),thentheeigenvaluesofaare thoseofa1+a2,togetherwiththoseofa1?a2. A1+!jA2+:::+!j(m?1)Am,j=0;1;:::;m?1,where matrixofordermndenedby respectively.thenthedirectproductofaandbisa!j=cos2j LetAandBbesquarematricesofordermandn, m+isin2j m,i=p?1.inparticular,if Lemma3.2LetA,Bbesquarematricesoforderm j=1;2;:::;n.thentheeigenvaluesofabare i(a)j(b). andnwitheigenvaluesi(a)andj(b),i=1;2;:::;m, a1;0ba1;1ba1;m?1b am?1;0bam?1;1bam?1;m?1b1ca Forsimplicityofnotation,welet U= V= Q= Q2!= Q1 U2!= U1 V1 V2!= 1? (1?)2 (1?)(1?)2 (1?)2(1?)!; 1?!: 2(1?)!; 8 3.1Theringstructure Theringisak-ary1-cubestructurewhosenodeswelabel 1throughk.Anevenringcanbecoloredwith2colors, asinfigure1(b).thiscoloringisunique i.e.,there isonlyonewayofcoloringtheedgeswithoutrespectto thepermutationoflabels.thegdematrixofaneven Lemma3.3LetGRkbeacolorringofevenorderk, theform0b@v2 ringisinblockcirculantform,asfollows. andmrkbeitsgdematrix.thenmrkisamatrixof V1 UVUṾ... UV U2 Proof.TheproofisbyinductionontheorderofGRk. (3).WeneedtoshowthatiftheGDEmatrixMR2m First,itiseasytoverifythatMR4isintheformof U1 1 CAkk (3) ofgr2m,m2,isintheformof(3),thenthegde vertexlabeled2mingr2misrelabeled2m+2,andthe withtwoextravertices,asillustratedinfigure2.the matrixmr2m+2ofgr2m+2isnecessarilyinthatform aswell.let'sviewgr2m+2asanexpansionofgr2m newlyaddedverticesarelabeled2mand2m+1.then, accordingtothecomputationformulasinlemma2.1, weobtainthefollowing. Forj=2m+1;2m+2, Figure2:AnexpansionoftheringGR2m (MR2m+2)1;j?2=0; (MR2m+2)1;j=(MR2m)1;j?2; (MR2m+2)2m+2;j=(MR2m)2m;j?2; m 2m 2m-1 2m-2 m m 2m-1 2m+2 GR 2m GR 2m+2 2m+1 2m 2m-2 m+1
9 forj=1;2,(mr2m+2)2m+2;j=(mr2m)2m;j; (MR2m+2)2m;j=0; fori=2m;2m+1;2m?1j2m+2, (MR2m+2)i;j=(MR2m)i?2;j?2: Hence,MR2m+2,andthereforeMRk,areintheform of(3).2 Asanexample,theGDEmatrixoftheringoforder 8,MR8,isasinFigure3. GiventhisparticularstructureofthematrixMRk,we canthenderivetheoptimalexchangeparameteranddeterminetheeectoftheringorderkontheconvergence rate. Theorem3.1LetGRkbeacolorringofevenorderk,MRkbetheGDEmatrixofGRk,andk= 2m.Thentheoptimalexchangeparameteropt(MRk) isequalto1 1+sin(=m);andforagiven,R1(MRk) R1(MRk?2). Proof.ConsidertheparticularformofMRkasshownin Lemma3.3.ItiseasytoseethatMRkcanberepresented byablockcirculantmatrix(a1;a2;0;:::;0;am), wherea1= (1?)2(1?) (1?)(1?)2!; A2= 00 (1?)2!; Am= 2(1?) 00!: Andforj=0;1;:::;m?1, A1+!jA2+!j(m?1)Am= (1?)2+!m?j2(1?)+!m?j(1?) (1?)+!j(1?)(1?)2+!j2! because!j(m?1)=!m?j.fromlemma3.1,theeigenvaluesofthematrixmrkaretherootsoftheequation 2?2?(1?)2+2cos(2j=m)+(1?2)2=0 Thatis, =(1?)2+2cos(2j r(1+cos(2jm) m))((1+cos(2j m))2?4+2); wherej=0;1;:::;m?1. Clearly,thedominanteigenvalueofMRkinmodulus, (MRk),isequalto1,andwhenk6=4,thesubdominant eigenvalueofmrkinmodulus,(mrk),isequalto 8><>:2?1 if2?p2(1?e) 1+e<1 (1?)2+2e+p(1+e)((1+e)2?4+2) if0<2?p2(1?e) 1+e wheree=cos(2=m).therefore,foragivenringof ordern=2m,n6=4,itsoptimalexchangeparameteris asfollows opt(mrk)=2?p2(1?cos(2=m)) 1+cos(2=m)= 1 1+sin(=m): Whenk=4,wehaveabinary2-cube(two-dimensional hypercube)forwhichopt(mr4)=1=2and(mr4)= 0,whichisinagreementwithpreviousresultsforthe hypercube[5].moreover,(mrk)increaseswithmfor agiven.hence,r1(mrk)decreasesasmincreases. Thatis,foragiven,R1(MRk)R1(MRk?2).2 Theabovetheoremsaysthatforagiven,themore verticesanevenringhas,thesloweritsconvergencerate. Italsogivestheformulafortheoptimalforanyeven ring,whichcanbeusedinpracticetocomputetheexact optimalvaluefortheexchangeparameterforagiven ring.forexample, opt(mr16)=2=(2+q2?p2)0:723: 3.2Thetorusstructure Thek-aryn-cubeisaspecialcaseofthen-dimensional k1k2kntorus.inthiscase,k1=k2== kn=k.thegeneralcaseappearstobemoreinterestingintermsofitsanalysis.werstconsiderthetwodimensionalk1k2toruswithevennumberofnodesin bothdimensions.itcanbeviewedasacollectionofverticalandhorizontalevenrings(seefigure4),andhence 9
10 (1?)(1?)2(1?)2 2(1?)0 2(1?) (1?)2 2(1?)(1?)2(1?)0 0 0(1?)(1?)2(1?)2 0 2(1?)(1?)2(1?)0 0(1?)(1?)2(1?)2 2(1?)(1?)2(1?) Figure3:TheGDEmatrixoftheringoforder8,MR CA: let mensionexchangeoperatorisconcerned.therefore,we resultsintheprevioussectionfortheringcanbeapplied totheanalysishere.tohandlethedegeneratecaseofk1 isequivalenttoachainoftwonodesasfarasthedi- order2.thereasonforthisisthataringoftwonodes ork2equalto2,weusethegdematrixforachainoftorusiscoloredintherow-majorway.notethatwith MR2= 1? 1?!: thiscoloring,allhorizontaledgesaresmallerthanthe Lemma3.4LetMTk1;k2betheGDEmatrixofak1 becauseoftheparticularstructureofthegdematrix verticaledgesinchromaticindices.wewillsoonseethat MRk1. asrevealedbythefollowinglemma,thesetwocolorings Proof.Givenanorderedpairofvertices<i;j>in k2evencolortorusgtk1;k2.thenmtk1;k2=mrk2 havethesameeectontheconvergencerate. GTk1;k2, 1.ifbothiandjareinthesamehorizontalring,i.e., bi=k1c=bj=k1c,thenbecauseofthecoloringwe majorlabeling.similarly,therearetwowaysofcolor- ingtheedges:row-majorandcolumn-majorcoloring, =(MRk2)bi=k1c;bj=k1c(MRk1)imodk1;jmodk1 (1?)2(MRk1)imodk1;jmodk1 ifk2=2 otherwise matrixofanetworkisinvariantforanypermutationof labeling.asthespectrumofeigenvaluesofthegde thenodelabels,wearbitrarilychoosethesnake-likerow- nodesofthetorus:row-majorandsnake-likerow-major Figure4showsthetwocommonwaysoflabelingthe Figure4:Colortoriof44 useinwhichallhorizontaledgesaresmallerthan theverticaledgesinchromaticindices, (MTk1;k2)i;j =8><>:(1?)(MRk1)imodk1;jmodk1 asshowninthegure.wearbitrarilyassumethatthe2.ifiandjareindierenthorizontalrings,i.e., 10andthereexisttwocolorpathspi1jandpii1fromi1 bi=k1c6=bj=k1c,thenthereisacolorpathfrom tojandfromitoi1,respectively,asinillustrated suchthati1modk1=imodk1,bi1=k1c=bj=k1c, itoj,saypij,ifandonlyifthereexistsavertexi1 (3) (3) (3) (3) 7 (3) (3) snake-like row-major node-labeling row-major edge-coloring (a) (3) (3) 13 (3) (3) (3) (3) (3) (3) (3) 6 14 (3) (b) row-major node-labeling column-major edge-coloring
11 i 1 (3) (3) (3) (3) j i Figure5:Illustrationofthecolorpathfromvertexito vertexj infigure5.letl1andl2bethelengthsofpi1jand pii1,respectively;r1bethesumofthenumber ofincidenthorizontaledgesofi1thatarebetween, inchromaticindices,theincidentedgesofi1along thepathpij,andthenumberofincidenthorizontaledgesofi1whosechromaticindexislessthan thatofthelastedgeinpij;andr2bethesumof thenumberofincidentverticaledgesofi1thatare between,inchromaticindices,theincidentedgesof i1alongpij,andthenumberofincidentverticaledgesofi1whosechromaticindexislargerthan thatoftherstedgeinpij.then,accordingtothe computationformulasinlemma2.1,wehave (MTk1;k2)i;j =l1+l2(1?)r1+r2 =l2(1?)r2l1(1?)r1 =(MRk2)bi=k1c;bi1=k1c(MRk1)i1modk1;jmodk1 =(MRk2)bi=k1c;bj=k1c(MRk1)imodk1;jmodk1 Byreferringtothedenitionofdirectproductin Lemma3.2,thelemmaisproved.2 Ifinsteadweusecolumn-majorcoloring,thenallhorizontaledgesarelargerthantheverticaledgesinchromaticindices.Byfollowingtheabovesteps,however,we wouldndthattheresultinggdematrixisthesameas MTk1;k2.Wecontinuetoassumerow-majorcoloringin thefollowingdiscussion. WenowturntotheconvergencerateofGDEinthe torus,andseehowitisrelatedtotheconvergencerate inthering. Theorem3.2LetMTk1;k2betheGDEmatrixofa k1k2evencolortorusgtk1;k2.then,theoptimalexchangeparameteropt(mtk1;k2)isequaltoopt(mrk); andforagiven,r1(mtk1;k2)=r1(mrk),where k=maxfk1;k2g. Proof.FromLemma3.2,itisclearthat (MTk1;k2)=maxf(MRk1);(MRk2)g because(mrk1)=(mrk2)=1.moreover,fromtheorem3.1,(mrk1)(mrk2)ifandonlyifk1k2. Hence,(MTk1;k2)=(MRk),wherek=maxfk1;k2g; and(mtk1;k2)isminimizedwhen=opt(mrk).in otherwords,r1(mtk1;k2)=r1(mrk)andbothmrk andmtk1;k2havethesameoptimalexchangeparameter.2 Asaresult,onecancomputetheoptimalexchangeparameteropt(MTk1;k2)usingtheformulainTheorem3.1. Moreover,theabovetheoremshowsthattheconvergence rateintwo-dimensionaltorusstructuresdependsonly onthelargerdimension.forexample,thetorigt16;j, j=2;4;:::;16,allhavethesameconvergenceratefora givenandsharethesameoptimalexchangeparameter opt(mt16;j)=2=(2+p2?p2)0:723: Theresultsforthetwo-dimensionaltorusshownabove canbegeneralizedtomulti-dimensionalcases.consider ak1k2:::kneventorusandassumethatthisndimensionaltorusiscoloredinawaysimilartothatfor thetwo-dimensionaltorus.then,itsgdematrixcan beexpressedintermsofdirectproductsofcolorrings. Lemma3.5LetMTk1;k2;:::;knbetheGDEmatrixof ann-dimensionalk1k2knevencolortorus GTk1;k2;:::;kn.Then,MTk1;k2;:::;kn=MRk1MRk2 MRkn: Weomitthetediousproofherewhichisbasedoninductiononthedimensionn.Fromthislemma,thefollowing resultisimmediatelyinorder. Theorem3.3LetMTk1;k2;:::;knbetheGDEmatrixof ann-dimensionalk1k2knevencolortorus GTk1;k2;:::;kn.Then,theoptimalexchangeparameter 11
12 opt(mtk1;k2;:::;kn)isequaltoopt(mrk);wherek= max1jnfkjg;andforagiven,r1(mtk1;k2;:::;kn)= R1(MRk): Sinceak-aryn-cubeisaspecialcaseofanndimensionaltorus,wehavethefollowingmajorresult forthek-aryn-cube. Corollary3.1LetMTk;nbetheGDEmatrixofacolor k-aryn-cube,keven.thentheoptimalexchangeparameteropt(mtk;n)isequaltoopt(mrk);andforagiven,r1(mtk;n)=r1(mrk): 3.3Summaryoftheoreticalresults Thelasttheoremanditscorollaryintheprevioussectionequatetheconvergenceratesofthering,thetorus andthek-aryn-cube,thereforeleadingtothisimportantconclusion:givenaxednumberofnodes,thebest waytoconnectthemasfarasgdeloadbalancingis concernedisasak-aryn-cube.thenfromtheabove analysis,wendthatthesmallerthevalueofk,thebettertheconvergencerate;hence,thebinaryn-cubeisthe bestchoice,whichtakesexactlyonesweeptobalance theworkload.however,asdallypointsoutin[6],there areotherpracticalreasonsforwhichak-aryn-cubewith abiggerkispreferable. Theanalysistechniqueasexempliedintheabovesectioncanalsobeappliedtothechainandthemeshwhich canbeviewedasvariantsoftheringandthetorusby deletingtheend-roundconnections.thedetailedproofs forthefollowingtwotheoremscanbefoundin[19]. Theorem3.4LetGCkbeacolorchainofevenorderk, andmckbeitsgdematrix.thentheoptimalexchange parameteropt(mck)isequaltoopt(mr2k);andfora given,r1(mck)=r1(mr2k): Theorem3.5LetGMk1;k2;:::;knbeann-dimensional evencolormesh,andmmk1;k2;:::;knbeitsgde matrix.thentheoptimalexchangeparameter opt(mmk1;k2;:::;kn)isequaltoopt(mrk);andfora given,r1(mmk1;k2;:::;kn)=r1(mck);wherek= max1jnfkjg. Basedonthesetheorems,theoptimalexchangeparametersforevenchainsandmeshescanbeeasilyobtained. Forexample,forj=2;4;6;8, opt(mm8;j)=opt(mc8)=opt(mr16)0:723: Thesetheoremsalsoshowthattheconvergencerateofa meshdependsonlyonitslargestdimension.now,based onthesetheoremsandthoseintheprevioussection,we canestablishtherelationshipsbetweentheconvergence ratesofthering,thetorus,thechainandthemesh.here isasummaryoftheresults.notethattheresultsforthe k-aryn-cubeareimplicitintheresultsforthetorus. 1.Supposeeachki,1in,iseven,andk= maxfki;1ing.then, opt(mr2k)=opt(mt2k1;2k2;:::;2kn) =opt(mck)=opt(mmk1;k2;:::;kn); whichisequalto1 1+sin(=k). 2.Forevenringsandchainsandagiven,themore verticesthestructurehas,theslowertheconvergencerate. 3.Fortoriandmeshesofevenorder(evennumberof nodesineachdimension),theconvergenceratedependsonlyonthelargestdimension. 4.Theconvergenceratesofthesefourstructuresare relatedasfollows. R1(MR2k)=R1(MT2k1;2k2;:::;2kn) =R1(MCk)=R1(MMk1;k2;:::;kn) whereeachki;1in,iseven,andk= maxfki;1ing. 4Comparisonwiththediusion method Wehavederivedtheoptimalexchangeparametersfor leadingtothefastestasymptoticconvergencerateinthe k-aryn-cubeanditsvariants.here,wewouldliketo 12
13 comparethegdemethodwithanotherrelaxation-based method,thediusionmethod[3,5,23].themeasureof interestisstilltheconvergencerate. Withthediusionmethod,aprocessorwouldinteract withallitsneighborssimultaneouslyateachstep.for processori,thechangeofworkloadinaprocessoriis executedaswi=wi+x j2a(i)(wj?wi) wherea(i)isthesetofnearestneighborsandisthe diusionparameterwhichdeterminestheportionofexcessofworkloadtobediusedaway.asawhole,the changeoftheworkloaddistributionatsteptismodeled bytheequationwt+1=d()wt (5) whered()isthediusionmatrix1,asgivenin[5]. Theeciencyofthediusionmethodisreectedby theasymptoticconvergencerate,r1(d()),whichis equalto?ln(d()).(d())isthesubdominant eigenvalueofd(),andisalsoreferredtoastheconvergencefactorofthediusionmethod.wehavepreviouslyderivedtheoptimaldiusionparametersforthekaryn-cubeanditsvariants[23].table1summarizesthe optimalparametervaluesandtheircorrespondingconvergencefactors.forcomparison,theresultsofthegde methodarealsoincluded.clearly,(m())<(d()) inbothtorusandmeshstructures. Inmulticomputers,therearetwobasiccommunication models.oneistheserialcommunicationmodelwhich restrictsanodetocommunicatingwithatmostonenearestneighboratatime;theotheristheparallelcommunicationmodelwhichallowsanodetocommunicate withallitsnearestneighborssimultaneously.clearly, theserialcommunicationmodelfavorsthedimensionexchangemethodandtheparallelmodelfavorsthediusionmethod.recallthatthegdematrixm()reects acompletesweep i.e.,consecutiveiterationsteps, eachofwhichinvolvesani/ocommunicationatanode. 1Thesameisusedfortheentirenetwork.Itispossibletouse dierent'sfordierentedgesofthenetwork,asdiscussedin[5]. Ontheotherhand,thediusionmatrixD()reectsa singleiterationstepwhichinvolves(g)i/ocommunicationsatanode,where(g)isthemaximumdegree ofthenodes.hence,r1(m(opt))>r1(d(opt))in theserialcommunicationmodel. Intheparallelcommunicationmodel,anndimensionaltorusormeshcanbecoloredby2ncolors, andhenceadimensionexchangesweepwouldtakeas muchtimeasthatfor2ndiusionsteps;these2ndiffusionstepsinfactcorrespondtothematrixd2n.we shouldthereforecompare(d2n(opt))with(m(opt)). Sincethediusionmatrixissymmetric,itfollowsthat (D2n(opt))=2n(D(opt)).Thus,inthecaseofthe torus, (D2n(opt))=( 4n 2n+1?cos(2=k)?1)2n (4 3?cos(2=k)?1)2 >(M(opt)); andinthecaseofthemesh, (D2n(opt))=(1?1n+1ncos(=k))2n (cos(=k))2 >(M(opt)): Wehavethusprovedthefollowing,whichisvalidfor boththeserialandtheparallelcommunicationmodels. Theorem4.1TheGDEmethodconvergesasymptoticallyfasterthanthediusionmethodwhenappliedto thek-aryn-cubeanditsvariants. In[5],Cybenkocomparedtheecienciesofthesetwo methodswhenappliedtothebinaryn-cubestructure, andrevealedthesuperiorityofthedimensionexchange methodinbothcommunicationmodels.theabovetheoremextendshisresulttothefamilyofk-aryn-cube structures. 13
14 torusandmesh;kiiseven,andk=maxfkig;i=0;1;:::;n. Table1:ComparisonbetweentheconvergencefactorsoftheGDEmethodandthediusionmethodink1k2kn 5Simulationandpracticalim- 1+sin(2=k) 1+sin(=k) opt 1 1+sin(2=k)?1 1+sin(=k)?1 (M(opt)) 2 2n+1?cos(2=k) opt 1Diusionmethod 1?1n+1ncos(=k) 2n+1?cos(2=k)?1 (D(opt)) plementations 4n Forpracticalapplications,itwouldbeofconsiderable iterationsweeps,theexperimentsrevealinmeasurable ticalsimulationexperimentsonanumberoftestcases. Inadditiontogivingusinformationonthenumberof termstheeciencygainsduetotheoptimalexchange GDEproceduretobalancethesystem'sloadcanbeobtainedorestimated.Tothisend,weconductedstatis- valueifthenumberofiterationsweepsrequiredbytheitsworkloadaccordingtotherevisedformula Asdiscussedin[8],theintegerversionoftheoriginalDE wi=(d(1?)wi+wjeifwiwj b(1?)wi+wjcotherwise (6) theoreticalresultsconcerningtheequivalenceofthevariousconvergenceratesandtheoptimalityofthederived grainparallelismswhicharemorerealisticandmore commoninpracticalparallelcomputingenvironments, onecantreattheworkloadsoftheprocessorsmorecon- Inthetheoreticalanalysis,werepresenttheworkloadloadbalancingproceduretoendwithavarianceofsome method(i.e.,=1=2)isjustaperturbationofitsreal parameters.thesimulationresultsalsoconrmedour parametervalues. ofaprocessorbyarealnumber,whichisreasonableundertheassumptionofverynegrainparallelismasexhibitedbythecomputation.tocovermediumandlarge thresholdvalue(inworkloadunits)betweenneighboring conclusion. counterpartandwillconvergetoanearlybalancedstate. Applyingtheperturbationtheorytotherealversionof ourgdemethodverbatim,wecancometoasimilar processors.thisthresholdvaluecanbetunedtosatisfactoryperformanceoftheprocedureinpractice,as illustratedin[9].inalloursimulationexperiments,this Becauseoftheuseofintegerworkloads,weallowthe simulationexperiments.allweneedtodoistomodify stripoftheoceanforwhichtheprocessorisresponsible. WeusedtheintegerversionoftheGDEmethodinour venientlyasnon-negativeintegers,asisdonein[8].forvalueissettooneworkloadunitwhichisclosesttototal theexchangeoperatorofeq.insection2.during tegerwhichcorrespondstothenumberofshesinthe willdiscussshortly,theworkloadofaprocessorisanin- example,inthewatorsimulationexperimentwhichwebalancing.then,itisclearthat0:5<1becausea pairofneighboringprocessorswithavarianceofmore thanoneworkloadunitwouldnotbalancetheirworkloadsanymorewhen<0:5.sincethetermination mechanismforglobalterminationdetectiontothesimu- conditionofaprocessorisratherlocalized,weadda lation[22].weexcludetherathersmalldelayfortermi- ectspurelytheeciencyofthegdemethod.this results,andsothenumberofsweepsreportedbelowre- exchangewithaneighborj,processoriwouldupdatenationdetectionusingthismechanisminoursimulation 14helptheusersofthismethodtosetsuchalimit. beforehand.infact,oursimulationresultsbelowcan terminationdetectionmightnotbenecessaryifwecan setalimitonthenumberofsweepsforagivenstructure
15 Table2:ExpectednumberofsweepsE(NS)forRing16,Chain8,16-ary2-cube,andMesh (M())Ring1616-ary2-cubeChain8Mesh Thenumberofiterationsweeps,denotedbyNS,isexpectedtodependuponsuchfactorsastheexchangeparameter,theinitialworkloaddistribution,thetopology andthesizeoftheunderlyingsystemstructure.theinitialworkloaddistributionisarandomvector,eachelementofwhichisdrawnindependentlyfromanidenticalopt=0:723.italsoappearsthattheabsolutevalues bound.themeanworkloadaprocessorgets(i.e.,the workloadaprocessorgetsisdeterminedbythedistributionmean.table2displaystheexpectednumbersof expectedworkload)isthusequaltob.theamountof uniformdistributionin[0;2b],wherebisaprescribedtheoptimumpoint,whichisinlinewithourtheoretical resultsontheequivalenceoftheconvergencerates. turesareveryclosetoeachother,especiallywhennear 0.8,whichisinagreementwiththetheoreticalresultof 5.1Numberofiterationsweeps 8.25 sweepsgeneratedbytheexperimentsforthestructures 0.5to0.9instepsof0.05.Eachdatapointistheaverageof100runs,eachusingadierentrandominitial valuesofrisesanddropswiththevalueof(m()), loaddistribution.thesecondcolumninthetableshows ofthevariouscases.fromthetable,itisclearthatture.thisreallyputsforththegdemethodasaprac- 2-cube!).Wealsotrieddierentnumbersofprocessors ameanof128unitsperprocessor,andvariesfrom ofring16,chain8,16-ary2-cube(i.e.,torus1616), borhoodof8sweeps(evenfora256-processor16-ary optimalsweepnumbersarerathersmall intheneigh- oftheexpectednumberofsweepsforthevariousstruc- Furthermore,itismostencouragingtoseethatthe andmesh84.theinitialworkloaddistributionhas theexpectednumberofsweepsineachcasefordierent theconvergencefactors,(m()),ofthegdematrices ticalmethodforloadbalancinginrealmulticomputers. portionaltothenumberofprocessorsforthechain,and foreachkindoftopology.theresultsforchainsofup showsthattheoptimalnumberofsweepsislinearlypro- hencetothedimensionorderkofthek-aryn-cubestruc- to128processorsaredepictedinfigure6.thegure andthattheoptimalexchangeparameteroptofeachnoticethattheconvergenceratesinthetheoretical caseisnotequalto0.5,butsomewherebetween0.7andanalysisareintermsofsweepsovertime.asweepof thegdemethodmayinvolvedierentnumbersofnear- k-aryn-cube(keven),asweepcomprises2ncommunicationsteps(whenn>2)ornsteps(whenn=2).thus, 15estneighborcommunicationsinvariousstructures.Ina foragivennumberofprocessors,ahigherdimensional
16 E(NS) N Figure6:ExpectednumberofsweepsE(NS)usingopt forchainsofvarioussizes k-aryn-cube,eventhoughittakesfewersweepstobalancetheload,requiresmorecommunicationstepswithin asweepinreality.however,fromfigure6,wepointout thattheminimalnumberofsweepsnecessaryforconvergencewoulddecreaseatalogarithmicratewiththe increaseinthenumberofdimensions;thisisbecause thedimensionorderdecreasesatthesamerateasthe increaseinthenumberofdimensionsforagivennumberofprocessors.asanexample,consideraclusterof 4096processors,whichcanbeorganizedasastructureof 64-ary2-cube,16-ary3-cube,8-ary4-cube,or2-ary12 -cube.theminimalsweepnumbersforthesestructures areabout35,8,4,and1sweep,respectively.sincethe numberofcommunicationstepswithinasweepwould onlydoublewitheveryaddeddimension,itisjustied tomaintainthatthegdemethodismosteectivein highdimensionalk-aryn-cubes(inparticular,thebinary n-cubeandthe4-aryn-cube). 5.2Thenon-evencases Inadditiontotheevencases,wealsosimulatedafew non-evencasesforwhichthetheoreticalanalysishasnot beenabletodealwithbecauseoftheirstructuraldifferencesfromtheevencases.weapproximatedtheir optimalexchangeparametersusingtheformulasforthe evencases.table3summarizesthesimulationresults. Thenumbersinparenthesesinthebottomrowofthe tablearetheapproximatedoptimalparameterandthe resultingnumberofsweepsrespectively.inlinewith ourremarksbefore,theoddornon-evencasesdonot behavedierentlyfromtheevencasesintermsoftheir convergencepatternandtheoptimalvaluesfortheexchangeparameter,whichcanbeseenbycomparingtable3withtable2.hence,itisreasonabletoconclude thattheresultsfortheevencasescanbeapplied,asa closeapproximation,tothenon-evencases. Notethatanoddringhastobecoloredusingthree colors,asinfigure1(a).thatis,asweepofthegde methodinanoddringcomprisesthreecommunication steps.asonlytwoprocessorsareinvolvedinworkload exchangeinthethirdcommunicationstep,itseemsthat muchcommunicationbandwidthmaybewasted.however,acloseexaminationofthecommunicationpattern ofgdebalancingintheoddring,asshowninfigure7, wouldrevealthatthethirdchromaticindexwouldaccountforonlyasmallfractionofthetotalcommunicationoverheadincurredinthebalancingprocess.in t t t t t 1 2 (3) Figure7:CommunicationpatternoftheGDEmethod inaringof5nodes thegure,thevebigdotsinthecentrerepresentprocessorsthatareconnectedasaring.weattachatime axisttoeachprocessorforeasyviewing.eachdotted double-arrowrepresentsacommunicationstepbetweena 16
17 Table3:ExpectednumberofsweepsE(NS)forRing15,Chain7,Torus165andMesh Ring15Torus165Chain7Mesh (0.711,9.75)(0.723,8.70)(0.697,8.23)(0.723,8.05) pairofnearestneighborsfortheexchangeoftheirworkloads.attimet=1,allprocessorsexceptthefthare becomesidleattimet=2.whiletherstandfth involvedincommunication.then,therstprocessor processorsarebusyexecutingthethirdcommunication sweep.atthistime,onlythesecondprocessorisinthe idlestate.continueon,weseethatthegdeprocedure stepattimet=3,thethirdandfourthprocessorsare alreadyexecutingtherstcommunicationofthenext5.3improvementsduetotheoptimal ringofvenodescostsonlyoneextracommunication inanoddringof2k+1nodescostsonecommunication iterationsweeps.thisexamplecanbegeneralizedtoan oddringofarbitrarysize.ingeneral,thegdebalancing cationsteps.inotherwords,gdebalancinginanodd stepmorethananevenringofcomparablesizefortwo nishestwocompleteiterationsweepsinvecommuni-ofourgdemethodovertheoriginaldemethod,we thechoiceof=1=2whichisusedintheoriginalde method.tofurtherexamineandquantifythebenets parameters deneametricformeasuringimprovements,denoted: Itisclearfromthesimulationresultsthattheoptimalexchangeparameteroptyields(much)betterresultsthan betweentheringandtheotherstructuresinprevious ancinginnon-evenandevencasesofthesestructures. stepmorethanthatintheevenringofcomparablesize forkiterationsweeps.basedontheequivalenceresultswherenshandnsoptaretheexpectednumbersof =NSh?NSopt NSh100% sections,wecanconcludethatthereisanegligiblysmallspectively.theimprovementreectsthesuperiorityof sweepsfromusing=1=2andtheoptimaloptre- dierencebetweentheecienciesofoptimalgdebal-originalone(de).tables4{7showtheresultsfordierentstructures;foreachstructure,dierentsizesofthe structureanddierentworkloadsperprocessorareconnicantunderheavyloads.forexample,inaringwitcreasesastheaverageworkloadperprocessorincreasessidered. 64nodes,ifeachprocessorisloadedwith10units,then NSh=7:39,NSopt=6:91and=6:5%;ifeachprocessorisloadedwith10,000units,thenNSh=543, Theseresultssuggestthattheimprovement()in- theoptimaldimensionexchangemethod(gde)overthe Itisnotsoevidentunderlightloadsbutbecomessig- 17
18 Table4:Improvements(%)forringsofvarioussizesand workloadsmeanworkloadperprocessor Table6:Improvements(%)forchainsofvarioussizes andworkloadsmeanworkloadperprocessor Size Size andworkloadsmeanworkloadperprocessor Table7:Improvements(%)formeshesofvarioussizes Size Table5:Improvements(%)fortoriofvarioussizesand workloads NSopt=50,and=90:8%.Thesimulationresultsalso Size Meanworkloadperprocessor astructurewhenworkloadisheavy i.e.,thelargerthe showthattheimprovementisproportionaltothesizeof system,thebettertheperformanceofourgdemethod usingoptimalexchangeparameters.insummary,dynamicloadbalancingusingdimensionexchangedoes Thesimulationexperimentsshedlightonthenumberof eter. 5.4Practicalimplementations iterationsweeps,butignoredtheoverheadthatmightbe benetsubstantiallyfromtheoptimalexchangeparamtherdidtheytellusanythingabouttheexpectedper- incurredinactualimplementationofthemethod.nei- 18dataparallelcomputations.Itturnsoutthattheover- plementeditasthedynamicloadbalancerwithintwo cations.wethereforetookthegdemethodandim- formancegainwhenthemethodisusedinrealappli-
19 headduetotheperiodicexecutionofthegdemethod isverysmallbutthegaininperformancethroughthe balancingovertheversionswithoutgdebalancingis substantial.indataparallelcomputations,thecomputationalrequirementassociatedwitheachportionofa problemdomainmaychangeasthecomputationproceeds.toreducethepenaltyofloadimbalances,aneffectivewayistoperiodically\remap"(re-decompose) theproblemdomainontotheprocessors;thegoalofthis remappingistotrytocreateabalancedworkloadacross theprocessorsforthenextphaseofthecomputation[11]. ToallowustoevaluatetheGDEmethodaswellasto studygde-basedremapping,weimplementedtwomajorapplicationsinamulticomputer(atransputerarray): thewatorsimulationandtheparallelthinningofimages.theremappingmechanismintheseapplications comprisestwocomponents:thedecisionmakerandthe workloadadjuster.thedecisionmakerusesthegde methodtodrivetheprocessorsintoaconsensusonthe uniformworkloaddistribution;thentheworkloadadjusterwouldcarryouttheactualworkloadredistribution accordingtothedecisionsjustmade.thisremapping mechanismisinvokedperiodically.inthewatorsimulationofa256256toroidaloceanonan16-transputer ring-structurednetwork,itisfoundthatfrequentremapping(onceeverytwosimulationsteps)leadstoa10{ 20%improvementonthetotalsimulationtime(for100 stepsofsimulatingtheocean).inparallelthinningof a128128image(apopularimageofaman'sbody) onan8-transputerchain-structurednetwork,frequent remappingusinggdeyieldsaperformancegainof10% onthinningtimeeventhoughthetestimagedoesnot favorremapping.detailsofanddiscussionaboutthese experimentscanbefoundin[19].theseresultshaveled ustobelievethatthegdemethodwiththeoptimal exchangeparametersisaviabletoolfordynamicload balancinginpracticalimplementationsofdata-parallel computations. 6Concludingremarks WehaveanalyzedtheGDEmethodfordynamicload balancingasappliedtothek-aryn-cubeandits variants thering,thetorus,thechain,andthemesh. Wehavederivedtheoptimalexchangeparametersin closedform,whichmaximizetheconvergenceratesof GDEbalancinginthesestructures.Wehaveshownthat thereexistscloserelationshipsbetweentheirconvergence rates,andconcludedthatthegdemethodfavorshighdimensionalk-aryn-cubesforagivennumberofprocessors.wehavealsorevealedthesuperiorityofthegde methodtothediusionmethodwhenbothareapplied tothesestructures.throughstatisticalsimulationexperiments,wehaveshownthattheeciency(interms ofnumberofstepstoconvergence)ofusingtheoptimal exchangeparametersissignicantlybetterthanthatof thenon-optimalcasessuchastheoriginaldemethod. Thispaperhasanalyzedtheoreticallyonlytheeven casesofthevarioustopologies.thisisduetoourusing matrixpartitioningandcirculantmatricesfortheanalysis.itisconceivablehoweverthattheoddcaseswould behavemoreorlessthesameastheirevencounterparts especiallywhenthenumberofnodesislarge.wefound thistobetrueforthenon-evencaseswesimulated.we alsopresentedanargumentthatsuggestedthatthedifferencebetweenthetwointermsofeciencyshouldbe negligiblysmall.nevertheless,ndingadierentmathematicaltooltoanalyzealsotheoddcaseswouldbean interestingtheoreticalpursuit.inaddition,afterhaving dealtwithsomeofthemostcommonregularstructures, itisnaturaltothinkofarbitrarystructures.unfortunately,thederivationoftheoptimalexchangeparameter forarbitrarystructuresrequiresasolutiontotheproblemofspecifying,inanalyticalform,thedependenceof thesubdominanteigenvalueinmodulusofamatrixon thematrixelements.thisisstillopeninmathematics[4]. Acknowledgements.Wethankstheanonymous refereesfortheirconstructivecomments. 19
20 References [1]W.C.AthasandC.L.Seitz.Multicomputers:message{passingconcurrentcomputers.IEEE Computer,21(8):9{24,August1988. [2]D.P.BertsekasandJ.N.Tsitsiklis.Parallelanddis- tributedcomputation:numericalmethods.prentice- HallInc.,1989. [3]J.B.Boillat.Loadbalancingandpoissonequation inagraph.concurrency:practiceandexperience, 2:289{313,December1990. [4]A.BroderandE.Shamir.Onthesecondeigenvalue ofrandomregulargraphs.inproc.of28th.ieee FoundationsofComputerScience,pages286{294, [5]G.Cybenko.Loadbalancingfordistributedmemorymultiprocessors.JournalofParallelandDistributedComputing,7:279{301,1989. [6]W.J.Dally.Performanceanalysisofk-aryn-cube interconnectionnetworks.ieeetransactionson Computers,39(6):775{785,June1990. [7]P.J.Davis.Circulantmatrices.JohnWileyand SonsInc.,1979. [8]S.H.Hosseini,B.Litow,M.Malkawi,J.Mcpherson,andK.Vairavan.Analysisofagraphcoloring baseddistributedloadbalancingalgorithm.journal ofparallelanddistributedcomputing,10:160{166, [9]R.LulingandB.Monien.Loadbalancingfordistributedbranchandboundalgorithm.InProceedingsof6thInternationalParallelProcessingSymposium,pages543{5448,March1992. [10]L.M.NiandP.K.McKinley.Asurveyofwormholeroutingtechniquesindirectnetworks.IEEE Computer,26:62{76,February1993. [11]D.M.NicolandP.F.Reynolds.Optimaldynamicremappingofdataparallelcomputation. IEEETrans.onComputers,39:206{219,February1990. [12]D.M.NicolandJ.H.Saltz.Dynamicremappingofparallelcomputationswithvaryingresourcedemands.IEEETransactionsonComputers, 37(9):1073{1087,September1988. [13]G.RamanathanandJ.Oren.Surveyofcommercialparallelmachines.ACMComputerArchitecture News,21(3):13{33,June1993. [14]S.Ranka,Y.Won,andS.Sahni.Programminga hypercubemulticomputer.ieeesoftware,5:69{77, September1988. [15]Y.ShihandJ.Fier.Hypercubesystemsandkey applications.ink.hwangandd.degroot,editors, ParallelProcessingforSupercomputersandArtical Intelligence,pages203{243.McGraw-HillPublishingCo.,1989. [16]G.Trew,A.andWilson.Past,PresentandParallel: ASurveyofAvailableParallelComputerSystems. Springer{Verlag,1991. [17]R.S.Varga.Matrixiterativeanalysis.Prentice- Hall,1962. [18]M.Willebeek-LeMairandA.P.Reeves.Localvs. globalstrategiesfordynamicloadbalancing.in ProceedingsofInternationalConferenceonParallelProcessing,volume1,pages569{570,1990. [19]C.-Z.Xu.Iterativemethodsfordynamicloadbalancinginmulticomputers.PhDthesis,Dept.of ComputerScience,TheUniversityofHongKong, [20]C.-Z.XuandF.C.M.Lau.Iterativedynamicload balancinginmulticomputers.journalofoperationalresearchsociety.toappear.(availableas Tech.ReportTR-92-09,Dept.ofComputerScience, TheUniv.ofHongKong,Sep.1992). [21]C.-Z.XuandF.C.M.Lau.Analysisofthegeneralizeddimensionexchangemethodfordynamicload balancing.journalofparallelanddistributedcomputing,16:385{393,december
21 [23]C.-Z.XuandF.C.M.Lau.Optimalparametersfor [22]C.-Z.XuandF.C.M.Lau.Terminationdetection loadbalancingusingthediusionmethodinthekaryn-cubenetworks.informationprocessingletters,47(5):181{187,september1993.(alongerversionappearsastech.reporttr-93-03,dept.otributedprocessing,pages196{203,december1992ingsof4thieeesymposiumonparallelanddis- forlooselysynchronizedcomputations.inproceed- ComputerScience,TheUniv.ofHongKong,Mar. 1993). 21
Nearestneighboralgorithmsforloadbalancingin ChengzhongXu parallelcomputers DepartmentofElectricalandComputerEngg. WayneStateUniversity,Detroit,MI48202 BurkhardMonien,ReinhardLuling [email protected]
DECLARATION OF PERFORMANCE NO. HU-DOP_TN-212-25_001
NO. HU-DOP_TN-212-25_001 Product type 212 (TN) 3,5x25 mm EN 14566:2008+A1:2009 NO. HU-DOP_TN-212-35_001 Product type 212 (TN) 3,5x35 mm EN 14566:2008+A1:2009 NO. HU-DOP_TN-212-45_001 Product type 212 (TN)
DECLARATION OF PERFORMANCE NO. HU-DOP_TD-25_001
NO. HU-DOP_TD-25_001 Product type TD 3,5x25 mm EN 14566:2008+A1:2009 NO. HU-DOP_TD-35_001 Product type TD 3,5x35 mm EN 14566:2008+A1:2009 NO. HU-DOP_TD-45_001 Product type TD 3,5x45 mm EN 14566:2008+A1:2009
Matrix Multiplication
Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse
Wealth Management Formula
AP = WE + WT +WP + CG RM = CRM + ENRM WE = Wealth Enhancement (tax and cashflow planning) Historical Portfolio Performance Analysis Risk Evaluations Asset Allocation Investment Policy Statement Building
Time Value of Money PAPER 3A: COST ACCOUNTING CHAPTER 2 BY: CA KAPILESHWAR BHALLA
Time Value of Money 1 PAPER 3A: COST ACCOUNTING CHAPTER 2 BY: CA KAPILESHWAR BHALLA Learning objectives 2 Understand the Concept of time value of money. Understand the relationship between present and
Factors to Describe Job Shop Scheduling Problem
Job Shop Scheduling Job Shop A work location in which a number of general purpose work stations exist and are used to perform a variety of jobs Example: Car repair each operator (mechanic) evaluates plus
PartJoin: An Efficient Storage and Query Execution for Data Warehouses
PartJoin: An Efficient Storage and Query Execution for Data Warehouses Ladjel Bellatreche 1, Michel Schneider 2, Mukesh Mohania 3, and Bharat Bhargava 4 1 IMERIR, Perpignan, FRANCE [email protected] 2
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
INTERNATIONAL UNIVERSITY COLLABORATION CENTRE
INTERNATIONAL UNIVERSITY COLLABORATION CENTRE B.S. B E B.S. B E (Ev O) B.S. Cv E B.S. Cv E (Ev O) B.S. C E B.S. E E B.S. M E B.S. M E (A O) B.S. M E (Mf O) V I D P Uv f M F f E T & B Ev @ UCSI Uv T F f
Section 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
High Performance Computing Lab Exercises
High Performance Computing Lab Exercises (Make sense of the theory!) Rubin H Landau With Sally Haerer and Scott Clark 6 GB/s CPU cache RAM cache Main Store 32 KB 2GB 2MB 32 TB@ 111Mb/s Computational Physics
A Graph-Theoretic Network Security Game
A Graph-Theoretic Network Security Game Marios Mavronicolas 1, Vicky Papadopoulou 1, Anna Philippou 1, and Paul Spirakis 2 1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.
Brief Introduction to Vectors and Matrices
CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued
MapReduce Approach to Collective Classification for Networks
MapReduce Approach to Collective Classification for Networks Wojciech Indyk 1, Tomasz Kajdanowicz 1, Przemyslaw Kazienko 1, and Slawomir Plamowski 1 Wroclaw University of Technology, Wroclaw, Poland Faculty
2 Signals and Systems: Part I
2 Signals and Systems: Part I In this lecture, we consider a number of basic signals that will be important building blocks later in the course. Specifically, we discuss both continuoustime and discrete-time
MULTICRITERIA MAKING DECISION MODEL FOR OUTSOURCING CONTRACTOR SELECTION
2008/2 PAGES 8 16 RECEIVED 22 12 2007 ACCEPTED 4 3 2008 V SOMOROVÁ MULTICRITERIA MAKING DECISION MODEL FOR OUTSOURCING CONTRACTOR SELECTION ABSTRACT Ing Viera SOMOROVÁ, PhD Department of Economics and
2013 Employee Engagement Survey
2013 Employee Engagement Survey BU Results for: REAL ESTATE & FACILITIES MANAGEMENT - Overview Table of Contents Overview of Results Page Response Rate 3 Factor Summary 4 Factor Definitions 5 Profile Charts
[email protected],[email protected]@guest.cnuce.cnr.it
3Dept.ofComputerScience,U.ofYork,Heslington,York,YO15DD,UK SpecicationandVericationofMedia 1ComputingLab.,U.ofKent,Canterbury,Kent,CT27NF,UK HowardBowman1,GiorgioP.Faconti2andMiekeMassink3 2CNR-IstitutoCNUCE,ViaS.Maria36,56126-Pisa-Italy
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Practical Application Fly Line Recommendations Freshwater
Practical Application Recommendations Freshwater Trout Small, rivers, streams, lakes 12 28 dry flies, small nymphs Calm, Delicate taper trout line, WF or DT floating, 2-5 wt. Trout Large rivers, streams,
UV Disinfection Systems A Series. Main Applications: Drinking Water, Process Water, Warm Water / Legionellae. IT T Industries Engineered for life
DIN EN ISO 9001 DIN EN ISO 9001 DIN EN ISO 14001 UV Disinfection Systems A Series Main Applications: Drinking Water, Process Water, Warm Water / Legionellae DIN EN ISO 14001 UV Disinfection Systems A Series
Branch and Cut for TSP
Branch and Cut for TSP jla,[email protected] Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric
LoadBalancingforMinimizingExecutionTimeofaTargetJobon anetworkofheterogeneousworkstations DepartmentofElectricalandComputerEngineering S.-Y.LeeandC.-H.Cho [email protected] Auburn,AL36849. AuburnUniversity
SEMIN- Dessine-moi un arbre : représentation graphique des arbres phylogénétiques avec le package ape
SEMIN- Dessine-moi un arbre : représentation graphique des arbres phylogénétiques avec le package ape NATTIER, Romain Muséum national d'histoire naturelle UMR 7205 OSEB SEMIN-R du MNHN 28 Janvier 2011
= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.
Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)
2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical defined-contribution
12.10 P.M. V 12.40 P.M.- 1.35 P.M. II (H) Prac Based on Paper 09 (41) II(H) Prac Based. on Paper 09 (av) III(H) Internship / Based on Paper 09 (39)
APPLED CHOLOGY - TME TABLE January May 2015 Semester- / / (UNERSTY OF DELH) DR. EKTA BHAMBR MARWAHA.- 12.10 12.10 12.40 12.40-1.35 1.35 2.30 2.30-3.25 3.25-4.20 09 nternship (16) 09 on 09 on 09 nternship
Department of Economics
Department of Economics On Testing for Diagonality of Large Dimensional Covariance Matrices George Kapetanios Working Paper No. 526 October 2004 ISSN 1473-0278 On Testing for Diagonality of Large Dimensional
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Oplossingen uit het vorige nummer
Pagina 3 L A V A S G A L G O L E S O L S O E R A P L O M P I K A T A L F A O M E R T A E T R E A F L A D E R K E N A R I D R A A I E O S V R A T I G O N E R A K L I P T S A P A N D P O E K O N B L U T
!!! 2014!!2015!NONPROFIT!SALARY!&!STAFFING!REPORT! NEW$YORK$CITY$AREA$ $ $ $ $ $ $
2014 2015NONPROFITSALARY&STAFFINGREPORT NEWYORKCITYAREA 2014NONPROFITSURVEYFINDINGS&2015TRENDS EXECUTIVESUMMARY Thisyear ssalarysurvey201422015confirmsgrowth andchallengesinthesectorduring2014andthestrong
NoFreeLunchTheoremsforSearch DavidH.Wolpert([email protected]) SFI-TR-95-02-010 WilliamG.Macready([email protected]) TheSantaFeInstitute 1399HydeParkRoad SantaFe,NM,87501 February23,1996 possiblecostfunctions.inparticular,ifalgorithmaoutperformsalgorithmbonsome
ADVANCED SCOOTER CONTROL SYSTEMS PG DRIVES TECHNOLOGY
ADVANCED SCOOTER CONTROL SYSTEMS PG DRIVES TECHNOLOGY THE S-DRIVE FAMILY The S-Drive scooter controller family is the most advanced and cost-effective controller available to date, offering major enhancements
PRICE/SALES CATALOGUE MESSAGE PRICAT. Version 1.0. agreed-upon by EDI Working Group of ECR Poland
PRICE/SALES CATALOGUE MESSAGE PRICAT Version 1.0 EAN 97/EDIFACT D.96A agreed-upon by EDI Working Group of ECR Poland The document contains only these that segments and data elements that were agreed and
18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.
806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What
SIMULTRAIN BEST PRACTICE
SIMULTRAIN BEST PRACTICE What skills do participants receive after a SimulTrain session? SimulTrain trains behavioral and technical manager s skills: accountability for delivering the project, creating
Lightweighting Custom enewsletter
MuCell Injection Molding: Unique Process Solutions for Light Weighting Plastic Parts MuCell Injection Molding Brent Strawbridge, Vice President Sales Lightweighting Custom enewsletter AGENDA Technology
Performance Comparison of Dynamic Load-Balancing Strategies for Distributed Computing
Performance Comparison of Dynamic Load-Balancing Strategies for Distributed Computing A. Cortés, A. Ripoll, M.A. Senar and E. Luque Computer Architecture and Operating Systems Group Universitat Autònoma
Test report No. 20-20/06
PIV Pr üfinstitut Schlösser und Beschläge Velbert Wallstraße 41 D-42551 Velbert Tel. +49 (0) 2051-9506-5 Fax +49 (0) 2051-9506-69 Test report No. 20-20/06 1. Client and manufacturer DIRAK GmbH&Co.KG 58256
www.genytex.fr Dynamic Smooth Safelite Safelite WASHABLE - NURSES safety toe cap Delivered with insoles SAFETY - CATERING/ CLEANING STAFF
Dynamic WASHABLE - NURSES Dynamic Norm: EN ISO 20347 Material: EVA Weight: ca 220gr. Washable: 40 C Single sizes: 36-46 DYNAMIC WHT SAFELITE WHT ANTI- STATIC DYNAMIC FUX DYNAMIC LIC Safelite DYNAMIC EBL
Both variants can be used for measuring the positive sequence voltage Up or the negative sequence voltage Un.
Rev. - 2004-10-22 Page 1(5) General RXTBA 1 is a three-phase phase sequence voltage filter built up by resistors and capacitors. The filter is available in two voltage variants; one for rated voltage 3x110
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Certificate of Compliance
No. 0V151007.CFMTW07 Brushless Dc motor FL42BLS01(CE), FL16, FL20, FL22, FL24, FL28, FL32, FL33, FL36, FL42, FL45 EN 61000-6-3:2007+A1:2011, EN 61000-6-1:2007, EN 55014-2:1997+A1:2001+A2:2008, No. 0V151007.CFMTW08
Requisition & Purchase Order Encumbrances
Requisition & Purchase Order Encumbrances Advanced Training 1 Releasing Fiscal Year Encumbrances Advanced Training 2 Types of Materials Management Reports ME5K - Requisitions by Account Assignment ME2L
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
Topological Properties
Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any
Database storage management with object-based storage devices
Database storage management with object-based storage devices Sami Iren Seagate Research Steve Schlosser Intel Research Pittsburgh Outline New hardware: Object-based Storage Devices (OSD) Vision: Database-aware
Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
Structured Representation Models. Structured Information Sources
SchemalessRepresentationofSemistructured Dong-YalSeo1,Dong-HaLee1,Kang-SikMoon1,JisookChang1, DataandSchemaConstruction 1Dept.ofComputerScienceandEngineering PohangUniversityofScienceandTechnology Jeon-YoungLee1,andChang-YongHan2
March 2, 2007. British Columbia Utilities Commission 6th Floor, 900 Howe Street Vancouver, B.C. V6Z 2N3
Scott A. Thomson VP, Finance & Regulatory Affairs and Chief Financial Officer 16705 Fraser Highway Surrey, B.C. V4N 0E8 Tel: (604) 592-7784 Fax: (604) 576-7074 Email: [email protected] www.terasengas.com
SZI 1029. IR Audio Transmission Technology Modulators/Radiators
General Description The is a 5-W high-power radiator for use with all wideband and narrowband modulators. The radiator is automatically switched on by the RF carrier and can cover areas of up to 800 m
CHAPTER 49 RELIABILITY & MAINTAINABILITY (R&M) PLANS & PROGRAMMES CONTENT
CHAPTER 49 RELIABILITY & MAINTAINABILITY (R&M) PLANS & PROGRAMMES CONTENT Page 1 Introduction 2 2 Background 2 3 The importance of R&M Plans and Programmes 2 4 Similarities and differences between R&M
Master of Arts In Counseling Master s degree only
Master of Arts In Counseling Master s degree only School Psychology and Counseling School of Education La Sierra University School of Education 4500 Riverwalk Parkway Riverside, CA 92515 Master of Arts
Effect of Psychological Interventions in Enhancing Mental Toughness Dimensions of Sports Persons
65 Journal of the Indian Academy of Applied Psychology, January - July 2005, Vol. 31, No.1-2, 65-70. Effect of Psychological Interventions in Enhancing Mental Toughness Dimensions of Sports Persons E.
OpenStack Networking: Where to Next?
WHITE PAPER OpenStack Networking: Where to Next? WHAT IS STRIKING IS THE PERVASIVE USE OF OPEN VSWITCH (OVS), AND AMONG NEUTRON FEATURES, THE STRONG INTEREST IN SOFTWARE- BASED NETWORKING ON THE SERVER,
Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite
Master Panel 1000 W Wall
Master Panel 1000 W Wall Product Description In order to generate an aesthethic outlook wall panels are generally produced as micro hedge. Besides, in connection points concealed screw is used which provides
Definition of a Software Product Line Portfolio Using the Kano Model
Definition of a Software Product Line Portfolio Using the Kano Model Karen Cortes Verdin 1,2,*, Lorena Lopez Lozada 1 1 School of Statistics and Informatics Universidad Veracruzana Av. Xalapa esq. Avila
How To Increase Availability At A Lower Cost
MEDIA TEMPLE CASE STUDY Higher Availability at Lower Cost for Epicure Digital KEY SUCCESSES High Availability at a Better Price. OLD PROCESS 01. Single server hosting both web and database tiers. NEW PROCESS
Tuition fees, payment plans and refund regulations
Rates for continuing students: (Save up to AED 17,000*) Students who have previously resided in The Halls, can now benefit from a discounted rate of up to 35% when rejoining or continuing to stay for a
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
Dušan Bernát ([email protected])
Domain Name System as a Memory and Communication Medium Dušan Bernát ([email protected]) Institute of Computer Systems and Networks, Faculty of Informatics and Information Technology, STU Bratislava,
3-Channel Supervisor IC for Power Supply
3-Channel Supervisor IC for Power Supply Features Over-voltage protection and lockout Under-voltage protection and lockout Open drain power good output signal Built-in 300mS delay for power good 38mS de-bounce
Fire Science One-Year Certificate 2013-2014
Fire Science One-Year Certificate 2013-2014 Name Anticipated Graduation Date Developmental Courses Original placement in developmental education courses is determined by ACT, ASSET, Compass, or SAT test
Calculation of Return on Equity (Ke) Presentation to Stakeholders 8 th October 2008
Calculation of Return on Equity (Ke) Presentation to Stakeholders 8 th October 2008 1 Overview (1) Tariffs set by Energy Regulator based on Allowable Revenue Tariff 1 Tariff 2 Tariff 3 Allowable Revenue
10 2161.002201 2161.002401 slide flange. 11 2161.001295 2161.001296 slide ring
spareparts list sparepart part No. code No. GP 40 GP 50 shaft seal 10 2161.002201 2161.002401 slide flange 11 2161.001295 2161.001296 slide ring 12 2161.001226 2161.001265 O-ring 13 5642.ABBR01 5642.ABCD01
Pneumatic Control and Shut-off Butterfly Valve Pfeiffer Type BR 14b/31a and Type BR 14c/31a
Pneumatic Control and Shut-off Butterfly Valve Pfeiffer Type BR 14b/31a and Type BR 14c/31a Application Tight-closing, double eccentric butterfly valve for process engineering and plants with industrial
T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.
D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la
SURI. SHELTER UNIT for RAPID INSTALLATIONS SURICATTA SYSTEMS
SURI SHELTER UNIT for RAPID INSTALLATIONS SURICATTA SYSTEMS by SURI is a supported project by CDTI Center for Technological Industrial Development. Ministery of Science and Technology. Goverment of Spain.
Master Panel 1000 R5 Roof
Master Panel 1000 R5 Roof Product Description The important feature of the roof elements are the easy installation procedure. The element fix exactly and pushed together without much force. Roof coverage
Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India
Performance Analysis of Optical CDMA System Using W/T Codes Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India Abstract This paper represents the performance of
POWER SUPPLY PWM SUPERVISOR
偉 詮 電 子 股 份 有 限 公 司 WT7522 POWE SUPPLY PWM SUPEVISO Data Sheet Version 1.10 April 29, 2009 The information in this document is subject to change without notice. All ights eserved. 新 竹 市 科 學 工 業 園 區 工 業
