HEAVY, CLEAN, AND SLOW

Size: px
Start display at page:

Download "HEAVY, CLEAN, AND SLOW"

Transcription

1 Meu Caro, Se a tua operação aeronáutica se faz exclusivamente em pequenos aeródromos em que o MTOW das aeronaves que ali operam não atinge 1 ton, podes não ler o artigo seguinte. Afinal ele não te diz respeito. Contudo, há um provérbio português que diz que o saber não ocupa lugar. E, sabes? Nunca se sabe quando é que um dia nestas histórias há sempre um dia esse saber não virá fazer a diferença entre o viver e o morrer. Por isso, vá lá, lê o artigo seguinte porque ele pode ser-te útil. Não te esqueças porém de ler a última parte desta croniqueta sobre segurança aeronáutica. Nela analisamos o sistema de vácuo e algumas das suas falhas. São falhas que podem ser fatais. TURBULÊNCIA DE RASTO Este perigoso fenómeno afinal não é exclusivo dos aeródromos. Ele pode acontecer, quer no solo, quer em voo. Em voo, com a agravante de não haver um pré-aviso do movimento de uma aeronave mais pesada. Lembro-me de, há algum tempo atrás, ter lido que um Embraer EMB-110 Bandeirante ficou em voo invertido sobre os céus de Paris. Felizmente teve altura para recuperar da incómoda atitude. Um simples problema the wake turbulence invisível provocada por qualquer outro avião que teria passado antes nas proximidades. Imagina-te, com o teu avião que nem pesa uma tonelada a passar no mesmo local. Provavelmente, terias feito todo o programa de Acrobacia Livre. A turbulência de rasto não se vê mas mata. Vejamos algumas recomendações de Dave Wilkerson e o que nos aconselha o FAA sobre tal fenómeno. HEAVY, CLEAN, AND SLOW By Dave Wilkerson "Every airplane produces wake turbulence." All examiners hear applicants say these words sooner or later. The student pilots who say this are correct, but sometimes they don't really understand what they're saying. When you present yourself for the private pilot practical test-the checkride-you may expect your examiner to ask questions about airplane-induced wake turbulence. Examiners know that wake turbulence lies in wait like a Hollywood villain, with ambush skills that are equally well-honed and results that are just as final. Your pilot privileges will allow you to fly yourself and your passengers into wake turbulence situations, so the FAA has addressed the issue in the "examiner responsibility" section of the practical test standards (PTS). The PTS says, "Examiners shall test, to the greatest extent practicable, the applicant's correlative abilities rather than mere rote enumeration of facts throughout the practical test." Using this statement as a guide, many examiners thoroughly test applicants on wake turbulence awareness. Even if your examiner doesn't emphasize this topic, the vicissitudes of chance and air traffic control (ATC) may thrust it into your flight. When you are faced with a real wake turbulence

2 situation on the checkride, your objective becomes not scaring the examiner. During the ground, or oral, phase of your testing, you might reasonably expect anything from brief to in-depth questioning regarding wake turbulence. Some examiners ask direct questions like "What is wake turbulence?" Others use stealthier strategies to sample your knowledge, insinuating wake turbulence considerations into questions that seem to focus on other issues. My personal favorite involves giving the applicant a scenario wherein a twoway-radio communications failure occurs after the tower has issued downwind instructions that place the applicant's airplane behind a C-130 or similar large aircraft on a long final approach. I expect the student to know how to avoid the rolling shakes of wake turbulence and keep the aircraft out of danger. Common misconceptions about wake turbulence include just when it begins. Occasionally applicants announce that danger first appears when the generating airplane begins the takeoff roll. (It actually begins the moment the airplane leaves the ground.) (NOTA: Meu Caro, aqui entro em desacordo com o autor do texto. Em meu entendimento ele comete um erro grave quando afirma que...it actually begins the moment the airplane leaves the ground.... Não! A turbulência de rasto começa quando o avião inicia a sua corrida para a descolagem. A partir deste momento ele começa a criar sustentação. Uma sustentação que só igualará o peso no momento da rotation (retirem-se os valores de segurança). Nesse momento (na altura da rotação), por aumento do ângulo de ataque quando o piloto puxa o manche, o Lift aumenta particularmente depressa, iguala o Peso, e o avião começa a voar. Devido à existência de vórtices de ponta de asa, tanto mais intensos quanto maior a diferença de pressão estática entre o intradorso e o extradorso da asa (isto é, vão-se intensificando à medida que o avião ganha velocidade na pista) já há wake turbulence (devido à resistência induzida pelo downwash, por causa dos vórtices de ponta de asa) durante a corrida de descolagem, mas relativamente pequena. Além disso o downwash é barrado ao bater na pista, limitando o aumento de resistência induzida, e de wake turbulence. Quando finalmente o piloto puxa o manche, tudo aumenta rapidamente de proporção. O que muitas pessoas pensam é que só quando o piloto roda o avião para descolar se geram estes fenómenos. Não é assim. Eles já existem durante a corrida de descolagem, se bem que fracos, cada vez mais fortes à medida que o avião acelera, mas é na realidade quando o ângulo de ataque é aumentado na rotação do avião que estes fenómenos aumentam espectacularmente.) Others state that wingtip vortices aloft somehow remain level for a significant time (they actually fall toward the ground and may linger just above the runway depending on wind conditions), and a few report that heavy, fast, and clean airplanes beget the strongest slipstream upheavals (it's the heavy, slow, and clean aircraft that are the most dangerous). Few examiners would fail an applicant for these mistakes alone. But if you make such an error, expect more questions. Applicants who don't realize that the primary hazard from wake turbulence is the loss of control that results from the roll that wingtip vortices produce raise doubts in examiners' minds. Examiners want your first goal to be that of avoiding wake turbulence. If your examiner sees that avoidance is your urgent desire, questioning will likely move to other subjects. Another common series of misconceptions includes the idea that a light crosswind weakens and rapidly dissipates wingtip vortices on the runway behind a departing airplane. The fact is that a light wind from the side can trap the upwind vortex in the takeoff zone for longer than one might imagine. You can read about this if you have the FAA advisory circular Aircraft Wake Turbulence (AC 90-23E) (Ver texto desta Advisory Circular no fim deste artigo). It's available free on the Internet ( safety-products/wakeac.html). This booklet can help you to avoid another misconception: Wake turbulence is always the

3 harbinger of disaster. Most pilots have experienced wake turbulence at some point. My first encounter with it was as a student pilot in the 1960s. I knew I had made a good 360-degree steep turn by the way my little airplane skipped timidly through its own propwash. (At the time, I quietly wondered about invisible potholes of my own making and never once connected that experience with the thought of trailing behind a bigger airplane.) But wingtip vortices can create a similar jolting effect of varying severity, depending on how close you are to the larger airplane and a variety of other factors. The fact that these wingtip vortices are invisible multiplies their danger to pilots. Asked about avoiding wake turbulence behind a jet, some applicants say that they would notice the jet's rotation point and plan to lift off before that point, climbing above the jet's flight path. That's the correct book response, but a pilot who tries to do this could still find himself in trouble. The logical follow-up question involves the airplane's ability to climb as steeply as the jet. Some jets can climb as if they forgot something on Mars. Taking off behind one in a typical training airplane and hoping to climb more steeply than a jet shows a certain lack of awareness and judgment. Too many good pilots have challenged the horizontal tornado of wingtip vortices and lost. Some examiners pose their question in this way: "If you wanted to refresh your knowledge on wake turbulence, in which FAA publication would you look?" The answer is the Aeronautical Information Manual (AIM). Such a query is an open invitation to open the book and look. The AIM now includes accounts of an actual wake turbulence incident in which a DC-9 flew less than two miles in trail of a DC-10, rolled, and struck the ground with a wingtip. You may know that, under certain circumstances, ATC advises pilots of potential wake turbulence. You should also know that acknowledging a wake turbulence advisory means that you, the pilot in command (PIC), accept the responsibility for providing wake turbulence separation. As PIC, you have the authority to request additional separation, for example, two minutes instead of four or five miles, depending on the type of airplane that you must trail. Incidentally, this is precisely why ATC specifies the use of the word "heavy" in certain radio transmissions. Of course, some airplanes that weigh less than a "heavy" can produce wingtip vortices equivalent to a larger plane. The AIM notes that the Boeing 757 is such an airplane and lists separation criteria for wake turbulence avoidance. It further states that controllers may not reduce or waive this interval. Your examiner may not ask, but it's a good idea to know where to find this information. Be sure you know the terms wake turbulence, vortices, thrust stream turbulence, jet blast, jet wash, propeller wash, and rotor wash and how they relate to your operations both on the ground and in the air. You must understand that wake turbulence avoidance is every bit as much a part of safe ground operations as it is a part of safe flying. FAA ADVISORY CIRCULAR, AC-90-23E, CAUTION WAKE TURBULENCE The following information on Wake Turbulence AVOIDANCE is reproduced from FAA Advisory Circular, AC-90-23E, Caution Wake Turbulence. The section on Wake Turbulence RECOVERY (at the end of the article) is from FCI Emergency Maneuver Training s Upset Recovery Training Program. Wake Turbulence - The Problem All Pilots are taught to be aware of wake turbulence. However, recent incidents indicate that pilots need to keep in mind how severe wake turbulence can be. In any event, wake turbulence is still out there and it can put a pilot and the aircraft at risk. This page was prepared as a reminder to pilots, to make them aware of wake turbulence and how to best avoid it. Remember, the best defense against wake turbulence is to know and avoid areas

4 where it occurs. What is Wake Turbulence? All Aircraft produce wake turbulence. Wake vortices are formed any time an airfoil is producing lift. Lift is generated by the creation of a pressure differential over the wing surfaces. The lowest pressure occurs over the upper surface and the highest pressure under the wing. This pressure differential triggers the rollup of the airflow aft of the wing resulting in swirling air masses trailing downstream of the wingtips. Viewed from behind the generating aircraft, the left vortex rotates clockwise and the right vortex rotates counterclockwise. The intensity or strength of the vortex is primarily a function of aircraft weight and configuration (flap setting etc.). Heavy aircraft, flying slowly, in a clean configuration, produce the strongest vortices. For example, a large or heavy aircraft that must reduce its speed to 250 knots below 10,000 feet and is flying in a clean configuration while descending, produces very strong wake. Extra caution is needed when flying below and behind such aircraft. Induced Roll - The Greatest Hazard While instances where wake turbulence caused structural damage have been rare, the greatest hazard is induced roll and yaw. This is especially dangerous during takeoff and landing when there is little altitude for recovery. Short wing span aircraft are most susceptible to wake turbulence. The wake turbulenceinduced roll rates can be extreme. Countering roll rates may be difficult or impossible even in a high performance aircraft with excellent roll control authority. Parallel or crossing Runways - Stay Heads Up for the Wake During takeoff and landing, the vortices sink toward the ground and move laterally away from the runway when the wind is calm. A 3 to 5 knot crosswind will tend to keep the upwind vortex in the runway area and may cause the downwind vortex to drift toward another runway. At altitude, vortices sink at a rate of 300 to 500 feet per minute and stabilize about 500 to 900 feet below the flight level of the generating aircraft. Helicopter Wake Helicopters also produce wake turbulence. Helicopter wakes may be of significantly greater strength than those from a fixed wing aircraft of the same weight. The strongest wake can occur when the helicopter is operating at lower speeds (20-50 knots). Some mid-size or

5 executive class helicopters produce wake as strong as that of heavier helicopters. This is because two blade main rotor systems, typical of lighter helicopters, produce stronger wake than rotor systems with more blades. Stay On or Above Leader's Glide Path Incident data shows that the greatest potential for a wake vortex incident occurs when a light aircraft is turning from base to final behind a heavy aircraft flying a straight-in approach. Use extreme caution to intercept final above or well behind the heavier aircraft. When a visual approach is issued and accepted to visually follow a preceding aircraft, the pilot is required to establish a safe landing interval behind the aircraft s/he was instructed to follow. The pilot is responsible for wake turbulence separation. Pilots must not decrease the separation that existed when the visual approach was issued unless they can remain on or above the flight path of the preceding aircraft. (Keeping the preceding aircraft stationary in the over-run prior to it passing the threshold will ensure you are above its glide path.) Warning Signs Any uncommanded aircraft movements (i.e., wing rocking) may be caused by wake. This is why maintaining situational awareness is so critical. Ordinary turbulence is not unusual, particularly in the approach phase. A pilot who suspects wake turbulence is affecting his or her aircraft should get away from the wake, execute a missed approach or go-around and be prepared for a stronger wake encounter. The onset of wake can be insidious and even surprisingly gentle. There have been serious accidents where pilots have attempted to salvage a landing after encountering moderate wake only to encounter severe wake vortices. Pilots should not depend on any aerodynamic warning, but if the onset of wake is occurring, immediate evasive action is a MUST! How to Avoid Wake Turbulence 1. Takeoff If you think wake turbulence from the preceding aircraft may be a factor, wait at least 2 or 3 minutes before taking off. (See AIM para b & c). Before taking the runway, tell the tower that you want to wait. Plan your takeoff to liftoff before the rotation point of the preceding aircraft.

6 2. Climb If you can, climb above the preceding aircraft's flight path. If you can't out climb it, deviate slightly upwind, and climb parallel to the preceding aircraft's course. Avoid headings that cause you to cross behind and below the preceding aircraft. 3. Crossing If you must cross behind the preceding aircraft, try to cross above its flight path or (terrain permitting) at least 1,000 feet below. 4. Following Stay either on or above the preceding aircraft's flight path, upwind, or at least 1,000 feet below. 5. Approach Maintain a position on or above the preceding aircraft's flight path with adequate lateral separation. 6. Landing Ensure that your touchdown point is beyond the preceding aircraft's touchdown point, or land well before a departing aircraft's rotation point. 7. Crossing Approaches When landing behind another aircraft on crossing approaches, cross above the other aircraft's flight path. 8. Crosswinds Remember crosswinds may affect the position of the vortices. Adjust takeoff and landing points accordingly. 9. Helicopters Helicopter wake vortices may be of significantly greater strength than fixed wing aircraft of the same weight. Avoid flying beneath the flight paths of helicopters. BUT IF YOU FIND YOURSELF IN WAKE TURBULENCE: POWER PUSH ROLL GO AROUND POWER Whenever you are low and slow, add the power, you ll need it. PUSH Unload the wings or push on the yoke until you are slightly light in the seat. This reduces the angle attack of the wings which gives you better roll control with the ailerons, reduces the drag on the aircraft for better acceleration, and if you are rolling over, slows your decent towards the ground. ROLL We often get asked, which way do I roll, with or against the roll? That is a tough one to answer and is why pilots get all that extra pilot pay! Of course, if you have the choice, you d always like to roll (unloaded) to the nearest horizon. If there isn t a nearest horizon, or if you have rolling momentum, continue to roll (unloaded) in that direction to the horizon. GO AROUND Never try to salvage a landing after a traumatic event like that. Take it around the pattern, wind your watch and take a deep breath and get back to the task at hand landing the aircraft. Once safely in the hangar, then think about what happened, how you could prevent it in the future, and let other folks know what happened so they can also learn from the experience. Tem cuidado com este fenómeno e nunca te deixes influenciar por um controlador mais nervoso. Mais vale dizer Unnable to comply due to wake turbulence danger do que experimentar a realidade deste fenómeno. SISTEMA DE VÁCUO Quando um piloto para sobreviver depende dum objecto destes é preciso pensar duas vezes e duplicar os cuidados.

7 Foto obtida no Aero Clube de Torres Vedras O objecto da fotografia é uma bomba de vácuo que alimenta os instrumentos giroscópicos, permitindo uma orientação espacial ao piloto. O que nos diz a Air Safety Foundation sobre o tema? While accidents due to pneumatic system failures are rare, they are almost always fatal. Pneumatic systems, commonly known as vacuum or pressure systems, power the heading and attitude indicators in most general aviation (GA) aircraft, and in some aircraft, also power the autopilot and de-ice systems. For pilots who regularly fly at night or in instrument meteorological conditions (IMC) these systems are essential. This ASF Safety Brief explains how the pneumatic system works, how to recognize a system failure, and system redundancy options. Basic Operation Pneumatic systems in GA aircraft are pretty straightforward. The heart of these systems is a pressure or vacuum-creating engine driven air pump. The air pump draws air into the system through a filter. The fast-moving stream of air passes over the vanes within the heading and attitude indicator gyros, causing the gyroscopes to rotate at about 10,000 RPM. In many aircraft, the same air pump powers the autopilot and de-ice systems. There are two basic types of air pumps: wet and dry. Wet air pumps use engine oil to lubricate the inside of the pump. The more common dry air pumps have graphite vanes inside the casing which self-lubricate as they rotate. Early Recognition of System Failure Recognizing a pneumatic system failure early is important during any operation, but when flying IMC or night VFR it could be the difference between life and death. To accurately and quickly recognize a pneumatic system failure, you must first understand which flight instruments are pneumatically powered. In most aircraft, these would be the heading and attitude indicators, although in some newer aircraft these flight instruments are electrically powered. Check the aircraft s pilot operating handbook (POH) for specifics.

8 The heading and attitude indicators in many GA aircraft are powered by the pneumatic system. If the autopilot is also powered by the pneumatic system, the consequences of a system failure are magnified; just when the autopilot is needed the most, it s no longer reliable. Signs of Failure Early recognition of pneumatic system failure is complicated because the first warning signs can be subtle. Vacuum or pressure powered flight instruments will slowly begin to give conflicting and inaccurate information, so proficiency in instrument scanning is vital. It s important to include the suction or pressure gauge as part of your scan pattern, because a low reading will often signal a failure before the gyros start giving inaccurate indications. Pilots should consider installing easily visible annunciator warning lights, inoperative flags on the gyros, or flow indicators for early warning of a pneumatic systems failure. Early recognition of a pneumatic system failure can significantly decrease the chances of spatial disorientation. Annunciators and flags provide an early indication of a pneumatic system failure. While pneumatic system failures alone do not cause accidents, spatial disorientation does, and tragically these accidents are almost always fatal. (See figure below.)

9 To help avoid spatial disorientation: Install a backup power supply to the pneumatic system (see the Redundancy section below) Keep the suction gauge in your instrument scan Become and stay proficient at partial panel flying Cover up inoperative instruments during a failure Make timed turns instead of using the heading indicator Notify ATC of the situation and declare an emergency If in IMC, consider flying toward the closest VMC Check the weather at the nearest airport with a precision instrument approach Ask ATC for a no gyro approach Pneumatic system failures can occur at any time, regardless of the age of the system. Causes include: Contamination by solid particles from within the pneumatic system that can damage the pump and plug valve openings. Liquid contamination from oil, water, or engine cleaning solvents. A loose fitting or damaged hose allowing contaminants into the system past the filter. Worn out, misused, or incorrectly routed hoses. Abrupt engine deceleration (which can be caused by the propeller hitting water or tall grass). Sudden engine stoppage, such as that caused by a prop strike against a solid object. Whether you re an aircraft owner, renter, or operator defense against pneumatic system failure begins with a review of the maintenance logs and a talk with the mechanic who most recently worked on the aircraft. Study and adhere to the aircraft and component part manufacturer s recommendations regarding inspection and replacement intervals of pneumatic system component parts. Redundancy Redundancy in a pneumatic system can take a load of worry off your plate. While many newer aircraft come with redundant systems, older aircraft usually do not. Pilots who frequently fly in IMC or night VMC should install pneumatic system redundancy. Redundancy comes in several forms. Options include: Electrically-powered backup attitude and heading indicators Air pump redundancy with an electric or engine driven pump Standby vacuum system that utilizes the pressure differential from the engine s intake manifold Points to Remember Here are the key points to remember about pneumatic system failures: Pneumatic systems fail. Expect it and be prepared. You can lessen the likelihood of a failure by making sure the pneumatic system has been properly maintained. Consider installing a backup system and a prominently placed annunciator. Stay current on instrument scanning techniques and partial panel flying. With these points in mind, you can feel more at ease the next time you need to rely on your pneumatic powered flight instruments and systems. Vejamos agora a análise de um acidente que vitimou um companheiro americano já com bastante experiência acumulada.

10 WHEN THE VACUUM SYSTEM FAILS, PROFICIENCY PREVAILS Accidents resulting from vacuum pump failures are rare. Unfortunately, vacuum failures can be hard to detect, which can lead to spatial disorientation, unusual attitudes, and death. On November 25, 2003, the pilot of a Beechcraft Bonanza and his three passengers were killed when the Bonanza broke up in flight near Warren, Oregon, after a vacuum failure and subsequent loss of control. The IFR cross-country flight had departed Arlington, Washington, with a destination of Medford, Oregon. The pilot got a weather briefing two hours before the flight, which included advisories for mountain obscuration, occasional moderate turbulence and moderate rime or mixed icing in the clouds. Ceilings in the area were forecast to be broken at 2,000 feet and overcast at 4,000 feet with tops at 20,000 feet. The flight departed Arlington at about 5:35 a.m. Pacific time. At 6:35 a.m., level at 11,000 feet, the pilot contacted Seattle Center and asked for a higher altitude. He was cleared to 13,000 feet. At 6:39 a.m., the flight was level at 13,000 and the pilot reported that he was clear of rime ice. Some time later, the pilot radioed, "Ah, we just lost our suction gauge." The controller responded "climb and maintain 15,000? You requesting a higher altitude? Is that what you said?" The pilot replied, "Mayday, mayday, mayday." There were no further transmissions from the pilot. Between 6:50 and 6:52 a.m., the Bonanza made numerous turns to the right and left. At 6:51 a.m., the plane descended from 13,100 feet to 10,700 feet in 24 seconds -- a descent rate of 6,000 fpm. The descent steepened to more than 18,000 fpm, and thirteen seconds later, the Bonanza was at 6,800 feet. The last radar return showed the plane at 6,400 feet. Wreckage of the Bonanza was located on the east side of Scappoose Bay, 3 nautical miles northeast of the Scappoose Industrial Airpark. Aircraft records show that a vacuum pump, overhauled on April 22, 1992, was installed on November 21, The Bonanza had been flown hours since the pump's installation. Scoring consistent with an overstress fracture at the coupling's designed shear point was found during disassembly, and representatives from the company that overhauled the unit noted that "it appeared that sometime in the recent past the pump's rotor, vanes, and coupling were replaced by an unknown party with parts from an unknown source." The pilot was an instrument-rated commercial pilot in both single and multiengine land airplanes. He also held an aircraft airframe and powerplant certificate. He had accumulated 3,263 hours of flight time, with 80 hours in the Bonanza. The NTSB determined the probable cause of this accident was the failure of the vacuum pump, and the pilot's subsequent failure to maintain control of the airplane. Early recognition of a vacuum pump failure is complicated because the first warning signs can be subtle. Vacuum- or pressure-powered flight instruments will slowly begin to give conflicting and inaccurate information. Staying proficient with partial panel operation will help mitigate the problems experienced when your vacuum pump fails. Meu caro, como se diz no artigo não é um assunto fácil de detectar à primeira. Em voo faz um varrimento frequente dos instrumentos inclusive o manovacuómetro e mantém-te treinado nas técnicas de voo com painel parcial. Deixa-me terminar recomendando-te que te associes à AOPA Portugal. Perguntarás, de imediato, como o poderás fazer. Visita o site da AOPA Portugal em e manda as tuas perguntas para o Presidente da AOPA Portugal através do seguinte address: robin.andrade@aopa.pt. Gostaria de contar com a tua presença na nossa AOPA.

11 Como sempre, um abração do Fernando

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Notes I Introduction Encountering wake turbulence in flight can be a surprising experience, both for crews and passengers. Wake turbulence occurs suddenly, and is usually accompanied

More information

FAA-P-8740-52 AFS-820-2000

FAA-P-8740-52 AFS-820-2000 S1 Introduction You fly in actual instrument weather conditions and make enough approaches to keep "current," take your flight review from a good instructor, know the "Normal" and "Emergency" procedure

More information

Light Sport West Standard Flight Training Procedures for N110GX (Remos GX, 100 H.P.)

Light Sport West Standard Flight Training Procedures for N110GX (Remos GX, 100 H.P.) Light Sport West Standard Flight Training Procedures for N110GX (Remos GX, 100 H.P.) Welcome to Light Sport West! Thank you for giving us the opportunity to provide all of your flight training needs. Our

More information

H is for HELP! He was employed as an EMS pilot in Buffalo New York for about 2 years, than transferred to work as a relief pilot through out WI.

H is for HELP! He was employed as an EMS pilot in Buffalo New York for about 2 years, than transferred to work as a relief pilot through out WI. H is for HELP! Wind Turbines and EMS helicopters in Wisconsin This interview with retired EMS pilot Ray Slavik, was submitted to the Calumet County Ad Hoc Committee researching proposed ordinances governing

More information

Automation at Odds. A 737 stalled when a radio altimeter malfunction caused the autothrottle and autopilot to diverge during an approach to Schiphol.

Automation at Odds. A 737 stalled when a radio altimeter malfunction caused the autothrottle and autopilot to diverge during an approach to Schiphol. Automation at Odds The pilots of a Boeing 737-800 did not heed indications of a significant decrease in airspeed until the stick shaker activated on final approach to Runway 18R at Amsterdam (Netherlands)

More information

Multi-Engine Training And The PTS

Multi-Engine Training And The PTS Multi-Engine Training And The PTS GHAFI John Sollinger/Larry Hendrickson October 28, 2000 Overview FAR differences between original and add-on Multi-Engine PTS Training methods Common training scenarios

More information

Pilot Professionalism It Isn t Just For The Big Guys

Pilot Professionalism It Isn t Just For The Big Guys Pilot Professionalism It Isn t Just For The Big Guys Earl F Weener Board Member American Bonanza Society Convention & Trade Show Buffalo, NY September 25, 2010 Pilot Professionalism - NTSB Interest Lack

More information

2014 NIFA CRM Contestant Briefing Guide San Diego, California

2014 NIFA CRM Contestant Briefing Guide San Diego, California 2014 NIFA CRM Contestant Briefing Guide San Diego, California Region 2 SAFECON 2014 November 12 15 This document supports the 2014 NIFA Collegiate Cockpit Resource Management Simulation and is not for

More information

Cessna 172SP & NAV III Maneuvers Checklist

Cessna 172SP & NAV III Maneuvers Checklist Cessna 172SP & NAV III Maneuvers Checklist Introduction Power Settings This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation s Cessna 172SP and NAV

More information

Introduction. The Normal Takeoff. The Critical Engine. Flying Light Twins Safely

Introduction. The Normal Takeoff. The Critical Engine. Flying Light Twins Safely Note: The graphics and some of the material in this document have been modified from the original printed version. Introduction The major difference between flying a light twin and a single-engine airplane

More information

Inoperative Equipment

Inoperative Equipment Inoperative Equipment Reference Sources Advisory Circular AC91-67 Minimum Equipment Requirements for General Aviation Operations under FAR Part 91 ( Definitions section at minimum) Title 14 Code of Federal

More information

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 8.3 Landing Distances

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 8.3 Landing Distances Flight Safety Foundation Approach-and-landing Accident Reduction Tool Kit FSF ALAR Briefing Note 8.3 Landing Distances When discussing landing distance, two categories must be considered: Actual landing

More information

Accident Analysis: Single-pilot versus Two-pilot - Is There a Safety Advantage?

Accident Analysis: Single-pilot versus Two-pilot - Is There a Safety Advantage? Accident Analysis: Single-pilot versus Two-pilot - Is There a Safety Advantage? AIN analysis comparing accidents involving one-pilot versus two-pilot business jet operations from 1977 through 2014 reveals,

More information

Maryland State Firemen s Association Executive Committee Meeting December 5, 2009

Maryland State Firemen s Association Executive Committee Meeting December 5, 2009 Maryland State Firemen s Association Executive Committee Meeting December 5, 2009 Maryland State Police Aviation Command Update Presented by: Major Andrew J. (A. J.) McAndrew Hello, my name is Major A.

More information

per day, air traffic controllers help a pilot by performing a

per day, air traffic controllers help a pilot by performing a S A F E T Y A D V I S O R Operations and Proficiency No. 7 Say Intentions... When you need ATC s help There are several reasons that pilots do not call air traffic control (ATC) for help: They feel in

More information

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby Background papers and links to formal FAA and EASA Aviation Regulations and

More information

3. FLYING TECHNIQUES. 3.1 Speed Management. 3.2 Attitude Management. 3.3 Height Management. 3.4 Transit Flying

3. FLYING TECHNIQUES. 3.1 Speed Management. 3.2 Attitude Management. 3.3 Height Management. 3.4 Transit Flying 3. FLYING TECHNIQUES 3.1 Speed Management Maintaining an appropriate airspeed can be very challenging in mountainous terrain. Pilots need to be aware of the speed limitations from the RFM especially in

More information

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 4.2 Energy Management

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 4.2 Energy Management Flight Safety Foundation Approach-and-landing Accident Reduction Tool Kit FSF ALAR Briefing Note 4.2 Energy Management The flight crew s inability to assess or to manage the aircraft s energy condition

More information

The Basis for Our Decision

The Basis for Our Decision October 31, 2014 Exemption No. 10009C Regulatory Docket No. FAA-2009-0702 Mr. Stephen Craven Angel Flight Mid-Atlantic Airlift Hope of America Mercy Medical Airlift 4620 Haygood Road, Suite 1 Virginia

More information

Lesson 7: Your First Solo

Lesson 7: Your First Solo Page 1 of 7 Lesson 7: Your First Solo Fly This Lesson Now by Rod Machado One of the greatest pleasures a flight instructor can have is to solo a student. Since you are my student, I have the great pleasure

More information

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com The Pilot s Manual 1: Flight School Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com Originally published by Aviation Theory Centre 1990 1993. Fourth

More information

Decision Making Under Extreme Pressure

Decision Making Under Extreme Pressure Decision Making Under Extreme Pressure Lessons Learned From Pilots In Crisis Lee Copeland lee@sqe.com SQE 2008 Decision Making Under Extreme Pressure Lessons Learned From Pilots In Crisis Lee Copeland

More information

Oral Preparation Questions

Oral Preparation Questions Oral Preparation Questions The oral section of the practical test is the time when you need to demonstrate your understanding of the various tasks listed in the practical test standards and the factors

More information

BE76 Beechcraft Duchess Maneuvers Checklist

BE76 Beechcraft Duchess Maneuvers Checklist BE76 Beechcraft Duchess Maneuvers Checklist Introduction Power Settings This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation s Beechcraft Duchess

More information

Turbulence: The Invisible Hazard presented by Scott Miller PIA Symposium 2005 Jacksonville, Florida, USA

Turbulence: The Invisible Hazard presented by Scott Miller PIA Symposium 2005 Jacksonville, Florida, USA 1300 E. International Speedway Blvd DeLand, FL 32724 USA Tel: +1.386.738.2224 Fax: +1.734.8297 www.performancedesigns.com Turbulence: The Invisible Hazard presented by Scott Miller PIA Symposium 2005 Jacksonville,

More information

SPORT PILOT TRAINING SYLLABUS

SPORT PILOT TRAINING SYLLABUS Checked out from the Members Only Library Page 1 of 13 Society of Aviation and Flight Educators www.safepilots.0rg SPORT PILOT TRAINING SYLLABUS LESSON ONE: INTRODUCTORY FLIGHT TIME: 1 hour Ground Instruction;

More information

Aviation Safety Prize ecfi Tasks

Aviation Safety Prize ecfi Tasks 2008 NASA "The PAV Challenge" Aviation Safety Prize ecfi Tasks The Aviation Safety Prize (ASP) will be based upon a set of defined tasks that can be flight demonstrated to the CAFE Test Pilots by each

More information

Cessna 172S. Flight Training Standardization Guide REVISION: ORIGINAL

Cessna 172S. Flight Training Standardization Guide REVISION: ORIGINAL Cessna 172S Flight Training Standardization Guide REVISION: ORIGINAL Contents Purpose... 4 Normal and Crosswind Takeoff and Climb... 5 Normal and Crosswind Landing... 6 Soft Field Takeoff and Climb...

More information

FACTUAL REPORT AVIATION

FACTUAL REPORT AVIATION Location/Time Aircraft Registration Number: Most Critical Injury: Minor Investigated By: NTSB N911BL Nearest /Place Zip Code Local Time Time Zone Las Vegas NV 89032 1600 PDT Airport Proximity: On Airport/Airstrip

More information

InFO Information for Operators

InFO Information for Operators InFO Information for Operators U.S. Department InFO 07015 of Transportation DATE: 7/3/2007 Federal Aviation Administration Flight Standards Service Washington, DC http://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/info

More information

Instrument Pilot Rating Course (ASEL) Training Syllabus FAR Part 61

Instrument Pilot Rating Course (ASEL) Training Syllabus FAR Part 61 Instrument Pilot Rating Course (ASEL) Training Syllabus FAR Part 61 Property of Tech Aviation Flight School. Reproduction of this manual in full or part is strictly prohibited by law. Distribution or use

More information

Learning Objectives - 06 OPERATIONAL PROCEDURES

Learning Objectives - 06 OPERATIONAL PROCEDURES 070 00 00 00 OPERATIONAL PROCEDURES 071 01 00 00 GENERAL REQUIREMENTS 071 01 01 00 071 01 01 01 Definitions LO Alternate aerodrome : take-off alternate, en-route alternate, ETOPS en-route alternate, destination

More information

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF According to RYANAIR Procedures PF PM REMARKS Control the aircraft (FULL T/O thrust can be manually selected) Announce «ENGINE FAILURE» or «ENGINE FIRE»

More information

Background on Airspace

Background on Airspace Background on Airspace There are six classifications of airspace in the United States; A, B, C, D, E, and G. Class A is the most restrictive and Class G the least restrictive. They can be categorized as:

More information

This report is based on research using the AOPA Air Safety Foundation Safety Database, the largest non-governmental

This report is based on research using the AOPA Air Safety Foundation Safety Database, the largest non-governmental Flight Instruction Safety: An In-depth Look at Instructional Accidents This report is based on research using the AOPA Air Safety Foundation Safety Database, the largest non-governmental compilation of

More information

WHICH AIR TRAFFIC CONTROLLER TO CONTACT

WHICH AIR TRAFFIC CONTROLLER TO CONTACT WHICH AIR TRAFFIC CONTROLLER TO CONTACT 1. Introduction This article is written in order to explain to all beginners in the IVAO network the basics for any pilot to contact the correct air traffic controller.

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Note I Introduction Operations in crosswind conditions require strict adherence to applicable crosswind limitations or maximum recommended crosswind values, operational recommendations

More information

FACTUAL REPORT AVIATION

FACTUAL REPORT AVIATION NTSB ID: DENFA127 Aircraft Registration Number: N377V Occurrence Date: Occurrence Type: 7/8/2 Accident Most Critical Injury: Fatal Investigated By: NTSB Location/Time Nearest City/Place Aspen Airport Proximity:

More information

FACTUAL REPORT AVIATION

FACTUAL REPORT AVIATION Aircraft Registration Number: N8098T Occurrence Date: Occurrence Type: 03/07/005 Accident Most Critical Injury: Minor Investigated By: NTSB Location/Time Nearest City/Place Shreveport Zip Code Local Time

More information

Radio Communications in Class D Airspace by Russell Still, Master CFI

Radio Communications in Class D Airspace by Russell Still, Master CFI Radio Communications in Class D Airspace by Russell Still, Master CFI Class D airspace is one of the most common parts of the airspace system that requires specific radio communications. Although you can

More information

VFR. into IMC. Helping students avoid GA s number one killer

VFR. into IMC. Helping students avoid GA s number one killer VFR into IMC Helping students avoid GA s number one killer DALE R. WILSON, MCFI In spite of safety improvements over the years, continued visual flight rules (VFR) flight into instrument meteorological

More information

Accident Bulletin 1/2010. Date and time of accident: 13 April 2010 at 1343 hours local time (0543 UTC)

Accident Bulletin 1/2010. Date and time of accident: 13 April 2010 at 1343 hours local time (0543 UTC) Chief Inspector of Accidents Accident Investigation Division Civil Aviation Department 46 th Floor Queensway Government Offices 66 Queensway Hong Kong Accident Bulletin 1/2010 Aircraft type: Airbus A330-342

More information

AIRCRAFT NOISE ABATEMENT OPERATING PROCEDURES AND RESTRICTIONS

AIRCRAFT NOISE ABATEMENT OPERATING PROCEDURES AND RESTRICTIONS AIRCRAFT NOISE ABATEMENT OPERATING PROCEDURES AND RESTRICTIONS This section sets forth the Los Angeles World Airports (LAWA s) informal noise abatement traffic; flight and runway use procedures and includes

More information

June 22, 2011 Exemption No. 10294 Regulatory Docket No. FAA-2011-0324

June 22, 2011 Exemption No. 10294 Regulatory Docket No. FAA-2011-0324 June 22, 2011 Exemption No. 10294 Regulatory Docket No. FAA-2011-0324 Mr. Joseph Howley Chairman of the Board of Directors Patient AirLift Services, Inc. 120 Adams Boulevard Farmingdale, NY 11735 Dear

More information

For Flight Simulation purposes only on the VATSIM Network.

For Flight Simulation purposes only on the VATSIM Network. Compiled by Daniel A. Hawton, ZDC Training Administrator For Flight Simulation purposes only on the VATSIM Network. Introduction The goal of the document is to introduce you, the controller, to the appropriate

More information

Aeronautics AERO, FLTEC, ATCAD

Aeronautics AERO, FLTEC, ATCAD Aeronautics AERO, FLTEC, ATCAD Degrees: A.S. Air Traffic Control A.S. Aircraft Dispatcher A.S. Airframe A.S. Combined Airframe and Powerplant A.S. Flight Technology A.S. Powerplant Certificates of Achievement:

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10 In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

More information

The Art of Aeronautical Decision-Making Course Table of Contents

The Art of Aeronautical Decision-Making Course Table of Contents Federal Aviation Administration The Art of Aeronautical Decision-Making Course Table of Contents Introduction Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 What is ADM? 3-P Model

More information

a. AC 25-7, Flight Test Guide for Certification of Transport Category Airplanes.

a. AC 25-7, Flight Test Guide for Certification of Transport Category Airplanes. U.S. Department of Transportation Federal Aviation Administration Advisory Circular Subject: Runway Overrun Prevention Date: 11/06/07 Initiated by: AFS-800 AC No: 91-79 Change: 1. PURPOSE. This advisory

More information

Exam questions for obtaining aircraft licenses and ratings

Exam questions for obtaining aircraft licenses and ratings Exam questions for obtaining aircraft licenses and ratings Subject: PPL (A) Flight performance and planning Revision 1 07.10.2009. Period of validity: 01 January 2010 th - 31 December 2010 th Belgrade

More information

Wildlife Hazard Mitigation Strategies for Pilots

Wildlife Hazard Mitigation Strategies for Pilots Executive Summary From the very beginning of powered flight, pilots have competed with birds for airspace, sometimes with disastrous results. Over the years, there have been many efforts to create a better

More information

Threat and Error Management

Threat and Error Management Threat and Error Management Society of Experimental Test Pilots April 28, 2009 Robert Sumwalt, Board Member NTSB Threat and Error Management: A Practical Perspective Building a wall How do we improve safety?

More information

GD-098-PHS-EMS: Curriculum for Helicopter Scene Safety - Arizona

GD-098-PHS-EMS: Curriculum for Helicopter Scene Safety - Arizona STATE OF ARIZONA EMERGENCY MEDICAL SERVICES AND TRAUMA SYSTEM Curriculum for Helicopter Scene Safety - Arizona Course Description This course is designed to provide instruction in helicopter scene safety

More information

How To Write An Accident Report On An Airplane Accident

How To Write An Accident Report On An Airplane Accident Location/Time Aircraft Registration Number: Most Critical Injury: Fatal Investigated By: NTSB N57672 Nearest City/Place State Zip Code Local Time Time Zone Collinsville OK 74021 1800 CDT Airport Proximity:

More information

AVIATION INVESTIGATION REPORT A00O0057 MIDAIR COLLISION

AVIATION INVESTIGATION REPORT A00O0057 MIDAIR COLLISION AVIATION INVESTIGATION REPORT A00O0057 MIDAIR COLLISION BETWEEN ISLAND AIR FLIGHT SCHOOL & CHARTERS INC. CESSNA 172 C-GSAR AND CESSNA 337 SKYMASTER C-GZYO TORONTO/CITY CENTRE AIRPORT 18 NM NE 13 MARCH

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

Instructional Accidents

Instructional Accidents Instructional Accidents Challenge and Opportunity Presented to: By: Date: NTSB Seminar Jim Viola July 2015 A system in equilibrium All we ve done has brought us here. Continue to maintain position Innovate

More information

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014 Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established

More information

Out of Control. HANG ON! It s GOING TO GET ROUGH! DISASTER is just ahead! DON T JUST SIT THERE DO SOMETHING!

Out of Control. HANG ON! It s GOING TO GET ROUGH! DISASTER is just ahead! DON T JUST SIT THERE DO SOMETHING! Out of Control Brent Anderson HANG ON! It s GOING TO GET ROUGH! DISASTER is just ahead! DON T JUST SIT THERE DO SOMETHING! No, we are not talking about the aircraft we re flying, but rather the way our

More information

Airspace. Chapter 14. Introduction

Airspace. Chapter 14. Introduction Chapter 14 Airspace Introduction The two categories of airspace are: regulatory and nonregulatory. Within these two categories there are four types: controlled, uncontrolled, special use, and other airspace.

More information

VFR Regulations Summary

VFR Regulations Summary Gold Seal Online Ground School www.onlinegroundschool.com VFR Regulations Summary Pilot in Command The pilot in command is directly responsible for and the final authority as to the operation of the aircraft.

More information

Multi Engine Oral Exam Questions

Multi Engine Oral Exam Questions Multi Engine Oral Exam Questions 1. What are the requirements for a multi-engine rating? 2. What is the max rated horse power at sea level? At 12,000 msl? 3. What is the rated engine speed? 4. What is

More information

FAA/Industry Training Standards Personal and Weather Risk Assessment Guide Version 1.0, October 2003

FAA/Industry Training Standards Personal and Weather Risk Assessment Guide Version 1.0, October 2003 1 FAA/Industry Training Standards Personal and Weather Risk Assessment Guide Version 1.0, October 2003 INTRODUCTION As a general aviation (GA) pilot, you are the head of your flight department, and as

More information

Flight Review. The flight review is required by Federal Aviation Regulations for all pilots who intend to act as pilot in command of an aircraft.

Flight Review. The flight review is required by Federal Aviation Regulations for all pilots who intend to act as pilot in command of an aircraft. S A F E T Y A D V I S O R Regulations No. 2 Pilot s Guide to the Flight Review This Safety Advisor provides guidance to pilots and flight instructors for the conduct of flight reviews and to convey current

More information

S-Tec System Thirty Autopilot

S-Tec System Thirty Autopilot Cirrus Design Section 9 Pilot s Operating Handbook and FAA Approved Airplane Flight Manual Supplement for S-Tec System Thirty Autopilot When the S-Tec System Thirty Autopilot is installed in the Cirrus

More information

FLIGHT TRAINING (AEROPLANE) BASED ON JAR FCL - PPL(A) FLIGHT INSTRUCTION Syllabus

FLIGHT TRAINING (AEROPLANE) BASED ON JAR FCL - PPL(A) FLIGHT INSTRUCTION Syllabus FLIGHT TRAINING (AEROPLANE) BASED ON JAR FCL - PPL(A) FLIGHT INSTRUCTION Syllabus for MARSPOLAR, DUBAI UAE Exercise 1 Familiarisation with the aeroplane characteristics of the aeroplane cockpit layout

More information

Volunteers Devoted to Kids and Aviation

Volunteers Devoted to Kids and Aviation Volunteers Devoted to Kids and Aviation Aviation Pathways: Education Careers AVIATION INDUSTRY BENEFITS FROM WMWF PROGRAM 1. Promote interest in aviation-related career paths o Science o Technology o

More information

VDFP General Aviation Firefighting for Structural Firefighters

VDFP General Aviation Firefighting for Structural Firefighters VIRGINIA DEPARTMENT OF FIRE PROGRAMS Aviation Firefighting for Chapter 3 Communications 3-1 Learning Objectives Understand the correct radio procedures for talking to pilots or airport personnel List examples

More information

AVIATION TRAINING ACADEMY

AVIATION TRAINING ACADEMY ATNS ATA Private Bag X 1 Bonaero Park South Africa 1622 Tel nr: +27(11) 961-0100; Fax nr: +27(11) 392-3868; Website: www.atns.co.za. AVIATION TRAINING ACADEMY AERODROME FLIGHT INFORMATION SERVICE COURSE

More information

Advisory Circular. U.S. Department of Transportation Federal Aviation Administration

Advisory Circular. U.S. Department of Transportation Federal Aviation Administration U.S. Department of Transportation Federal Aviation Administration Advisory Circular Subject: Mitigating the Risks of a Runway Overrun Upon Landing Date: 9/17/14 Initiated by: AFS-800 AC No: 91-79A Change:

More information

EMS Helicopter LOFT Study Shows Experience Influences Pilot Performance during Inadvertent Flight into IMC

EMS Helicopter LOFT Study Shows Experience Influences Pilot Performance during Inadvertent Flight into IMC FLIGHT SAFETY FOUNDATION HELICOPTER SAFETY Vol. 22 No. 1 For Everyone Concerned with the Safety of Flight January February 1996 EMS Helicopter LOFT Study Shows Experience Influences Pilot Performance during

More information

Challenges of Increasing Automation. in the Cockpit

Challenges of Increasing Automation. in the Cockpit Challenges of Increasing Automation Presentation to: Aerospace Engineering Name: Christopher A. Hart Date: in the Cockpit 1 NTSB 101 Independent agency, investigate transportation accidents, all modes

More information

AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN

AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN Transportation Safety Board of Canada Bureau de la sécurité des transports du Canada AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN CANADIAN HELICOPTERS LIMITED AEROSPATIALE

More information

Winch Launching of Gliders. An Introduction To A Rather Un-American Activity

Winch Launching of Gliders. An Introduction To A Rather Un-American Activity Winch Launching of Gliders An Introduction To A Rather Un-American Activity 2 Herbert Kilian, Chicago Glider Club 3 Herbert Kilian, Chicago Glider Club 4 Herbert Kilian, Chicago Glider Club 5 Herbert Kilian,

More information

Paper presented at ISASI 2014 Seminar, October 2014, Adelaide, Australia. Safety Management; Reversing the False Glide Slope Myth

Paper presented at ISASI 2014 Seminar, October 2014, Adelaide, Australia. Safety Management; Reversing the False Glide Slope Myth Safety Management; Reversing the False Glide Slope Myth Kas Beumkes Senior Air Safety Investigator/Project Manager Michiel Schuurman Senior Air Safety Investigator/Technical Investigation Dutch Safety

More information

AVIATION INVESTIGATION REPORT A08W0162 CONTROLLED FLIGHT INTO WATER

AVIATION INVESTIGATION REPORT A08W0162 CONTROLLED FLIGHT INTO WATER AVIATION INVESTIGATION REPORT A08W0162 CONTROLLED FLIGHT INTO WATER TRANS NORTH TURBO AIR LIMITED BELL 206B (HELICOPTER) C-FGGC CARMACKS, YUKON 09 AUGUST 2008 The Transportation Safety Board of Canada

More information

2010 Paragliding Injuries Summary Mike Steed

2010 Paragliding Injuries Summary Mike Steed 2010 Paragliding Injuries Summary Mike Steed Looking back at ushpa.aero, I see this will be my fifth annual summary article. Last year I finished the article with, "Now, with this sobering experience behind

More information

Understanding the altimeter

Understanding the altimeter Understanding the altimeter What you see isn't always what you have by Jack Willams Flying is an adventure for most pilots--sometimes more adventure than they really want. A pilot's report to Canada's

More information

END OF THE LINE Heli News

END OF THE LINE Heli News END OF THE LINE Helicopter long line work is extremely tricky and demanding. Andre Hutchings of LA Helicopters talks Heli News through some of the delicate fundamentals of this tricky art. I t s a tough

More information

There are additional risks when flying in the mountains. Actively manage those risks for a safe flight.

There are additional risks when flying in the mountains. Actively manage those risks for a safe flight. S A F E T Y A D V I S O R Operations and Proficiency No. 10 Mountain Flying Note: This Safety Advisor gives practical advice for managing the risks of mountain flying. It is NOT intended to replace a mountain

More information

Aerodynamics of Flight

Aerodynamics of Flight Chapter 2 Aerodynamics of Flight Introduction This chapter presents aerodynamic fundamentals and principles as they apply to helicopters. The content relates to flight operations and performance of normal

More information

NAMIBIAN RADIO LICENSE VALIDATION

NAMIBIAN RADIO LICENSE VALIDATION NAMIBIAN RADIO LICENSE VALIDATION Introduction This procedure is provided as a guide for applicants wishing to complete a Namibian Radio license validation, a requirement of a Namibian Pilot License Validation.

More information

PRELIMINARY REPORT AVIATION

PRELIMINARY REPORT AVIATION Location/Time Most Critical Injury: Investigated By: NTSB Nearest City/Place Zip Code Local Time Time Zone Orange MA 01364 2115 EDT Aircraft Information Registration Number Aircraft Manufacturer Model/Series

More information

Report to the Minister of Justice and Solicitor General Public Fatality Inquiry

Report to the Minister of Justice and Solicitor General Public Fatality Inquiry Report to the Minister of Justice and Solicitor General Public Fatality Inquiry Fatality Inquiries Act WHEREAS a Public Inquiry was held at the Court House in the Town of Stettler, in the Province of Alberta,

More information

Flight crew awareness and alertness are key factors in the

Flight crew awareness and alertness are key factors in the APPROACH-AND-LANDING ACCIDENT REDUCTION TOOL KIT fsf alar briefing note 5.4 Wind Shear Flight crew awareness and alertness are key factors in the successful application of wind shear avoidance techniques

More information

Survival Skills for Canopy Control A Seminar by Performance Designs, Inc.

Survival Skills for Canopy Control A Seminar by Performance Designs, Inc. Survival Skills for Canopy Control A Seminar by Performance Designs, Inc. I. Avoid landing accidents by doing all you can to eliminate landing off the DZ. As soon as you're open, evaluate the spot. When

More information

Flight Training Program Outline Single-Engine Instrument Rating

Flight Training Program Outline Single-Engine Instrument Rating Flight Training Program Outline Single-Engine Instrument Rating Last updated November 2014 Table of Contents Introduction:... Error! Bookmark not defined. Privileges:... 2 Prerequisites:... 2 Cost Breakdown...

More information

Annex to Decision 2013/008/R

Annex to Decision 2013/008/R Annex to Decision 2013/008/R Annex to Decision 2012/007/R of the Executive Director of the Agency of 19 April 2012, on Acceptable means of compliance and guidance material to Commission Regulation (EU)

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Notes I Introduction Visual illusions take place when conditions modify the pilot s perception of the environment relative to his / her expectations. Visual illusions may result

More information

Service, Security, Solutions Since 1924. Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal. March 2015

Service, Security, Solutions Since 1924. Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal. March 2015 Service, Security, Solutions Since 1924 Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal Global Aerospace Begins Spirit of St. Louis First Transatlantic flight by unmanned

More information

BEFORE YOU GET STARTED

BEFORE YOU GET STARTED is a small highly professional flight training organisation operating from the at Albion Park just 15 mins South of Wollongong City. is the Premier Flight Training Organisation on the NSW South Coast.

More information

AVIATION INVESTIGATION REPORT A06F0014 MISALIGNED TAKE-OFF

AVIATION INVESTIGATION REPORT A06F0014 MISALIGNED TAKE-OFF AVIATION INVESTIGATION REPORT A06F0014 MISALIGNED TAKE-OFF AIR CANADA AIRBUS A319-114 C-FYKR LAS VEGAS, NEVADA 30 JANUARY 2006 The Transportation Safety Board of Canada (TSB) investigated this occurrence

More information

B777. Automatic Flight DO NOT USE FOR FLIGHT

B777. Automatic Flight DO NOT USE FOR FLIGHT B777 Automatic Flight DO NOT USE FOR FLIGHT 4.10 Automatic Flight-Controls and Indicators Mode Control Panel (MCP) A/T ARM L R IAS MACH HDG TRK V/S FPA ALTITUDE A/P F/D ON OFF CLB CON IAS LNAV VNAV AUTO

More information

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low-level windshear is a hazard to aircraft in the airport runway corridors. With Climatronics LLWAS,

More information

ASA s FAR-AMT 2014 Update

ASA s FAR-AMT 2014 Update ASA s FAR-AMT 2014 Update 5/20/14 Changes to the Federal Aviation Regulations can occur daily via the Federal Registers, and the Aeronautical Information Manual is updated every 6 months. ASA keeps you

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

Chapter 15. Airports Authority of India Manual of Air Traffic Services Part 1 15.1 EMERGENCY PROCEDURES

Chapter 15. Airports Authority of India Manual of Air Traffic Services Part 1 15.1 EMERGENCY PROCEDURES Chapter 15 15.1 EMERGENCY PROCEDURES 15.1.1 General 15.1.1.1 The various circumstances surrounding each emergency situation preclude the establishment of exact detailed procedures to be followed. The procedures

More information

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 FLIGHT CONTROLS 1. GENERAL The primary flight controls, ailerons, elevators and rudders, are hydraulically powered. Hydraulic power is provided from hydraulic

More information

Helicopter Emergencies and Hazards

Helicopter Emergencies and Hazards Chapter 11 Helicopter Emergencies and Hazards Introduction Today, helicopters are quite reliable. However, emergencies do occur, whether a result of mechanical failure or pilot error, and should be anticipated.

More information