A PPENDIX G S IMPLIFIED DES
|
|
|
- Dana Morrison
- 10 years ago
- Views:
Transcription
1 A PPENDIX G S IMPLIFIED DES William Stallings opyright 2010 G.1 OVERVIEW...2! G.2 S-DES KEY GENERATION...3! G.3 S-DES ENRYPTION...4! Initial and Final Permutations...4! The Function f K...5! The Switch Function...7! G.4 ANALYSIS OF SIMPLIFIED DES...7! G.5 RELATIONSHIP TO DES...8! Supplement to ryptography and Network Security, Fifth Edition William Stallings Prentice Hall 2010 ISBN-10:
2 Simplified DES, developed by Professor Edward Schaefer of Santa lara University [SHA96], is an educational rather than a secure encryption algorithm. It has similar properties and structure to DES with much smaller parameters. The reader might find it useful to work through an example by hand while following the discussion in this Appendix. G.1 OVERVIEW Figure G.1 illustrates the overall structure of the simplified DES, which we will refer to as S- DES. The S-DES encryption algorithm takes an 8-bit block of plaintext (example: ) and a 10-bit key as input and produces an 8-bit block of ciphertext as output. The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used to produce that ciphertext as input and produces the original 8-bit block of plaintext. The encryption algorithm involves five functions: an initial permutation (IP); a complex function labeled f K, which involves both permutation and substitution operations and depends on a key input; a simple permutation function that switches (SW) the two halves of the data; the function f K again; and finally a permutation function that is the inverse of the initial permutation (IP 1 ). As was mentioned in hapter 2, the use of multiple stages of permutation and substitution results in a more complex algorithm, which increases the difficulty of cryptanalysis. The function f K takes as input not only the data passing through the encryption algorithm, but also an 8-bit key. The algorithm could have been designed to work with a 16-bit key, consisting of two 8-bit subkeys, one used for each occurrence of f K. Alternatively, a single 8-bit key could have been used, with the same key used twice in the algorithm. A compromise is to use a 10-bit key from which two 8-bit subkeys are generated, as depicted in Figure G.1. In this case, the key is first subjected to a permutation (P10). Then a shift operation is performed. The output of the shift operation then passes through a permutation function that produces an 8-bit output (P8) for the first subkey (K 1 ). The output of the shift operation also feeds into another shift and another instance of P8 to produce the second subkey (K 2 ). G-2
3 We can concisely express the encryption algorithm as a composition 1 of functions: which can also be written as: IP -1! f K2!SW! f K1!IP where! ( ( ( ( ( ))))) ciphertext = IP -1 f K 2 SW f K1 IP plaintext ( ( ( ))) K 1 = P8 Shift P10 key ( ( ( ( )))) K 2 = P8 Shift Shift P10 key Decryption is also shown in Figure G.1 and is essentially the reverse of encryption: ( ( ( ))) plaintext = IP -1 f K1 SW f K 2 ( IP( ciphertext) ) We now examine the elements of S-DES in more detail.! G.2 S-DES KEY GENERATION S-DES depends on the use of a 10-bit key shared between sender and receiver. From this key, two 8-bit subkeys are produced for use in particular stages of the encryption and decryption algorithm. Figure G.2 depicts the stages followed to produce the subkeys. First, permute the key in the following fashion. Let the 10-bit key be designated as (k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10 ). Then the permutation P10 is defined as: P10(k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10 ) = (k 3, k 5, k 2, k 7, k 4, k 10, k 1, k 9, k 8, k 6 ) 1 Definition: If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is called the composition of f and g and is denoted as F = g! f. G-3
4 P10 can be concisely defined by the display: P This table is read from left to right; each position in the table gives the identity of the input bit that produces the output bit in that position. So the first output bit is bit 3 of the input; the second output bit is bit 5 of the input, and so on. For example, the key ( ) is permuted to ( ). Next, perform a circular left shift (LS-1), or rotation, separately on the first five bits and the second five bits. In our example, the result is ( ). Next we apply P8, which picks out and permutes 8 of the 10 bits according to the following rule: P The result is subkey 1 (K 1 ). In our example, this yields ( ) We then go back to the pair of 5-bit strings produced by the two LS-1 functions and perform a circular left shift of 2 bit positions on each string. In our example, the value ( ) becomes ( ). Finally, P8 is applied again to produce K 2. In our example, the result is ( ). G.3 S-DES ENRYPTION Figure G.3 shows the S-DES encryption algorithm in greater detail. As was mentioned, encryption involves the sequential application of five functions. We examine each of these. Initial and Final Permutations G-4
5 The input to the algorithm is an 8-bit block of plaintext, which we first permute using the IP function: IP This retains all 8 bits of the plaintext but mixes them up. At the end of the algorithm, the inverse permutation is used: IP It is easy to show by example that the second permutation is indeed the reverse of the first; that is, IP 1 (IP(X)) = X. The Function f K The most complex component of S-DES is the function f K, which consists of a combination of permutation and substitution functions. The functions can be expressed as follows. Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to f K, and let F be a mapping (not necessarily one to one) from 4-bit strings to 4-bit strings. Then we let f K (L, R) = (L! F(R, SK), R) where SK is a subkey and! is the bit-by-bit exclusive-or function. For example, suppose the output of the IP stage in Figure G.3 is ( ) and F(1101, SK) = (1110) for some key SK. Then f K ( ) = ( ) because (1011)! (1110) = (0101). We now describe the mapping F. The input is a 4-bit number (n 1 ). The first operation is an expansion/permutation operation: G-5
6 E/P For what follows, it is clearer to depict the result in this fashion: n 1 n 1 The 8-bit subkey K 1 = (k 11, k 12, k 13, k 14, k 15, k 16, k 17, k 18 ) is added to this value using exclusive- OR:! k 11 n 1! k 12! k 13! k 14! k 15! k 16! k 17 n 1! k 18 Let us rename these 8 bits: p 0,0 p 0,1 p 0,2 p 0,3 p 1,0 p 1,1 p 1,2 p 1,3 The first 4 bits (first row of the preceding matrix) are fed into the S-box S0 to produce a 2- bit output, and the remaining 4 bits (second row) are fed into S1 to produce another 2-bit output. These two boxes are defined as follows: S0 = " % $ ' $ ' # $ & ' S1 = " % $ ' $ ' # $ & '! G-6
7 The S-boxes operate as follows. The first and fourth input bits are treated as a 2-bit number that specify a row of the S-box, and the second and third input bits specify a column of the S- box. The entry in that row and column, in base 2, is the 2-bit output. For example, if (p 0,0 p 0,3 ) = (00) and (p 0,1 p 0,2 ) = (10), then the output is from row 0, colum of S0, which is 3, or (11) in binary. Similarly, (p 1,0 p 1,3 ) and (p 1,1 p 1,2 ) are used to index into a row and column of S1 to produce an additional 2 bits. Next, the 4 bits produced by S0 and S1 undergo a further permutation as follows: P The output of P4 is the output of the function F. The Switch Function The function f K only alters the leftmost 4 bits of the input. The switch function (SW) interchanges the left and right 4 bits so that the second instance of f K operates on a different 4 bits. In this second instance, the E/P, S0, S1, and P4 functions are the same. The key input is K 2. G.4 ANALYSIS OF SIMPLIFIED DES A brute-force attack on simplified DES is certainly feasible. With a 10-bit key, there are only 2 10 = 1024 possibilities. Given a ciphertext, an attacker can try each possibility and analyze the result to determine if it is reasonable plaintext. What about cryptanalysis? Let us consider a known plaintext attack in which a single plaintext (p 1, p 2, p 3, p 4, p 5, p 6, p 7, p 8 ) and its ciphertext output (c 1, c 2, c 3, c 4, c 5, c 6, c 7, c 8 ) are known and the key (k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10 ) is unknown. Then each c i is a polynomial function g i of the p j 's and k j 's. We can therefore express the encryption algorithm as 8 nonlinear equations in 10 unknowns. There are a number of possible solutions, but each of these could be calculated and then analyzed. Each of the permutations and additions in the algorithm is a linear G-7
8 mapping. The nonlinearity comes from the S-boxes. It is useful to write down the equations for these boxes. For clarity, rename (p 0,0, p 0,1,p 0,2, p 0,3 ) = (a, b, c, d) and (p 1,0, p 1,1,p 1,2, p 1,3 ) = (w, x, y, z), and let the 4-bit output be (q, r, s, t) Then the operation of the S0 is defined by the following equations: q = abcd + ab + ac + b + d r = abcd + abd + ab + ac + ad + a + c + 1 where all additions are modulo 2. Similar equations define S1. Alternating linear maps with these nonlinear maps results in very complex polynomial expressions for the ciphertext bits, making cryptanalysis difficult. To visualize the scale of the problem, note that a polynomial equation in 10 unknowns in binary arithmetic can have 2 10 possible terms. On average, we might therefore expect each of the 8 equations to have 2 9 terms. The interested reader might try to find these equations with a symbolic processor. Either the reader or the software will give up before much progress is made. G.5 RELATIONSHIP TO DES DES operates on 64-bit blocks of input. The encryption scheme can be defined as: IP -1! f K16!SW!f K15! SW!"! SW!f K1! IP A 56-bit key is used, from which sixtee8-bit subkeys are calculated. There is an initial permutation of 64 bits followed by a sequence of shifts and permutations of 48 bits. Within the encryption algorithm, instead of F acting o bits (n 1 ), it acts o2 bits (n 1 2 ). After the initial expansion/permutation, the output of 48 bits can be diagrammed as: 2 n 1 n 5 n 5 n 6 n 7 n 8 n 9 G-8
9 n 1 This matrix is added (exclusive-or) to a 48-bit subkey. There are 8 rows, corresponding to 8 S-boxes. Each S-box has 4 rows and 16 columns. The first and last bit of a row of the preceding matrix picks out a row of an S-box, and the middle 4 bits pick out a column. G-9
10 "#$%&'()* !7893 :2456!7893,$%&'(-./&0'*1'!"#,$%&'(-./&0'*1' <&E' 8! 8! $" E!! "!,! " E! <&E' H H E!!,! G! G E! 8! I" 8!,$%&'(;&-<*='*1',$%&'(;&-<*='*1' >&?@=*(AB"((((&D-.&E&*F(:2(;<*D*
11 "#$%&'()*+ "#!"# $" -.$" 0 0! ",!, -.$/ -.$/ 0 0! /,!, 1&234*(56/(((7*+(5*8*49'&:8(;:4(.&<=>&;&*?(@A.
12 #$%&'()*+&,'-.' #!" :! 2 =B" E # #! A 8D G G 8A " E 8F :! 2 =B" E # #! G 8D G G 8A " # #$%&'(/&)0-1'-.' 2&341-(567(((8&9)*&:&-;(<=8(=,/1>)'&?,(<-'+&*
Symmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
How To Encrypt With A 64 Bit Block Cipher
The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric
Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002
Secret File Sharing Techniques using AES algorithm C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 1. Feature Overview The Advanced Encryption Standard (AES) feature adds support
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
1 Data Encryption Algorithm
Date: Monday, September 23, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Data Encryption Standard (DES) The Data Encryption Standard (DES) has been
Lecture 4 Data Encryption Standard (DES)
Lecture 4 Data Encryption Standard (DES) 1 Block Ciphers Map n-bit plaintext blocks to n-bit ciphertext blocks (n = block length). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
Cryptography and Network Security Chapter 3
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 3 Block Ciphers and the Data Encryption Standard All the afternoon
The Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with ease on modern computation systems. The DES
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction
Network Security Technology Network Management
COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission
Split Based Encryption in Secure File Transfer
Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
Solutions to Problem Set 1
YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra
Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
Design and Implementation of Asymmetric Cryptography Using AES Algorithm
Design and Implementation of Asymmetric Cryptography Using AES Algorithm Madhuri B. Shinde Student, Electronics & Telecommunication Department, Matoshri College of Engineering and Research Centre, Nashik,
Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay
Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems Up to this point, we have mainly seen how ciphers are implemented. We
{(i,j) 1 < i,j < n} pairs, X and X i, such that X and X i differ. exclusive-or sums. ( ) ( i ) V = f x f x
ON THE DESIGN OF S-BOXES A. F. Webster and S. E. Tavares Department of Electrical Engineering Queen's University Kingston, Ont. Canada The ideas of completeness and the avalanche effect were first introduced
Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1)
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 3 Symmetric Cryptography General Description Modes of ion Data ion Standard (DES)
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
Properties of Secure Network Communication
Properties of Secure Network Communication Secrecy: Only the sender and intended receiver should be able to understand the contents of the transmitted message. Because eavesdroppers may intercept the message,
Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015
CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR William Stallings Copyright 20010 H.1 THE ORIGINS OF AES...2 H.2 AES EVALUATION...3 Supplement to Cryptography and Network Security, Fifth Edition
AStudyofEncryptionAlgorithmsAESDESandRSAforSecurity
Global Journal of Computer Science and Technology Network, Web & Security Volume 13 Issue 15 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
A New Digital Encryption Scheme: Binary Matrix Rotations Encryption Algorithm
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 2, February 2015, PP 18-27 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
The Advanced Encryption Standard: Four Years On
The Advanced Encryption Standard: Four Years On Matt Robshaw Reader in Information Security Information Security Group Royal Holloway University of London September 21, 2004 The State of the AES 1 The
AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES
HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh
Overview of Symmetric Encryption
CS 361S Overview of Symmetric Encryption Vitaly Shmatikov Reading Assignment Read Kaufman 2.1-4 and 4.2 slide 2 Basic Problem ----- ----- -----? Given: both parties already know the same secret Goal: send
6.857 Computer and Network Security Fall Term, 1997 Lecture 4 : 16 September 1997 Lecturer: Ron Rivest Scribe: Michelle Goldberg 1 Conditionally Secure Cryptography Conditionally (or computationally) secure
Developing and Investigation of a New Technique Combining Message Authentication and Encryption
Developing and Investigation of a New Technique Combining Message Authentication and Encryption Eyas El-Qawasmeh and Saleem Masadeh Computer Science Dept. Jordan University for Science and Technology P.O.
Cryptography and Network Security Block Cipher
Cryptography and Network Security Block Cipher Xiang-Yang Li Modern Private Key Ciphers Stream ciphers The most famous: Vernam cipher Invented by Vernam, ( AT&T, in 1917) Process the message bit by bit
6 Data Encryption Standard (DES)
6 Data Encryption Standard (DES) Objectives In this chapter, we discuss the Data Encryption Standard (DES), the modern symmetric-key block cipher. The following are our main objectives for this chapter:
Lecture 3: One-Way Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
Rijndael Encryption implementation on different platforms, with emphasis on performance
Rijndael Encryption implementation on different platforms, with emphasis on performance KAFUUMA JOHN SSENYONJO Bsc (Hons) Computer Software Theory University of Bath May 2005 Rijndael Encryption implementation
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Chapter 23. Database Security. Security Issues. Database Security
Chapter 23 Database Security Security Issues Legal and ethical issues Policy issues System-related issues The need to identify multiple security levels 2 Database Security A DBMS typically includes a database
Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013
Hill Cipher Project K80TTQ1EP-??,VO.L,XU0H5BY,_71ZVPKOE678_X,N2Y-8HI4VS,,6Z28DDW5N7ADY013 Directions: Answer all numbered questions completely. Show non-trivial work in the space provided. Non-computational
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction
Chapter 23. Database Security. Security Issues. Database Security
Chapter 23 Database Security Security Issues Legal and ethical issues Policy issues System-related issues The need to identify multiple security levels 2 Database Security A DBMS typically includes a database
Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010
CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?
Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)
Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain
3-6 Toward Realizing Privacy-Preserving IP-Traceback
3-6 Toward Realizing Privacy-Preserving IP-Traceback The IP-traceback technology enables us to trace widely spread illegal users on Internet. However, to deploy this attractive technology, some problems
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond
Sandeep Mahapatra Department of Computer Science and Engineering PEC, University of Technology [email protected]
Computing For Nation Development, March 10 11, 2011 Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi A Comparative Evaluation of Various Encryptions Techniques Committing
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
7! Cryptographic Techniques! A Brief Introduction
7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (Public-Key) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures
CRYPTOG NETWORK SECURITY
CRYPTOG NETWORK SECURITY PRINCIPLES AND PRACTICES FOURTH EDITION William Stallings Prentice Hall Upper Saddle River, NJ 07458 'jkfetmhki^^rij^jibwfcmf «MMr""'-^.;
Implementation of Full -Parallelism AES Encryption and Decryption
Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
Error oracle attacks and CBC encryption. Chris Mitchell ISG, RHUL http://www.isg.rhul.ac.uk/~cjm
Error oracle attacks and CBC encryption Chris Mitchell ISG, RHUL http://www.isg.rhul.ac.uk/~cjm Agenda 1. Introduction 2. CBC mode 3. Error oracles 4. Example 1 5. Example 2 6. Example 3 7. Stream ciphers
Cryptography Exercises
Cryptography Exercises 1 Contents 1 source coding 3 2 Caesar Cipher 4 3 Ciphertext-only Attack 5 4 Classification of Cryptosystems-Network Nodes 6 5 Properties of modulo Operation 10 6 Vernam Cipher 11
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur Lecture No. #06 Cryptanalysis of Classical Ciphers (Refer
Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption Algorithm
Global Journal of Computer Science and Technology Software & Data Engineering Volume 13 Issue 5 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
Message Authentication Codes
2 MAC Message Authentication Codes : and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 28 October 2013 css322y13s2l08, Steve/Courses/2013/s2/css322/lectures/mac.tex,
Advanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
Design and Analysis of Parallel AES Encryption and Decryption Algorithm for Multi Processor Arrays
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue, Ver. III (Jan - Feb. 205), PP 0- e-issn: 239 4200, p-issn No. : 239 497 www.iosrjournals.org Design and Analysis of Parallel AES
A NEW HASH ALGORITHM: Khichidi-1
A NEW HASH ALGORITHM: Khichidi-1 Abstract This is a technical document describing a new hash algorithm called Khichidi-1 and has been written in response to a Hash competition (SHA-3) called by National
First Semester Examinations 2011/12 INTERNET PRINCIPLES
PAPER CODE NO. EXAMINER : Martin Gairing COMP211 DEPARTMENT : Computer Science Tel. No. 0151 795 4264 First Semester Examinations 2011/12 INTERNET PRINCIPLES TIME ALLOWED : Two Hours INSTRUCTIONS TO CANDIDATES
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
Evaluation of the RC4 Algorithm for Data Encryption
Evaluation of the RC4 Algorithm for Data Encryption Allam Mousa (1) and Ahmad Hamad (2) (1) Electrical Engineering Department An-Najah University, Nablus, Palestine (2) Systems Engineer PalTel Company,
AC76/AT76 CRYPTOGRAPHY & NETWORK SECURITY DEC 2014
Q.2a. Define Virus. What are the four phases of Viruses? In addition, list out the types of Viruses. A virus is a piece of software that can infect other programs by modifying them; the modification includes
The Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Introduction to Hill cipher
Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher
How To Understand And Understand The History Of Cryptography
CSE497b Introduction to Computer and Network Security - Spring 2007 - Professors Jaeger Lecture 5 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07/
SECURITY IN NETWORKS
SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,
EXAM questions for the course TTM4135 - Information Security May 2013. Part 1
EXAM questions for the course TTM4135 - Information Security May 2013 Part 1 This part consists of 5 questions all from one common topic. The number of maximal points for every correctly answered question
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
AESvisual: A Visualization Tool for the AES Cipher
AESvisual: A Visualization Tool for the AES Cipher Jun Ma, Jun Tao Department of Computer Science Michigan Technological University Houghton, MI {junm,junt}@mtu.edu Melissa Keranen Department of Mathematical
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Hill s Cipher: Linear Algebra in Cryptography
Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a
Dierential Cryptanalysis of DES-like Cryptosystems Eli Biham Adi Shamir The Weizmann Institute of Science Department of Apllied Mathematics July 19, 1990 Abstract The Data Encryption Standard (DES) is
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Verification of VLSI Based AES Crypto Core Processor Using Verilog HDL Dr.K.Padama Priya *1, N. Deepthi Priya 2 *1,2
Ky Vu DeVry University, Atlanta Georgia College of Arts & Science
Ky Vu DeVry University, Atlanta Georgia College of Arts & Science Table of Contents - Objective - Cryptography: An Overview - Symmetric Key - Asymmetric Key - Transparent Key: A Paradigm Shift - Security
Solving Mass Balances using Matrix Algebra
Page: 1 Alex Doll, P.Eng, Alex G Doll Consulting Ltd. http://www.agdconsulting.ca Abstract Matrix Algebra, also known as linear algebra, is well suited to solving material balance problems encountered
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015 Chapter 2: Introduction to Cryptography What is cryptography? It is a process/art of mangling information in such a way so as to make it
CIS433/533 - Computer and Network Security Cryptography
CIS433/533 - Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and
Cryptography: Motivation. Data Structures and Algorithms Cryptography. Secret Writing Methods. Many areas have sensitive information, e.g.
Cryptography: Motivation Many areas have sensitive information, e.g. Data Structures and Algorithms Cryptography Goodrich & Tamassia Sections 3.1.3 & 3.1.4 Introduction Simple Methods Asymmetric methods:
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
How To Attack A Block Cipher With A Key Key (Dk) And A Key (K) On A 2Dns) On An Ipa (Ipa) On The Ipa 2Ds (Ipb) On Pcode)
Cryptography and Network Security Chapter 6 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 6 Block Cipher Operation Many savages at the present day regard
Parallel AES Encryption with Modified Mix-columns For Many Core Processor Arrays M.S.Arun, V.Saminathan
Parallel AES Encryption with Modified Mix-columns For Many Core Processor Arrays M.S.Arun, V.Saminathan Abstract AES is an encryption algorithm which can be easily implemented on fine grain many core systems.
Secure Network Communication Based on Text-to-Image Encryption
Secure Network Communication Based on Text-to-Image Encryption Ahmad Abusukhon 1, Mohamad Talib 2, Issa Ottoum 3 1 IT Faculty, - Computer Network Department Al-Zaytoonah University of Jordan Amman, JORDAN
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2 Research Student, Bharti Vidyapeeth, Pune, India [email protected] Modern College of Engineering,
Software Implementation of Gong-Harn Public-key Cryptosystem and Analysis
Software Implementation of Gong-Harn Public-key Cryptosystem and Analysis by Susana Sin A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
