Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015


 Drusilla Short
 3 years ago
 Views:
Transcription
1 Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015 Chapter 2: Introduction to Cryptography What is cryptography? It is a process/art of mangling information in such a way so as to make it very hard to decipher but allowing a secret method of unmangling. Should cryptographic algorithms be secret? No, if we want to check whether these are robust against vulnerabilities or not. The more these are used and tested, the more are the chances of pitfalls getting exposed. The longer these are kept secret, the longer it will take to know the vulnerabilities fully and hence longer it will take to test the robustness against various types of attacks. [E.g., 2G GSM security algorithms were easily reverse engineered.] Though there are certain exceptions (Government and military sometimes like to not disclose their cryptographic algorithms). Might make business sense to keep the algorithm secret in some cases. Good cryptographic algorithms: Easy to use by good guy Hard for bad guy to break Who benefits from increasing processing power? Good guys can benefit from increasing processing power as long as the key sizes are increased appropriately. Increasing a bit only increases the work for the good guys by a little bit but doubles the amount of work for the bad guys (for brute force attacks). Comments in the class the good guys could guys could perform more computations for higher security good guys could perform faster crytanalysis Monoalphabetic cipher: replacing an alphabet with another alphabet. Brute force attack with 26! trials
2 Vulnerable to analysis attacks which letters occur most commonly, etc., newspaper puzzles Very easy to break with chosen plaintext attack Breaking an encryption (what is available to an adversary): Ciphertext only: Trudy has access to some cipher text Known Plaintext : has some <plaintext, ciphertext> pairs these can be used for an offline dictionary attack (most of the time the secret keys are based on passwords so one can try to figure out the password by trying out a dictionary of passwords, for every guess try to see if the encrypted plaintext matches the ciphertext) Chosen plaintext: Trudy is able to get cipher text for a chosen plaintext, i.e. has < chosen plaintext, cipher text> pair or pairs. She uses this to figure out the secret key (e.g., by choosing The quick brown fox jumps over the lazy dog in a telegraph office that encrypts the messages that it sends out using a monoalphabetic cipher). When designing encryption methods and protocols, we must be cognizant of the above Cryptofunctions: Secret key functions: same key used for encryption and decryption Public key functions: 2 different keys used (public key for encryption, private key for decryption) Hash functions/message digests (MD*) Secret Key Encryption 1. Encrypting data 2. Securely storing data o You can store the encrypted data securely and decrypt it when you want with the knowledge of the secret key (do not loose the secret key) 3. Authentication challengeresponse authentication (r A and r B are nonces) Alice Bob r A > < K AB {r A } < r B K AB {r B } > The challenges must not be repeated (at least until the keys are changed). The above protocol is vulnerable to different types of attacks. One such attack is called the reflection attack where Trudy impersonates Alice by starting two connections to Bob. For the first connection she sends r A to Bob as her first message. For the second connection, she sends r B and then uses the response of Bob K AB {r B } in her response over the first connection and hence successfully impersonates Alice. Trudy ignore K AB {r A }. We will look at this attack in more details later.
3 Public Key Encryption 1. Encrypting data 2. Agreeing upon a shared secret key Encrypting data with public key is orders of magnitude slower than with a secret key and hence generally avoided. Public Key Encryption is used primarily for encrypting a secret key rather than data. It is used to send a key to other party in a secure way. 3. Digital signatures One cannot create a digital signature scheme with secret key functions because at least two parties know the shared secret. In case of digital signatures using private keys, the private key is (expected to be) known only to one party. You cannot achieve nonrepudiation using secret keys. This must be achieved through public/private keys. 4. Authentication Alice will send a nonce encrypted with Bob s public key key, Bob will decrypt it using his private key and send it back to Alice. Alice Bob K B +{r A } > < r A < K A +{r B } r B >
4 Alice can have Bob decrypt any message that was in the past encrypted using Bob s public key that Alice had recorded. In the above diagram such a message is represented by r A. Hash Functions Characteristics: Always produces same length output (whatever be the input length) it should be computationally infeasible to find 2 messages M1 and M2 such that H(M1) = H(M2) It should be computationally infeasible to find M, given H(M) Manytoone, multiple inputs maps to a single output Integrity protection: Alice sends {M,H(M)} over the network, Bob computes H(M) from M and checks if its same as received H(M) from Alice. Problem: Person in the middle > Trudy replaces M,H(M)with his own message M and hash H(M ). o Better to send M, H(M, S) where S is the shared secret between A and B, or o sign H(m) with Alice s private key and send M and the signed hash. Data integrity: Store hash of data D and store it along with it. Every time data is accessed, find hash of data D and compare it with stored H(D). Problem: Trudy may change the program to always produce the right hash and hence fool Alice into believing that data is always right (or never tempered with). Chapter 3: Secret Key Cryptography We will first learn about block encryption. Two key questions what is the right key size? What is the right block size? Key size cannot be too small. Small keys could be bruteforced. The Perlman book suggests that 64bit security is pretty good. So a 64bit key must be strong enough against brute force attacks (requires the adversary to try 2^64 keys in the worst case). Block size a small block size (say k bits) allows an adversary to create and effectively search through a table of <plain text, cipher text> pairs. Here the cipher text output for a plain text input is obtained through random substitution that corresponds to tossing a coin k times with a head outcome represented by a 1 and a tail outcome represented by a 0. A block size of 64 bits would be good because it will be computationally infeasible for an adversary to create and maintain a <plain text, cipher text> table with 2^64 entries. The goal is to obtain an output that appears to be uncorrelated to the input. Any change in any bit location in the input should not just appear in specific locations of the output. The change in the input should be reflected on all bits of the output. A block size of 64 bits and a substitution table created for all possible 64 bit inputs by tossing coins will be perfect in terms of meeting this goal. However, this huge table is also the shared key. This cannot be efficiently or realistically exchanged between two parties.
5 Substitution memory requirement: for each of the 2 k inputs, there is a kbit output obtained by tossing a coin ktimes. Total entries are 2 k, and size of the table = k.2 k On the other hand, a permutation can be very effectively represented and can be agreed upon between two parties. The problem is that, a permutation is not very secure. One can figure it out by seeing which bits of the output change as a result of changes in the specific input bit patterns. Permutation memory requirement: each input bit is placed at specific location in output. Input= kbits, permutation mapping memory = k.log 2 k bits. Some mix of substitutions and permutations perhaps could help?
SECURITY IN NETWORKS
SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,
More information9/17/2015. Cryptography Basics. Outline. Encryption/Decryption. Cryptanalysis. Caesar Cipher. MonoAlphabetic Ciphers
Cryptography Basics IT443 Network Security Administration Instructor: Bo Sheng Outline Basic concepts in cryptography system Secret cryptography Public cryptography Hash functions 1 2 Encryption/Decryption
More informationPrinciples of Network Security
he Network Security Model Bob and lice want to communicate securely. rudy (the adversary) has access to the channel. lice channel data, control s Bob Kai Shen data secure sender secure receiver data rudy
More informationNetwork Security. HIT Shimrit TzurDavid
Network Security HIT Shimrit TzurDavid 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key
More informationNetwork Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 81
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 81 Goals v understand principles of network security: cryptography and its many uses beyond
More informationHomework 7. Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj.
Problems: 1 to 11. Homework 7 Question: 1 Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj. This is an easy problem. > uasi
More informationNetwork Security (2) CPSC 441 Department of Computer Science University of Calgary
Network Security (2) CPSC 441 Department of Computer Science University of Calgary 1 Friends and enemies: Alice, Bob, Trudy wellknown in network security world Bob, Alice (lovers!) want to communicate
More informationToday ENCRYPTION. Cryptography example. Basic principles of cryptography
Today ENCRYPTION The last class described a number of problems in ensuring your security and privacy when using a computer online. This lecture discusses one of the main technological solutions. The use
More informationCIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; DH key exchange; Hash functions; Application of hash
More informationNetwork Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 81
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 81 Public Key Cryptography symmetric key crypto v requires sender, receiver know shared secret
More informationApplication Layer (1)
Application Layer (1) Functionality: providing applications (email, www, USENET etc) providing support protocols to allow the real applications to function properly security comprising a large number
More informationAuthentication. Readings. Chapters 9, 10 Sections
Authentication Readings Chapters 9, 10 Sections 11.111.3 1 Authentication: Who and How User (human) can be authenticated logging into a workstation using resources of a system issues: humans find it difficult
More informationDr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010
CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?
More informationChapter 7: Network security
Chapter 7: Network security Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application layer: secure email transport
More informationIntroduction to Cryptography
Introduction to Cryptography Part 2: publickey cryptography JeanSébastien Coron January 2007 Publickey cryptography Invented by Diffie and Hellman in 1976. Revolutionized the field. Each user now has
More informationWhat is network security?
Network security Network Security Srinidhi Varadarajan Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application
More informationClient Server Registration Protocol
Client Server Registration Protocol The ClientServer protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are
More informationNetwork Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
More informationCSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA DiffieHellman Key Exchange Public key and
More informationHow encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and
How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and nonrepudiation. How to obtain a digital certificate. Installing
More informationChapter 8 Security. IC322 Fall 2014. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross AddisonWesley March 2012
Chapter 8 Security IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross AddisonWesley March 2012 All material copyright 19962012 J.F Kurose and K.W. Ross, All
More informationOverview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
More informationCryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K.
Cryptosystems Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. C= E(M, K), Bob sends C Alice receives C, M=D(C,K) Use the same key to decrypt. Public
More informationNetwork Security Technology Network Management
COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission
More informationCommon security requirements Basic security tools. Example. Secretkey cryptography Publickey cryptography. Online shopping with Amazon
1 Common security requirements Basic security tools Secretkey cryptography Publickey cryptography Example Online shopping with Amazon 2 Alice credit card # is xxxx Internet What could the hacker possibly
More informationCSE/EE 461 Lecture 23
CSE/EE 461 Lecture 23 Network Security David Wetherall djw@cs.washington.edu Last Time Naming Application Presentation How do we name hosts etc.? Session Transport Network Domain Name System (DNS) Data
More informationSecurity usually depends on the secrecy of the key, not the secrecy of the algorithm (i.e., the open design model!)
1 A cryptosystem has (at least) five ingredients: 1. 2. 3. 4. 5. Plaintext Secret Key Ciphertext Encryption algorithm Decryption algorithm Security usually depends on the secrecy of the key, not the secrecy
More informationNetwork Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)
Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain
More informationCS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
More information159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
More informationOutline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian
More informationCSC474/574  Information Systems Security: Homework1 Solutions Sketch
CSC474/574  Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a oneround Feistel cipher
More informationNetwork Security #10. Overview. Encryption Authentication Message integrity Key distribution & Certificates Secure Socket Layer (SSL) IPsec
Network Security #10 Parts modified from Computer Networking: A Top Down Approach Featuring the Internet, 2nd edition. Jim Kurose, Keith Ross, AddisonWesley, 2002. 1 Overview Encryption Authentication
More informationLecture 5  Cryptography
CSE497b Introduction to Computer and Network Security  Spring 2007  Professors Jaeger Lecture 5  Cryptography CSE497b  Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497bs07/
More informationIntroduction to Cryptography CS 355
Introduction to Cryptography CS 355 Lecture 30 Digital Signatures CS 355 Fall 2005 / Lecture 30 1 Announcements Wednesday s lecture cancelled Friday will be guest lecture by Prof. Cristina Nita Rotaru
More informationCommon Pitfalls in Cryptography for Software Developers. OWASP AppSec Israel July 2006. The OWASP Foundation http://www.owasp.org/
Common Pitfalls in Cryptography for Software Developers OWASP AppSec Israel July 2006 Shay Zalalichin, CISSP AppSec Division Manager, Comsec Consulting shayz@comsecglobal.com Copyright 2006  The OWASP
More informationIntroduction to Symmetric and Asymmetric Cryptography
Introduction to Symmetric and Asymmetric Cryptography Ali E. Abdallah Birmingham CityUniversity Email: Ali.Abdallah@bcu.ac.uk Lectures are part of the project: ConSoLiDatE Multidisciplinary Cooperation
More informationLecture 9  Network Security TDTS412006 (ht1)
Lecture 9  Network Security TDTS412006 (ht1) Prof. Dr. Christoph Schuba Linköpings University/IDA Schuba@IDA.LiU.SE Reading: Office hours: [Hal05] 10.110.2.3; 10.2.510.7.1; 10.8.1 910am on Oct. 4+5,
More informationAPNIC elearning: Cryptography Basics. Contact: esec02_v1.0
APNIC elearning: Cryptography Basics Contact: training@apnic.net esec02_v1.0 Overview Cryptography Cryptographic Algorithms Encryption SymmetricKey Algorithm Block and Stream Cipher Asymmetric Key Algorithm
More informationCIS433/533  Computer and Network Security Cryptography
CIS433/533  Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and
More informationPart 2 D(E(M, K),K ) E(M, K) E(M, K) Plaintext M. Plaintext M. Decrypt with private key. Encrypt with public key. Ciphertext
Part 2 Plaintext M Encrypt with public key E(M, K) Ciphertext Plaintext M D(E(M, K),K ) Decrypt with private key E(M, K) Public and private key related mathematically Public key can be published; private
More informationBlock encryption. CS4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920Lecture 7 4/1/2015
CS4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 5975, 9293) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret
More informationMessage Authentication Codes
2 MAC Message Authentication Codes : and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 28 October 2013 css322y13s2l08, Steve/Courses/2013/s2/css322/lectures/mac.tex,
More informationCryptography. some history. modern secret key cryptography. public key cryptography. cryptography in practice
Cryptography some history Caesar cipher, rot13 substitution ciphers, etc. Enigma (Turing) modern secret key cryptography DES, AES public key cryptography RSA, digital signatures cryptography in practice
More informationLecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
More informationCryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 1: Introduction Ion Petre Department of IT, Åbo Akademi University January 10, 2012 1 Motto Unfortunately, the technical
More informationComputer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 PublicKey Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown PublicKey Cryptography
More informationCryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 9: Authentication protocols, digital signatures Ion Petre Department of IT, Åbo Akademi University 1 Overview of
More informationMessage authentication and. digital signatures
Message authentication and " Message authentication digital signatures verify that the message is from the right sender, and not modified (incl message sequence) " Digital signatures in addition, non!repudiation
More informationFundamentals of Computer Security
Fundamentals of Computer Security Spring 2015 Radu Sion Intro Encryption Hash Functions A Message From Our Sponsors Fundamentals System/Network Security, crypto How do things work Why How to design secure
More informationSecurity. Friends and Enemies. Overview Plaintext Cryptography functions. Secret Key (DES) Symmetric Key
Friends and Enemies Security Outline Encryption lgorithms Protocols Message Integrity Protocols Key Distribution Firewalls Figure 7.1 goes here ob, lice want to communicate securely Trudy, the intruder
More informationOverview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography
CS101 Lecture 21: Overview of Cryptography Codes and Ciphers Overview/Questions What is cryptography? What are the challenges of data encryption? What factors make an encryption strategy successful? What
More informationINTRODUCTION CRYPTOGRAPHY
2 INTRODUCTION TO CRYPTOGRAPHY 2.1 WHAT IS CRYPTOGRAPHY? The word cryptography comes from the Greek words κρυπτο (hidden or secret) and γραφη (writing). Oddly enough, cryptography is the art of secret
More informationApplication Layer (1)
Application Layer (1) Functionality: providing applications (email, Web service, USENET, ftp etc) providing support protocols to allow the real applications to function properly (e.g. HTTP for Web appl.)
More informationLecture 3: OneWay Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: OneWay Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
More informationMessage Authentication Codes. Lecture Outline
Message Authentication Codes Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Message Authentication Code Lecture Outline 1 Limitation of Using Hash Functions for Authentication Require an authentic
More informationPractice Questions. CS161 Computer Security, Fall 2008
Practice Questions CS161 Computer Security, Fall 2008 Name Email address Score % / 100 % Please do not forget to fill up your name, email in the box in the midterm exam you can skip this here. These practice
More informationIntroduction to Computer Security
Introduction to Computer Security Hash Functions and Digital Signatures Pavel Laskov Wilhelm Schickard Institute for Computer Science Integrity objective in a wide sense Reliability Transmission errors
More informationComputer Networks. Network Security and Ethics. Week 14. College of Information Science and Engineering Ritsumeikan University
Computer Networks Network Security and Ethics Week 14 College of Information Science and Engineering Ritsumeikan University Security Intro for Admins l Network administrators can break security into two
More informationWHITE PAPER AUGUST 2014. Preventing Security Breaches by Eliminating the Need to Transmit and Store Passwords
WHITE PAPER AUGUST 2014 Preventing Security Breaches by Eliminating the Need to Transmit and Store Passwords 2 WHITE PAPER: PREVENTING SECURITY BREACHES Table of Contents on t Become the Next Headline
More informationCS 161 Computer Security
Song Spring 2015 CS 161 Computer Security Discussion 11 April 7 & April 8, 2015 Question 1 RSA (10 min) (a) Describe how to find a pair of public key and private key for RSA encryption system. Find two
More informationMidterm Exam Solutions CS161 Computer Security, Spring 2008
Midterm Exam Solutions CS161 Computer Security, Spring 2008 1. To encrypt a series of plaintext blocks p 1, p 2,... p n using a block cipher E operating in electronic code book (ECB) mode, each ciphertext
More informationNetwork Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 035742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室
Network Security 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 035742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination
More informationCryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
More informationLecture 6  Cryptography
Lecture 6  Cryptography CSE497b  Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497bs07 Question 2 Setup: Assume you and I don t know anything about
More informationCPSC 467b: Cryptography and Computer Security
CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 1 January 9, 2012 CPSC 467b, Lecture 1 1/22 Course Overview Symmetric Cryptography CPSC 467b, Lecture 1 2/22 Course Overview CPSC
More information8 Key Exchange and Authentication Protocols
C547: CRYPTOGRPHY ND SECURITY PROTOCOLS 1 8 Key Exchange and uthentication Protocols 8.1 Introduction Introduction In this section, we are going to explore protocols that solve two general problems: Entity
More informationChapter 10. Network Security
Chapter 10 Network Security 10.1. Chapter 10: Outline 10.1 INTRODUCTION 10.2 CONFIDENTIALITY 10.3 OTHER ASPECTS OF SECURITY 10.4 INTERNET SECURITY 10.5 FIREWALLS 10.2 Chapter 10: Objective We introduce
More informationCryptography & Digital Signatures
Cryptography & Digital Signatures CS 594 Special Topics/Kent Law School: Computer and Network Privacy and Security: Ethical, Legal, and Technical Consideration Prof. Sloan s Slides, 2007, 2008 Robert H.
More informationNetwork Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering
Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:
More informationSAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION September 2010 (reviewed September 2014) ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK NETWORK SECURITY
More informationAn Introduction to Cryptography as Applied to the Smart Grid
An Introduction to Cryptography as Applied to the Smart Grid Jacques Benoit, Cooper Power Systems Western Power Delivery Automation Conference Spokane, Washington March 2011 Agenda > Introduction > Symmetric
More informationCryptography and Network Security Chapter 12
Cryptography and Network Security Chapter 12 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 12 Message Authentication Codes At cats' green on the Sunday he
More informationsymmetric key distribution requirements for public key algorithms asymmetric (or public) key algorithms
topics: cis3.2 electronic commerce 6 dec 2005 lecture # 18 internet security, part 2 symmetric (single key) and asymmetric (public key) methods different cryptographic systems electronic payment mechanisms
More informationThe Elements of Cryptography
The Elements of Cryptography (March 30, 2016) Abdou Illia Spring 2016 Learning Objectives Discuss Cryptography Terminology Discuss Symmetric Key Encryption Discuss Asymmetric Key Encryption Distinguish
More informationCryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
More informationAn Introduction to Cryptography and Digital Signatures
An Introduction to Cryptography and Digital Signatures Author: Ian Curry March 2001 Version 2.0 Copyright 20012003 Entrust. All rights reserved. Cryptography The concept of securing messages through
More informationShared Secret = Trust
Trust The fabric of life! Holds civilizations together Develops by a natural process Advancement of technology results in faster evolution of societies Weakening the natural bonds of trust From time to
More informationCryptography and Cryptanalysis
Cryptography and Cryptanalysis Feryâl Alayont University of Arizona December 9, 2003 1 Cryptography: derived from the Greek words kryptos, meaning hidden, and graphos, meaning writing. Cryptography is
More informationThe Data Encryption Standard (DES)
The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today  symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric
More informationChapter 8. Cryptography SymmetricKey Algorithms. Digital Signatures Management of Public Keys Communication Security Authentication Protocols
Network Security Chapter 8 Cryptography SymmetricKey Algorithms PublicKey Algorithms Digital Signatures Management of Public Keys Communication Security Authentication Protocols Email Security Web Security
More informationuses same key for encryption, decryption classical, conventional, singlekey encryption
CEN 448 Security and Internet Protocols Chapter 2 Classical Encryption Techniques Dr. Mostafa Hassan Dahshan Computer Engineering Department College of Computer and Information Sciences King Saud University
More information1 Signatures vs. MACs
CS 120/ E177: Introduction to Cryptography Salil Vadhan and Alon Rosen Nov. 22, 2006 Lecture Notes 17: Digital Signatures Recommended Reading. KatzLindell 10 1 Signatures vs. MACs Digital signatures
More informationOverview of PublicKey Cryptography
CS 361S Overview of PublicKey Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.16 slide 2 PublicKey Cryptography public key public key? private key Alice Bob Given: Everybody knows
More informationChapter 8. Network Security
Chapter 8 Network Security Cryptography Introduction to Cryptography Substitution Ciphers Transposition Ciphers OneTime Pads Two Fundamental Cryptographic Principles Need for Security Some people who
More information1 Message Authentication
Theoretical Foundations of Cryptography Lecture Georgia Tech, Spring 200 Message Authentication Message Authentication Instructor: Chris Peikert Scribe: Daniel Dadush We start with some simple questions
More informationKy Vu DeVry University, Atlanta Georgia College of Arts & Science
Ky Vu DeVry University, Atlanta Georgia College of Arts & Science Table of Contents  Objective  Cryptography: An Overview  Symmetric Key  Asymmetric Key  Transparent Key: A Paradigm Shift  Security
More informationCapture Resilient ElGamal Signature Protocols
Capture Resilient ElGamal Signature Protocols Hüseyin Acan 1, Kamer Kaya 2,, and Ali Aydın Selçuk 2 1 Bilkent University, Department of Mathematics acan@fen.bilkent.edu.tr 2 Bilkent University, Department
More informationWeb Services Security
ATG, FEE, CTU November 1, 2012 1 Motivation 2 3 Integrity messages are not duplicated, modified, reordered, replayed, etc. Confidentiality protects communication and data from passive attacks as eavesdropping,
More informationCRYPTOGRAPHY IN NETWORK SECURITY
ELE548 Research Essays CRYPTOGRAPHY IN NETWORK SECURITY AUTHOR: SHENGLI LI INSTRUCTOR: DR. JIENCHUNG LO Date: March 5, 1999 Computer network brings lots of great benefits and convenience to us. We can
More informationCryptographic Hash Functions Message Authentication Digital Signatures
Cryptographic Hash Functions Message Authentication Digital Signatures Abstract We will discuss Cryptographic hash functions Message authentication codes HMAC and CBCMAC Digital signatures 2 Encryption/Decryption
More informationApplied Cryptology. Ed Crowley
Applied Cryptology Ed Crowley 1 Basics Topics Basic Services and Operations Symmetric Cryptography Encryption and Symmetric Algorithms Asymmetric Cryptography Authentication, Nonrepudiation, and Asymmetric
More informationAuthentication Types. Passwordbased Authentication. OffLine Password Guessing
Authentication Types Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4:
More informationCryptography and Network Security Chapter 11. Fourth Edition by William Stallings
Cryptography and Network Security Chapter 11 Fourth Edition by William Stallings Chapter 11 Message Authentication and Hash Functions At cats' green on the Sunday he took the message from the inside of
More information1. a. Define the properties of a oneway hash function. (6 marks)
1. a. Define the properties of a oneway hash function. (6 marks) A hash function h maps arbitrary length value x to fixed length value y such that: Hard to reverse. Given value y not feasible to find
More informationCS 348: Computer Networks.  Security; 30 th  31 st Oct 2012. Instructor: Sridhar Iyer IIT Bombay
CS 348: Computer Networks  Security; 30 th  31 st Oct 2012 Instructor: Sridhar Iyer IIT Bombay Network security Security Plan (RFC 2196) Identify assets Determine threats Perform risk analysis Implement
More informationSecurity. Contents. S72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1
Contents Security requirements Public key cryptography Key agreement/transport schemes Maninthemiddle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions
More informationCUNSHENG DING HKUST, Hong Kong. Computer Security. Computer Security. Cunsheng DING, HKUST COMP4631
Cunsheng DING, HKUST Lecture 08: Key Management for Onekey Ciphers Topics of this Lecture 1. The generation and distribution of secret keys. 2. A key distribution protocol with a key distribution center.
More informationSymmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 811 200 Lecturer: Kartik Krishnan Lectures 222 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
More informationCryptography and Network Security
Cryptography and Network Security XiangYang Li Introduction The art of war teaches us not on the likelihood of the enemy s not coming, but on our own readiness to receive him; not on the chance of his
More information