APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS

Size: px
Start display at page:

Download "APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS"

Transcription

1 APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS 1 B.V. SIVA PRASAD REDDY, 2 K. RAJESH BABU 1,2 Department of Mechanical Engineering, Sri Venkateswara University college of Engineering, Tirupati, India 1 bandarusiva.me@gmail.com, 2 kadirikotar2000@yahoo.co.in; Abstract Nowadays the accuracy of problem solving is very important. In olden days the Variational methods were used to solve all engineering problems like structural, heat transfer and fluid mechanics problems. With the emergence of Finite Element Method (FEM) those methods are become less important, although FEM is also an approximate method of numerical technique. The concept of variational methods is inducted to solve majority of engineering problems, which gives more accurate results than any other type of approximate methods. The engineering problems like uniform bar, beams, heat transfer and fluid flow problems are used in our daily life and they play an important role in the development of our society. To achieve drastic development in the society, it is a must to focus on adopting approximation methods that improve the accuracy of engineering solution. Of all the methods, Galerkin method is emerging as an alternative and more accurate method than those of Ritz, Rayleigh Ritz methods. Any physical problem in nature can be transformed into an equivalent mathematical model by idealization process and describing its behavior by a suitable governing equation with associated boundary conditions. Against this backdrop, the present work focuses on application of different variational methods in solving ordinary differential equations. The reason behind choosing second order differential equation (ODE) is that most of the structural and heat transfer problems can well be represented by an ODE. As an illustration the work herein reported highlights the utility of above cited methods with a simple bar problem. Furthermore the numerical part of this work is carried out on a MATLAB platform. Keywords Variational methods, Second order differential equation, elastic bar, Ritz method, Rayleigh Ritz method, Galerkin method and MATLAB I. INTRODUCTION The objective of this research is to evaluate and examine the variational methods like Ritz, Rayleigh Ritz and weighted residual methods like Galerkin methods based on MATLAB. Solutions for field problems are widely used mathematical tools in engineering analysis. These methods are applied in such areas as the analysis of solids and structures, heat transfer, fluids and almost any other areas of engineering analysis. The variational methods are introduced to solve the Engineering problems around The variational method was first used by Lord Rayleigh in However, the approach did not receive much recognition by the scientific community. Nearly 40 years later, due to the publication of two papers by Ritz, the method came to be called the Ritz method. To recognize the contributions of both men, the theory was later renamed the Rayleigh Ritz method. The Ritz method proposed by the Swiss mathematician Walther Ritz in between 1878 to After that the Galerkin method is proposed by Russion mathematician Boris Galerkin in The Galerkin method is one of best method of weighted residual method. In the Galerkin method, it only requires that the residual of the differential equation be orthogonal to each term of the series that satisfy the boundary conditions. These methods are discussed in much research paper to apply on different engineering problems. The J. N. Reddy [1] was applied on his book to solve bar, beam problems. The Robert D. Cook and David S. Malkus [2] are introduced variational methods on engineering problems. J. N. Reddy [1], The Robert D. Cook and David S. Malkus [2], S. S. Rao [3], O.C Zienkiewicz, R.L. Taylor & J. Z. Zhu [4] are used these principles to Finite Element Method in engineering applications. Recently the Sanjay Govindjee [5] introduced the variational methods solving with the MATLAB software. Any physical problem in nature can be transformed into an equivalent mathematical model by idealization process and describing its behavior by a suitable governing equation with associated boundary conditions. Some real engineering problems are shown in the following figures. Fig 1 Beam having transverse load Fig 2 A cantilever beam clamped at one end In the present study we have chosen a simple second order differential equation, whose solution is sought by different variational methods which include Ritz, Rayleigh Ritz and Galerkin method. All of these 36

2 methods seek an approximate solution in the form of a linear combination of suitable approximate function, preferably power series. The parameters or coefficients are determined such that the approximate solution satisfies weak or variational form or minimizes the quadratic functional of the equation (as in Rayleigh Ritz method) under study. Various methods differ from each other in the choice of the approximate functions. In addition an elastic bar subjected to uniformly distributed load is also analyzed and solved for displacement field by Galerkin method. The approximate solution so obtained is validated by a suitable numerical data. The following sections will briefly highlight the various variational methods to be adopted in solving the selected governing equation and an elastic bar problem. II. CHOSEN SECOND ORDER GOVERNING EQUATIONS The following governing equation is selected for its analysis by different variational methods like Ritz, Rayleigh Ritz method and Galerkin methods. A. u + x = 0 For 0 < x < 1 SET: 1 Boundary conditions u (0) = 0, u (1) = 0 SET: 2 Boundary conditions u(0) = 0, = 1 Exact solution of second order ODE for set:1 boundary condition 2 sin(1 x) + sin x u(x) = + (x 2) sin 1 Exact solution of second order ODE for set:2 boundary condition 2 cos(1 x) sin x u(x) = + (x 2) cos 1 The following governing equation is selected for its analysis by Galerkin method involving two different approaches that include formulation by variational method and weighted residual method. This equation also governs an elastic bar element subject to uniformly distributed load and end load as well. Fig 3 Uniform elastic bar, loaded by axial tip force The above physical modal is converted into mathematical governing equation as bellow + L A, E q = Cx B. = 0 For 0 < x < L Boundary conditions are u (0) = 0, Exact solution of 1-D elastic bar u(x) = 3CL x Cx + 6bAEx 6AE P = III. ANALYSIS OF 2 nd ORDER ODE BY APPROXIMATE METHODS The given second order ODE has been analyzed by adopting Ritz method, Rayleigh Ritz method and Galerkin method for one and two parameter approximation. The corresponding results were tabulated and illustrated as detailed below. And also the comparisons of those results with exact results were shown below. 3.1 Solution by Ritz Method Governing equation u + x = 0 For 0 < x < 1 Boundary conditions u (0) = 0, u (1) = 0 The given governing equation is in strong form. In Ritz method first of all strong form is converted into weak form. Then the governing equation written as w [ u + x ]dx = 0 w + w x dx = 0 dx w u dx The above weak form can be expressed as leaner and bilinear forms B (w, u) = L (w). Bilinear form of above equation B (w, u) = w u dx and linear form is + dx L (w) = x w dx + w To get solution in Ritz method select approximate equation with satisfy above boundary conditions conditions ɸ = x (1 x), which is the simplest function satisfying the boundary conditions U = C x(1 x) + C x (1 x) +. +C x (1 x) By substituting approximate function B(w, u) becomes B ɸ, ɸ = dɸi dx d dx ( C ɸ )dx ɸ ( C ɸ ) dx = C ɸ ɸ ɸ dx this is also called stiffness matrix D and linear term Lɸ = ɸ ɸ x dx this is a force matrix F. The algebraic equations can be expressed in matrix from [D]{C} = {F} by solving this the coefficients of approximate function (C, C,., C ) are obtained.. 37

3 Table 1 Ritz coefficients values for one and two parameter approximation These coefficients are finally submitted in approximate function, one can get the desired approximate solution Table 2 Ritz field variable u at various points for one and two parameter approximation w + dx dx w u dx w x dx = 0 The above weak form can be expressed as leaner and bilinear forms B (w, u) = w u dx L (w) = x w dx + [w] 1 The functional is I(u) = B(u, u) + L(u) I(u) = u 2ux dx + u(1) To get solution in Rayleigh Ritz method, select an approximate function which will satisfy above boundary conditions ɸ = x, which is the simplest function satisfying the boundary conditions. U = C x + C x +. +C x Substituting U in functional + Graphical reprasentation of the above results The necessary condition for the minimizing of functional I is that Apply ɸ () = 0, = 2 ɸ C 2ɸ C ɸ 2x ɸ dx + (1) = 0 From above equation the bi linear and linear terms are separated as b = ɸ ɸ ɸ dx and F = ɸ x dx + (1).The algebraic equations can be expressed in matrix from [B]{C} = {F} by solving this the coefficients of approximate function (C, C,., C ) are obtained.. ɸ Table 3 R R coefficients values for N=1and N=2 Fig 4 Comparison of Ritz results with exact method for set1 boundary conditions 3.2 Solution by Rayleigh Ritz method In the Rayleigh Ritz method, functional is constructed and is minimized to obtain unknown coefficients of an approximate function. Let us assume the following second order ODE u + x = 0 For 0 < x < 1 Boundary conditions u(0) = 0, = 1 The functional in Rayleigh Ritz method is I(u) = B(u, u) + L(u), The given governing equation is in strong form. In Rayleigh Ritz method first of all strong form is converted into weak form Table 4 Comparison of Rayleigh Ritz results with exact method for set two boundary conditions 38

4 Graphical reprasentation of the above results Table 6 Comparison of Galerkin results with exact method for set1 boundary conditions Fig 5 Comparison of Rayleigh Ritz results with exact method for set 2 boundary conditions 3.3 Solution by Galerkin method Let us assume the following second order ODE, for high lighting the Galerkin method. u + x = 0 For 0 < x < 1 Boundary conditions u (0) = 0, u (1) = 0 In Galerkin method the weighting function treated as same as trivial functions (or) shape functions themselves. G = W R(x) dx = 0 Residue is given as R = u + x 0 Where W = N so G = N R(x) dx = 0 for i = 1, 2, 3.., n G = N d u dx u + x dx = 0 The given governing equation is converted into residual form. In Galerkin method next step is to alter the form by applying integration by parts G = N + dx N u dx + N x dx = 0 To get solution in Galerkin method, select an approximate function which will satisfy boundary conditions. Functions x (1 x), which is the simplest function satisfying the boundary conditions. For one parameter approximate function u(x) = C x(1 x) Weight function is same as shape function in Galerkin method N = x(1 x). For two parameter approximate function u(x) = C x (1 x), = 2C x 3C x Weight function is same as shape function in Galerkin method N = x (1 x) and = (2x 3x ), the algebraic equations can be solved for the coefficients of approximate function (C, C,., C ) Table 5 Galerkin coefficients values for one and two parameter approximation Graphical reprasentation of the above results. Fig 6 Comparison of Galerkin results with exact method for set1 boundary conditions IV. ANALYSIS OF AN ELASTIC BAR BY APPROXIMATION METHODS The given elastic bar has been analyzed by adopting Galerkin method wherein two different approaches weak formulation approach and weighted residual method approach have been used. Fig 7 Uniform elastic bar The governing differential equation for the above bar is + = 0 For 0 < x < L, Boundary conditions are u (0) = 0, = Numerical data E = 200 GPa, A =600 mm 2, f = 5000 N/m, L = 600mm and P = 200 KN And f A = C x, C =, C =, b = = 4.1 Solution by Galerkin method Approach 1 In Galerkin method the weighting function treated as same as trivial functions (or) shape functions themselves. G = W R(x) so G = N R(x) L A, E q = Cx dx = 0 Where W = N dx = 0 for i = 1, 2, 3.., n P 39

5 Residue is given as R= + 0 G = N + dx = 0 The given governing equation is converted into residual form. In Galerkin method next step is to alter the form by applying integration by parts G = N dx + N dx = 0 Doing integration by parts the above equation is converted into G = N du dx dw du dx dx dx + N Cx AE dx = 0 Choosing approximate function x is satisfy the boundary conditions. Approximate function U(x) = c x + c x + c x + For one parameter approximate function u(x) = C x and trail function N = x. By Substitute approximate function in G equation we get the coefficient C = +. For two parameter approximate function approximate function u(x) = c x + c x and trail function N = x and N = x by Substitute approximate function in G equation we get the coefficients C = +, C = Table 7 Galerkin Coefficients values for one and two parameter approximation with approach Solution by Galerkin method Approach 2 In Galerkin method the weighting function treated as same as trivial functions (or) shape functions themselves. Table 8 Comparison of Galerkin Approach 1 results with exact results Table 9 Galerkin coefficients values for one and two parameter approximation with approach 2 Table 10 Comparison of Galerkin Approach 2 results with exact results Graphal reprasentation of the above results Fig: 8 Comparison of Galerkin Approach 1 results with exact results 40

6 Graphal reprasentation of the above results Fig 9 Comparison of Galerkin Approach 2 results with exact results V. RESULTS AND DISCUSSION The chosen second order ordinary differential equation (ODE) has bean solved by Ritz method, Rayleigh Ritz method and Galerkin method. The approximate function selected was a power series function. The solution has bean obtained for different numbers of coefficients, which include N=1 and N=2. The corresponding coefficients were determined and the associated plots were drawn. Besides, Ritz method, Rayleigh Ritz method and Galerkin method were also employed in solving the given ordinary differential equation (ODE). The corresponding results and the associated plots were also depicted in Table 1 to 6 and Fig 4 to 6 respectively. Similarly, the results of the one dimensional elastic bar for Galerkin method with two different approaches were employed. The corresponding results and the associated plots were also depicted in Table 7 to10 and Fig 8 to 9 respectively. CONCLUSIONS In this work, an attempt has been made to solve the given ODE by different variational methods. It has also been found that the results as obtained by Ritz, Rayleigh Ritz and Galerkin method were almost in agreement with each other. Further the approximate solutions were obtained by assuming their different approximate functions (power series functions) that would satisfy their different set of boundary conditions associated with the given ODE. The coefficients of power series function have been determined for one parameter approximate and two parameter approximate functions. The resultant plots were drawn to illustrate the variation of dependent variable, u (x) with respect to the independent variable, x. It has been observed that there exists a linear relationship between x and u (x) when dealing with set 2 boundary conditions. In addition one dimensional analysis of an elastic bar has been carried out by Galerkin method of Weighted Residual Methods. Two approaches of Galerkin method have been utilized in solving a One dimensional (1D) elastic bar problem. The solution by Weighted Residual Method (WRM) has been compared with that of exact one and it was found that approximate solution was same as that of exact one. It was further noted that displacement function u (x) varies linearly along the length of an elastic bar. This relationship is in concurrent with the established fact that the Hooke s law holds good in the static analysis of a linear structure. The suitable numerical data have been substituted in the relevant equations and the results were validated. The numerical part of the thesis has been carried out on MATLAB platform. REFERENCES [1] J.N. Reddy, An Introduction to the Finite Element Method, reprinted in India, 2006, Tata McGraw Hill. [2] Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts And Applications Of Finite Element Analysis, reprinted in Delhi,2009, Wiley India(p) Ltd [3] S. S. Rao, Finite Element Method in Engineering, reprinted in India, 2001, Butterworth Heinemann [4] O.C Zienkiewicz, R.L. Taylor & J.Z.Zhu, The Finite Element Method Its Basis & Fundamentals in Engineering, re printed 2014,University of California, Berkeley [5] Sanjay Govindjee, A First Course on Variational Methods in Structural Mechanics and Engineering, Department of Civil and Environmental Engineering University of California, Berkeley, 2014,CA [6] Mark S. Gockenbach, MATLAB Tutorial to accompany Partial Differential Equations, Analytical and Numerical (SIAM, 2010) [7] Abraham Asfaw, Solving Differential Equations Using MATLAB November 28,

Finite Element Methods (in Solid and Structural Mechanics)

Finite Element Methods (in Solid and Structural Mechanics) CEE570 / CSE 551 Class #1 Finite Element Methods (in Solid and Structural Mechanics) Spring 2014 Prof. Glaucio H. Paulino Donald Biggar Willett Professor of Engineering Department of Civil and Environmental

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

Finite Element Method

Finite Element Method 16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

More information

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

FEM Software Automation, with a case study on the Stokes Equations

FEM Software Automation, with a case study on the Stokes Equations FEM Automation, with a case study on the Stokes Equations FEM Andy R Terrel Advisors: L R Scott and R C Kirby Numerical from Department of Computer Science University of Chicago March 1, 2006 Masters Presentation

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,

More information

Stress Recovery 28 1

Stress Recovery 28 1 . 8 Stress Recovery 8 Chapter 8: STRESS RECOVERY 8 TABLE OF CONTENTS Page 8.. Introduction 8 8.. Calculation of Element Strains and Stresses 8 8.. Direct Stress Evaluation at Nodes 8 8.. Extrapolation

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS 1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80 CIV 7/87 Chapter 3a - Development of Truss Equations /8 Development of Truss Equations Having set forth the foundation on which the direct stiffness method is based, we will now derive the stiffness matri

More information

NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS

NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Analysis of deep beam using Finite Element Method

Analysis of deep beam using Finite Element Method www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Analysis of deep beam using Finite Element Method 1 Enem, J.I.,

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

PROGRAMMING FOR CIVIL AND BUILDING ENGINEERS USING MATLAB

PROGRAMMING FOR CIVIL AND BUILDING ENGINEERS USING MATLAB PROGRAMMING FOR CIVIL AND BUILDING ENGINEERS USING MATLAB By Mervyn W Minett 1 and Chris Perera 2 ABSTRACT There has been some reluctance in Australia to extensively use programming platforms to support

More information

Finite Element Simulation of Simple Bending Problem and Code Development in C++

Finite Element Simulation of Simple Bending Problem and Code Development in C++ EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams 2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Finite Element Analysis

Finite Element Analysis Finite Element Analysis (MCEN 4173/5173) Instructor: Dr. H. Jerry Qi Fall, 2006 What is Finite Element Analysis (FEA)? -- A numerical method. -- Traditionally, a branch of Solid Mechanics. -- Nowadays,

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Shear Forces and Bending Moments

Shear Forces and Bending Moments Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

Reliable FE-Modeling with ANSYS

Reliable FE-Modeling with ANSYS Reliable FE-Modeling with ANSYS Thomas Nelson, Erke Wang CADFEM GmbH, Munich, Germany Abstract ANSYS is one of the leading commercial finite element programs in the world and can be applied to a large

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

INTRODUCTION (Syllabus, Numerical Methods & Computational Tools)

INTRODUCTION (Syllabus, Numerical Methods & Computational Tools) INTRODUCTION (Syllabus, Numerical Methods & Computational Tools) A. J. Clark School of Engineering Department of Civil and Environmental Engineering by Dr. Ibrahim A. Assakkaf Spring 2001 ENCE 203 - Computation

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis

A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis Steven E. Benzley, Ernest Perry, Karl Merkley, Brett Clark Brigham Young University Provo,

More information

Linear Equations in One Variable

Linear Equations in One Variable Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

More information

SSLV105 - Stiffening centrifuges of a beam in rotation

SSLV105 - Stiffening centrifuges of a beam in rotation Titre : SSLV105 - Raidissement centrifuge d'une poutre en [...] Date : 19/09/2011 Page : 1/6 SSLV105 - Stiffening centrifuges of a beam in rotation Summarized: Test of Structural mechanics in linear static

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

Numerical Analysis of Texas Cone Penetration Test

Numerical Analysis of Texas Cone Penetration Test International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, Tolunay-Wong Engineers, Inc. 10710 S Sam

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

Chapter 3 Non-parametric Models for Magneto-Rheological Dampers

Chapter 3 Non-parametric Models for Magneto-Rheological Dampers Chapter 3 Non-parametric Models for Magneto-Rheological Dampers The primary purpose of this chapter is to present an approach for developing nonparametric models for magneto-rheological (MR) dampers. Upon

More information

Introduction to Engineering System Dynamics

Introduction to Engineering System Dynamics CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Study on Pressure Distribution and Load Capacity of a Journal Bearing Using Finite Element Method and Analytical Method

Study on Pressure Distribution and Load Capacity of a Journal Bearing Using Finite Element Method and Analytical Method International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:1 No:5 1 Study on Pressure Distribution and Load Capacity of a Journal Bearing Using Finite Element Method and Method D. M.

More information

The Method of Least Squares

The Method of Least Squares The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 180-187, Article ID: IJCIET_07_01_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Learning Module 6 Linear Dynamic Analysis

Learning Module 6 Linear Dynamic Analysis Learning Module 6 Linear Dynamic Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner

More information

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:

More information

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element

More information

The Bending Strength of Pasta

The Bending Strength of Pasta The Bending Strength of Pasta 1.105 Lab #1 Louis L. Bucciarelli 9 September, 2003 Lab Partners: [Name1] [Name2] Data File: Tgroup3.txt On the cover page, include your name, the names of your lab partners,

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

THE COMPUTATIONAL MODEL OF THE LOAD DISTRIBUTION BETWEEN ELEMENTS IN A PLANETARY ROLLER SCREW

THE COMPUTATIONAL MODEL OF THE LOAD DISTRIBUTION BETWEEN ELEMENTS IN A PLANETARY ROLLER SCREW JOURNAL OF THEORETICAL AND APPLIED MECHANICS 52, 3, pp. 699-705, Warsaw 204 THE COMPUTATIONAL MODEL OF THE LOAD DISTRIBUTION BETWEEN ELEMENTS IN A PLANETARY ROLLER SCREW Jan Ryś, Filip Lisowski Cracow

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

CONSISTENT AND LUMPED MASS MATRICES IN DYNAMICS AND THEIR IMPACT ON FINITE ELEMENT ANALYSIS RESULTS

CONSISTENT AND LUMPED MASS MATRICES IN DYNAMICS AND THEIR IMPACT ON FINITE ELEMENT ANALYSIS RESULTS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 135 147, Article ID: IJMET_07_02_016 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE6237 ELEMENTMETODEN Klassen: 4.ID 4.IT Dato: 8.8.25 Tid: Kl. 9. 2. Tillatte hjelpemidler under eksamen: Kalkulator. Bok Numerical solution

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Engineering Analysis With ANSYS Software

Engineering Analysis With ANSYS Software Engineering Analysis With ANSYS Software This page intentionally left blank Engineering Analysis With ANSYS Software Y. Nakasone and S. Yoshimoto Department of Mechanical Engineering Tokyo University of

More information

Vibration Course Enhancement through a Dynamic MATLAB Graphic User Interface

Vibration Course Enhancement through a Dynamic MATLAB Graphic User Interface Vibration Course Enhancement through a Dynamic MATLAB Graphic User Interface Elizabeth K. Ervin 1 [Weiping Xu 2 ] Abstract From the string of a guitar to the radio wave, vibration occurs all the time and

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

Dynamics of Offshore Wind Turbines

Dynamics of Offshore Wind Turbines Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 19-24, 2011 Copyright 2011 by the International Society of Offshore and Polar Engineers

More information

Calculation of Eigenfields for the European XFEL Cavities

Calculation of Eigenfields for the European XFEL Cavities Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA

ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA www.arpapress.com/volumes/vol12issue3/ijrras_12_3_14.pdf ACCELERATION CHARACTERISTICS OF VEHICLES IN RURAL PENNSYLVANIA Robert M. Brooks Associate Professor, Department of Civil and Environmental Engineering,

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information