Injection Mold Design Engineering

Size: px
Start display at page:

Download "Injection Mold Design Engineering"

Transcription

1 David O. Kazmer Injection Mold Design Engineering ISBN-10: ISBN-13: Leseprobe Weitere Informationen oder Bestellungen unter sowie im Buchhandel

2 4 Mold Layout Design During the mold layout stage, the mold designer commits to the type of mold and selects the dimensions and materials for the cavity inserts, core inserts, and mold base. Mold bases are only available in discrete sizes, so iteration between the inserts sizing and mold base selection is normal. The goal of the mold layout design stage is to develop the physical dimensions of the inserts and mold so as to enable procurement of these materials. Mold material selection is also an important decision, since the material properties largely determine the mold making time and cost as well as the mold s structural and thermal performance. The mold layout design assumes that the number of mold cavities and type of mold has been determined. To develop the mold layout, the mold opening direction and the location of the parting plane are first determined. Then, the length, width, and height of the core and cavity inserts are chosen. Afterwards, a mold base is selected and the inserts are placed in as simple and compact a layout as possible. It is important to develop a good mold layout design since later analysis assumes this layout design and these dimensions are quite expensive to change once the mold making process has begun. 4.1 Parting Plane Design The parting plane is the contact surface between the stationary and moving sides of the mold. The primary purpose of the parting plane is to tightly seal the cavity of the mold and prevent melt leakage. This seal is maintained through the application of literally tons of force (hence the term clamp tonnage ) that are applied normal to the parting plane. While the term parting plane implies a flat or planar surface, the parting plane may contain out-of-plane features. The mold designer must first determine the mold opening direction to design the parting plane Determine Mold Opening Direction Examination of any of the previous mold designs (e.g., Figure 1.4 to Figure 1.8) indicates that the mold opening direction is normal to the parting plane. In fact, the mold usually opens in a direction normal to the parting plane since the moving platen of the molding machine is guided by tie bars or rails to open in a direction normal to the platen. Accordingly, guide bushings and/or mold interlocks are almost always located on the parting plane to guide the mold opening in a direction normal to the parting plane. It may appear that there is nothing about the mold opening direction to determine since the mold opens normal to the parting plane. However, it is necessary to determine the mold

3 68 4 Mold Layout Design opening direction relative to the mold cavity. There are two factors that govern the mold opening direction: 1. First, the mold cavity should be positioned such that it does not exert undue stress on the injection mold. The mold cavity is typically placed with its largest area parallel to the parting plane. This arrangement allows the mold plates, already being held in compression under the clamp tonnage, to resist the force exerted by the plastic on the surfaces of the mold cavity. 2. Second, the mold cavity should be positioned such that the molded part can be ejected from the mold. A typical molded part is shaped like a five-sided open box with the side walls, ribs, bosses, and other features normal to its largest area. If so, then the part ejection requirement again supports the mold opening direction to be normal to the part s largest projected area. Consider the cup and lid shown in Figure 4.1. A section of the core and cavity inserts used to mold these parts was previously shown in Figure 1.6. There are only two potential mold opening directions relative to the part. One mold opening direction is in the axial direction of the cup, while the second direction is in the radial direction of the cup. Figure 4.1: Sectioned isometric view of cup assembly

4 4.1 Parting Plane Design 69 Figure 4.2: Axial mold opening direction for cup Figure 4.3: Radial mold opening direction for cup A section of a cavity block with an axial mold opening direction is shown in Figure 4.2. The two bold horizontal lines indicates the location of the parting plane where the two halves of the insert are split to form the cavity insert (top) and the core insert (bottom). Consider next the same cavity block but with a radial mold opening direction for a portion of the cavity insert as shown in Figure 4.3. For this design, four bold lines separate the sides from the top and bottom. Since the metal core is located inside the molded part, there is no way to remove the core other than in the part s axial direction. The cavity insert, however, can be separated into three pieces that move along two different axes in order to remove the molded part. Of these two designs, the axial mold opening direction shown in Figure 4.2 is the simplest design and is usually preferred. However, the second design is sometimes used in practice since it allows for a more complex part design as well as more options in locating the parting line. For instance, the second design might be required if a handle were added to the cup, or if it was necessary to move the parting line to a location away from the top lip. This second design is known as a split cavity mold and is discussed in more detail in Section As another example, consider the laptop bezel shown in Figure 3.5. There are again two potential mold opening directions. The first opening direction is in the screen s viewing direction, as indicated by the section view shown in Figure 4.4. In this case, the mold section is split by two horizontal lines into a cavity insert forming the outside surface of the bezel and a core insert that forms the inner surface and ribs of the bezel. When the core and cavity inserts are separated as indicated by the arrows, the molded bezel can be readily removed. Figure 4.4: Normal mold opening direction for bezel

5 70 4 Mold Layout Design Figure 4.5: Complex mold opening directions for bezel Alternatively, the cavity block for the PC bezel can be split as indicated with the three vertical lines shown in Figure 4.5. In this case, the former cavity insert is split into two pieces, resulting again in a split cavity mold design. The two halves of the former cavity insert must now be removed in oblique directions in order to remove the molded part; the mold opening direction is inclined in order to allow the mold surfaces to separate from the molded part without excessive surface friction or shearing of features on the molded part. This movement requires several additional mold components to control the moving cavity inserts, which add significantly to the cost of mold design, manufacture, and operation Determine Parting Line The term parting line refers to the location at which the cavity insert, the core insert, and the plastic molding meet. Since the core and cavity insert meet at this location, any significant deflection of the cavity insert away from the core insert will result in a gap into which the plastic will flow and form a thin film of plastic known as flash. Imperfections in the core and cavity inserts at this location, for instance due to wear or improper handling, will also create gaps into which the plastic will flow. Even with new and well-crafted molds, the location of the parting line usually results in a very slight witness line along its length. For this reason, the parting line should be located along a bottom edge of the part, or some other non-visual, non-functional edge. Consider the previous cup shown in Figure 4.1. Placing the parting line very close to the lip as indicated by the dashed line in the left drawing of Figure 4.6 would result in a witness line and possible flash that might make the molded cup unusable. Alternatively, a better location for the parting line is at the bottom of the rim as indicated in Figure 4.2, corresponding to the parting line shown in the right drawing of Figure 4.6. Figure 4.6: Two parting line locations for cup

6 4.1 Parting Plane Design 71 Figure 4.7: Parting line location for bezel For the laptop bezel, the parting line will be located around the bottom edge of the part as shown in Figure 4.7. It is observed that, unlike the cup, the parting line for the bezel is not in a single plane. Rather, the parting line follows the profile of the features on the side walls. This non-planar parting line is required to fit the core insert which hollows out the mold cavity to form the holes required for the various connectors. As will be seen in the next section, this complex parting line shape will cause a more complex parting plane Parting Plane Once the parting line is identified, the parting plane is projected outwards from the part, so as to separate the core insert from the cavity insert. The preferred parting plane for the cup is shown in Figure 4.8. The cavity insert will form the outer and top surfaces of the part, while the core insert will form the rim and inner surfaces. Figure 4.8: Parting plane for cup

7 72 4 Mold Layout Design Figure 4.9: Parting plane for bezel For the laptop bezel, the parting line in Figure 4.7 can be radiated outward to form the parting surface shown in Figure 4.9. It can be observed that all of the out of plane features along the parting line now become complex surfaces on the parting plane. These surfaces pose two significant issues during mold operation. First, any misalignment between the sharp features on core and cavity inserts will cause wear between the sliding surfaces if not an outright impact between the leading edge of the core and the mating cavity surface. Second, the clamp tonnage exerted on the core and cavity inserts can cause the surfaces to lock together with extreme force, causing excessive stress and potential mold deformation during mold operation. To avoid excessive stress, interlocking features on the parting plane should be inclined at least five degrees relative to the mold opening direction. The parting surface is now typically created via three dimensional computer aided design ( 3D CAD ) using lofted surfaces. Each lofted Figure 4.10: Modified parting surface for bezel

8 4.1 Parting Plane Design 73 surface blends a curved feature along the parting line to a line of corresponding width on the parting plane. The result is a surface with the needed profile at the parting line and the necessary draft down to the parting plane. The lofted surfaces are then knit together with the parting plane to provide a parting surface, as shown for the bezel in Figure Shut-Offs Shut-offs are contact areas between the core insert and the cavity insert that separate portions of the cavity formed between the core and cavity inserts. A shut-off will need to be defined for each window or opening in the molded part. Conversely, if a part has no windows, like the cup, then no shut-offs are defined. Each shut-off is defined by a parting line, which should be located in a non-visual area where a witness line or slight flashing would not reduce the value of the molded part. For example, the laptop bezel has one large opening above the parting plane for the display. A shut-off is necessary across the entire area of the opening. As indicated in Figure 4.11, there are essentially two possible locations for the shut-off s parting line, corresponding to the top and bottom of the shelf that supports the display. Either location (or even any location in between) would likely be acceptable since the entire shelf is hidden from view. If the parting line is placed at the top of the shelf as indicated at the right of Figure 4.11, then a shut-off surface as shown in Figure 4.12 will result. Figure 4.11: Shut-off surface for bezel Figure 4.12: Shut-off surface for bezel

9 74 4 Mold Layout Design 4.2 Cavity and Core Insert Creation With the definition of the parting plane and all necessary shut-offs, the core insert and the cavity insert have been completely separated. To create the cavity and core inserts, the length, width, and height of the inserts must be defined. The length and width of the cavity and core inserts must be large enough to: enclose the cavity where the part is formed, withstand the forces resulting from the melt pressure exerted upon the area of the cavity, contain the cooling lines for removing heat from the hot polymer melt, and contain other components such as retaining screws, ejector pins, and others. All of these requirements suggest making the core and cavity inserts as large as possible. For smaller molded parts, increasing the sizing the core and cavity inserts may have little added cost. However, the cost of larger core and cavity inserts can become excessive with increases in the number of cavities or molded part size Height Dimension The height dimension is often determined by two requirements. First, the core and cavity insert should have enough height above and below the molded part to safely pass a cooling line. Cooling line diameters typically range from 4.76 mm (3/16 ) for smaller molds to mm (5/8 ) for large molds. Generally, large inserts with larger cooling lines will provide faster and more uniform cooling as will be analyzed in Chapter 9. While cooling line design will be later discussed, the minimum height dimension between the molded part and the top or Figure 4.13: Insert height allowance

10 4.2 Cavity and Core Insert Creation 75 bottom surface of the insert is typically three times the diameter of the cooling line to avoid excessive stress as analyzed in Chapter 12. The initial height dimensions for the core and cavity inserts are shown in Figure Second, the core and cavity insert should have a height that is matched with the height of available cavity and core insert retainer plates (the A and B plates). These plates are commonly available in ½ increments in English units, and in 10 mm increments in metric units. As such, the insert heights should be adjusted up such that the faces of the cavity and core inserts are flush or slightly proud with respect to the A and B plates on the parting plane. It should be noted that the height of the core insert as indicated in Figure 4.13 is not its total height but rather the height dimension from the rear surface to the parting plane. For materials procurement and cost estimation, the total height of the core insert should also include the height of the core above the parting plane Length and Width Dimensions The length and width dimensions are similarly determined by two requirements. First, if a cooling line is needed around the exterior of the mold cavity, then the inserts should be sized large enough to accommodate such a cooling line. As for the height allowance, length and width allowances of three cooling line diameters per side are typical. Second, the width and length dimensions of the inserts should provide side walls, also known as cheek, that are thick enough to withstand the lateral loading of the melt pressure exerted on the side walls of the mold cavity. This requirement will become dominating for deep parts with large side walls. While the structural design will be discussed in detail in Section , a safe guideline is that the thickness of the side wall in the length and width dimension should equal the depth of the mold cavity. Figure 4.14 demonstrates an allowance that should be added to the length and width of the mold cavity to derive the length and width of the core and cavity inserts. It can be observed that for the laptop bezel, the requirement of fitting a cooling line will exceed the structural requirement. For the molded cup, however, the insert length and width dimension are driven by the structural requirement. Figure 4.14: Insert length and width allowance

11 76 4 Mold Layout Design Adjustments The core and cavity inserts can now be created with the prescribed dimensions. However, it is sometimes desirable to adjust the cavity insert dimensions to provide a more efficient mold design. In general, the length and width dimensions of the inserts are more critical than the height dimension, since these dimensions will drive the size of the mold base in multi-cavity applications, and contribute more to the material and machining costs. As such, these dimensions may be decreased somewhat by effective cooling and structural designs, which will be supported by later engineering analysis. Figure 4.15: Core and cavity inserts for cup Figure 4.16: Core and cavity inserts for bezel

12 4.3 Mold Base Selection 77 Figure 4.15 provides the core and cavity inserts for the cup. Since the molded part is round, the design of the core and cavity insert may also be round. This shape provides a benefit with respect to ease of manufacturing, since both the core and cavity inserts can be turned on a lathe. While the allowances in the axial and radial dimensions are sufficient to fit cooling lines, the allowance in the radial dimension may not be sufficient to withstand the pressures exerted on the side wall by the melt. There is no fundamental requirement on the external shape of the core and cavity inserts. While the insert design in Figure 4.15 showed round inserts, the mold design for the cup shown previously in Figure 1.4 used square inserts. Rectangular inserts with or without filleted corners are also quite common. The design of the insert should be dictated by the shape of the molded part, the efficiency of the mold design, and the ease of manufacture. The core and cavity inserts for the laptop bezel are shown in Figure In this case, rectangular inserts are designed. The length and width dimensions of the inserts have been designed quite aggressively. While the bezel is quite shallow and the inserts are structurally adequate, the thickness of the surrounding cheek may not allow for sufficient cooling around the periphery of the mold cavity while also providing space for other mold components. 4.3 Mold Base Selection After the core and cavity inserts have been initially sized, the mold layout can be further developed and the mold base selected. It is critical to order a mold base with appropriately sized plates and materials, since any mistakes in the mold base selection can consume significant time and expense. To determine the appropriate size, the mold designer must first arrange the mold cavities and provide allowances for the cooling and feed systems. Afterwards, the mold designer should select a standard size from available suppliers and verify suitability with the molder s molding machine Cavity Layouts The goal of cavity layout design is to produce a mold design that is compact, easy to manufacture, and provides molding productivity. If a single cavity mold is being designed, then the cavity is typically located in the center of the mold, though gating requirements may necessitate placing the mold cavity off center. For multi-cavity molds, there are essentially three fundamental cavity layouts: cavities are placed along one line cavities are placed in a grid, or cavities are placed around a circle.

Solid shape molding is not desired in injection molding due to following reasons.

Solid shape molding is not desired in injection molding due to following reasons. PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

More information

3D Printed Injection Molding Tool ("PIMT") Guide. Objet Ltd.

3D Printed Injection Molding Tool (PIMT) Guide. Objet Ltd. 3D Printed Injection Molding Tool ("PIMT") Guide Objet Ltd. 2 Injection molding is a high speed, automated and versatile process that can produce high precision complex three dimensional parts from a fraction

More information

CHAPTER 2 INJECTION MOULDING PROCESS

CHAPTER 2 INJECTION MOULDING PROCESS CHAPTER 2 INJECTION MOULDING PROCESS Injection moulding is the most widely used polymeric fabrication process. It evolved from metal die casting, however, unlike molten metals, polymer melts have a high

More information

Single Cavity Mould. Basic Mould Construction. Ejection System. Multi Cavity Mould

Single Cavity Mould. Basic Mould Construction. Ejection System. Multi Cavity Mould Basic Mould Construction Basic mould construction: Core plate and Core (moving) Cavity plate and cavity (fixed) Other features include Guide pillars / guide bush Sprue bush Locating ring Single Cavity

More information

Effects of the MuCell Molding Process

Effects of the MuCell Molding Process Effects of the MuCell Molding Process Molding MuCell versus Solid Shot size is reduced Final mold fill is completed with cell growth Little or no Hold Time or Pressure Reduced molded-in stress Less warp

More information

Die casting Figure M2.3.1

Die casting Figure M2.3.1 Die casting Die casting is a moulding process in which the molten metal is injected under high pressure and velocity into a split mould die. It is also called pressure die casting. The split mould used

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number DIESEL EFFECT PROBLEM SOLVING DURING INJECTION MOULDING

More information

General Guidelines for Building Aluminum Production Injection Molds

General Guidelines for Building Aluminum Production Injection Molds General Guidelines for Building Aluminum Production Injection Molds Using 7000 series Aluminum Mold Plate By David Bank Aluminum Injection Mold Company Rochester, New York 1 Introduction This high strength

More information

Plastic Injection Molds

Plastic Injection Molds Training Objective After watching the program and reviewing this printed material, the viewer will become familiar with the variety, design, and productive use of plastic injection molds. Mold components

More information

6 Design of Gates. 6.1 The Sprue Gate

6 Design of Gates. 6.1 The Sprue Gate 6 Design of Gates 6.1 The Sprue Gate The sprue gate is the simplest and oldest kind of gate. It has a circular cross-section, is slightly tapered, and merges with its largest cross-section into the part.

More information

General Injection Mould Specifications KONGSBERG AUTOMOTIVE GROUP

General Injection Mould Specifications KONGSBERG AUTOMOTIVE GROUP KONGSBERG AUTOMOTIVE GROUP Edition 3 19.06.2013 A: GENERAL STATEMENT B: STEEL/COLUMN/STANDARD ELEMENTS STEEL COLUMN STANDARD ELEMENTS C: TECHNICAL CHARACTERISTICS I- MOULD BASE GENERAL CONTENT II- MOULD

More information

INJECTION MOULD DESIGN: MARPLEX PVC RESINS

INJECTION MOULD DESIGN: MARPLEX PVC RESINS MACHINE RECCOMENDATIONS PVC requires reciprocating screw injection moulding machine with a plasticising screw to produce homogeneous melt. It is recommended that a shot weight of the part should take two

More information

AN OVERVIEW OF GAS ASSIST

AN OVERVIEW OF GAS ASSIST GAS ASSIST INJECTION MOLDING AN OVERVIEW OF GAS ASSIST April 2010 www.bauerptg.com GAS ASSIST INJECTION MOLDING TECHNOLOGY It is a fact that packing force must be applied and maintained to an injection

More information

Plastic Injection Molding

Plastic Injection Molding Training Objective After watching this video and reviewing the printed material, the student/trainee will understand the principles and physical operations of the plastic injection molding process. An

More information

Craft and Design Application of Injection Moulding (Mobile Phone)

Craft and Design Application of Injection Moulding (Mobile Phone) Craft and Design Application of Injection Moulding (Mobile Phone) 5700 Summer 1999 HIGHER STILL Craft and Design Application of Injection Moulding (Mobile Phone) Support Materials This Support Material

More information

Part and tooling design. Eastman Tritan copolyester

Part and tooling design. Eastman Tritan copolyester Part and tooling design Eastman Tritan copolyester Part and tooling design Process Part design Tooling design High cavitation considerations Process Process Project development flow chart Concept OEM generates

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

Mould and Die Standard Parts

Mould and Die Standard Parts Mould and Die Standard Parts Tampere University of technology - Tuula Höök Mould standard parts can be divided into the following groups: Standard mould set with guide bars, guide sleeves and other guiding

More information

Pole Lathe and Shave Horse Design

Pole Lathe and Shave Horse Design Pole Lathe and Shave Horse Design These pictures and accompanying words are Copyright Michael Hughes February 2002. They are not to be re-produced, in part or whole, without permission from the author.

More information

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004 2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring

More information

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Metal Injection Molding Design Guide NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Solon, OH 44139 solutions@netshapetech.com 1 Frequently Asked Questions Page What

More information

NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE

NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE NYLON 6 RESINS CORRECTING MOLDING PROBLEMS A TROUBLE SHOOTING GUIDE A. TROUBLESHOOTING GUIDE FOR INJECTION MOLDERS. I. INTRODUCTION The source of problems in injection molding of nylon resins can depend

More information

Injection molding equipment

Injection molding equipment Injection Molding Process Injection molding equipment Classification of injection molding machines 1. The injection molding machine processing ability style clamping force(kn) theoretical injection volume(cm3)

More information

How to reduce the cure time without damaging the rubber compound during injection molding?

How to reduce the cure time without damaging the rubber compound during injection molding? How to reduce the cure time without damaging the rubber compound during injection molding? 0Introduction This article aims at analyzing the rubber injection process and highlighting the limits that prevent

More information

Two most common lock nut groups: 1-Prevailing Torque Type Lock Nuts:

Two most common lock nut groups: 1-Prevailing Torque Type Lock Nuts: Two most common lock nut groups: 1. PREVAILING TORQUE a design feature of the lock nut produces friction between threads of mated components thereby increasing the force needed to tighten as well as loosen

More information

INJECTION BLOW MOLDING WITH FDM

INJECTION BLOW MOLDING WITH FDM INJECTION BLOW MOLDING WITH FDM 3D PRODUCTION SYSTEMS Time Required Cost Skill Level By Susan Sciortino, Stratasys Inc. OVERVIEW Blow molding is a manufacturing process in which air pressure inflates heated

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e

p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e p l a s t i c i n j e c t i o n m o l d i n g p a r t 1 p r o c e s s, m o l d a n d m a c h i n e e r i k d e l a n g e H R O R o t t e r d a m B r n o U T j o i n t p r o j e c t 1 plastic injection

More information

Injection molding overview

Injection molding overview Injection molding overview This injection molding overview is designed to help our customers understand the process of injection molding and mold-making. Please read it fully as it helps to define what

More information

Session 13 Design for Injection Moulding

Session 13 Design for Injection Moulding Session 13 Design for Injection Moulding Lecture delivered by Prof. M. N. Sudhindra Kumar Professor MSRSAS-Bangalore 1 Session Objectives At the end of this session the delegate would have understood Applying

More information

Copyright 1998 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING NARRATION (VO): NARRATION (VO):

Copyright 1998 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING NARRATION (VO): NARRATION (VO): FUNDAMENTAL MANUFACTURING PROCESSES PLASTIC BLOW MOLDING SCENE 1. CG: EXTRUSION BLOW MOLDING white text centered on black SCENE 2. tape 401, 07:25:29-07:25:41 zoom in, extrusion process tape 401, 07:08:50-07:09:06

More information

Two-Shot Silico e Thermoplastic Medical Molding

Two-Shot Silico e Thermoplastic Medical Molding Two-Shot Silico e Thermoplastic Medical Molding Author: Sarah J. Voss, Product Specialist, Medical Co-Authors: Mark Simon, Ph. D. Research & Development Manager Danny Ou, Ph D. Research & Development,

More information

Installation Instructions

Installation Instructions Installation Instructions READ BEFORE INSTALLING UNIT For Low Profile Window Air Conditioner INSTALLATION WARNINGS AND CAUTION Carefully read the installation manual before beginning. Follow each step

More information

Freehand Sketching. Sections

Freehand Sketching. Sections 3 Freehand Sketching Sections 3.1 Why Freehand Sketches? 3.2 Freehand Sketching Fundamentals 3.3 Basic Freehand Sketching 3.4 Advanced Freehand Sketching Key Terms Objectives Explain why freehand sketching

More information

Sheet Metal Stamping Dies & Processes

Sheet Metal Stamping Dies & Processes Training Objectives After watching the program and reviewing this printed material, the viewer will gain knowledge and understanding of the stamping process and the die systems used to form sheet metal.

More information

Complete Dovetail Jig Instructions

Complete Dovetail Jig Instructions Complete Dovetail Jig Instructions 18 15 1 12 13 8 (22818) 19 17 16 4 3 6 14 5 9 9 11 10 2 PARTS LIST - COMPLETE DOVETAIL JIG Introduction Your new dovetail jig will cut Full Through Dovetails and three

More information

DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING

DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING Introduction Welding techniques for assembling parts molded with

More information

Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches.

Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches. Plastic Threads Technical University of Gabrovo Yordanka Atanasova Threads in plastic products can be produced in three ways: a) by direct moulding with thread punch or die; b) by placing a threaded metal

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

ECONOMIC DESIGN OF INJECTION MOLDED PARTS USING DFM GUIDELINES - A REVIEW OF TWO METHODS FOR TOOLING COST ESTIMATION

ECONOMIC DESIGN OF INJECTION MOLDED PARTS USING DFM GUIDELINES - A REVIEW OF TWO METHODS FOR TOOLING COST ESTIMATION ECONOMIC DESIGN OF INJECTION MOLDED PARTS USING DFM GUIDELINES - A REVIEW OF TWO METHODS FOR TOOLING COST ESTIMATION Adekunle Fagade, University of Massachusetts Amherst David Kazmer, University of Massachusetts

More information

Sheet Metal Design. Preface What's New? Getting Started Basic Tasks Workbench Description Customizing Glossary Index

Sheet Metal Design. Preface What's New? Getting Started Basic Tasks Workbench Description Customizing Glossary Index Sheet Metal Design Preface What's New? Getting Started Basic Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface The V5 CATIA - Sheet Metal Design

More information

Kursus i Produktions- og materialeteknologi

Kursus i Produktions- og materialeteknologi Kursus i Produktions- og materialeteknologi Plastsprøjtestøbning / Injection Molding Basics Short history of plastics 1862 first synthetic plastic 1866 Celluloid 1891 Rayon 1907 Bakelite 1913 Cellophane

More information

CARL HANSER VERLAG. Herbert Rees. Mold Engineering 2nd edition 3-446-21659-6. www.hanser.de

CARL HANSER VERLAG. Herbert Rees. Mold Engineering 2nd edition 3-446-21659-6. www.hanser.de CARL HANSER VERLAG Herbert Rees Mold Engineering 2nd edition 3-446-21659-6 www.hanser.de 45 4 General Mold Design Guidelines 4.1 Before Starting to Design a Mold he mold designer starts with the design

More information

CLASSIFICATIONS OF INJECTION MOLDS

CLASSIFICATIONS OF INJECTION MOLDS CLASSIFICATIONS OF INJECTION MOLDS General Notes The following classifications are guidelines to be used in obtaining quotations and placing orders for uniform types of molds. It is our desire, through

More information

Troubleshooting Guide. PS Injection moulding. Splay marks. Burning (Black streaks) Cool feed zone. Dry material, check source of moisture.

Troubleshooting Guide. PS Injection moulding. Splay marks. Burning (Black streaks) Cool feed zone. Dry material, check source of moisture. Troubleshooting Guide PS Injection moulding Splay marks Trapped air that contains moisture Raise nozzle and front zone temperature. Cool feed zone. Wet feed Dry material, check source of moisture. Irregular

More information

SolidWorks. SolidWorks Teacher Guide. and Student Courseware

SolidWorks. SolidWorks Teacher Guide. and Student Courseware SolidWorks SolidWorks Teacher Guide and Student Courseware SolidWorks Corporation Outside the U.S.: +1-978-371-5011 300 Baker Avenue Fax: +1-978-371-7303 Concord, Massachusetts 01742 USA Email: info@solidworks.com

More information

SOLUTIONS FOR MOLD DESIGNERS

SOLUTIONS FOR MOLD DESIGNERS SOLUTIONS FOR MOLD DESIGNERS White Paper Abstract For CAE analysis tools to be truly useful, they must provide practical information that drives design decisions. Moldflow Plastics Advisers (MPA ) solutions

More information

Technical Data. 7. Bearing Fits. 7.1 Interference. 7.2 Calculation of interference F B LLLLLLLLL( A-54

Technical Data. 7. Bearing Fits. 7.1 Interference. 7.2 Calculation of interference F B LLLLLLLLL( A-54 Technical Data 7. Bearing Fits 7.1 Interference For rolling s the rings are fixed on the or in the housing so that slip or movement does not occur between the mated surface during operation or under. This

More information

The WANZ Guide to Window Installation

The WANZ Guide to Window Installation The WANZ Guide to Window Installation as described in E2/AS1 Amendment 5 Ver. 1.1 Page 2 of 74 Contents Overview Page 5 Objective Page 5 Scope Page 5 Opening Preparation Page 7 Step P1 Preliminary Check

More information

Router Table Plans. www.bobsplans.com

Router Table Plans. www.bobsplans.com www.bobsplans.com Router Table Plans Increase the capabilities of your router with this weekend project. Features a sliding fence with EZ-Mount clamps. These clamps are simple to make and grip tightly

More information

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE

SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE SECTION G2: CABLE PROCESSOR MODULE MAINTENANCE Cable Processor Module overview WARNING! When tipping the Cable Processor Module back, (after removing the toggle arm pin), use extreme caution not to drop

More information

The KLINGERexpert 5.2.1

The KLINGERexpert 5.2.1 KLINGERexpert 5.2.1 Powerful Sealing Calculation The KLINGERexpert 5.2.1 gasket design program is a versatile piece of software to assist users in the selection of non-metallic gasket materials. KLINGER

More information

Ultrasonic Welding Trouble Shooting Guide

Ultrasonic Welding Trouble Shooting Guide Technolog TL-24 Ultrasonic Welding Trouble Shooting Guide PROBLEM PROBABLE CAUSES SOLUTIONS Overweld Too much energy into the part. Reduce pressure, trigger force and/or down speed Weld time too long.

More information

Guidelines for Earthquake Bracing Residential Water Heaters

Guidelines for Earthquake Bracing Residential Water Heaters Guidelines for Earthquake Bracing Residential Water Heaters Department of General Services Division of the State Architect In accordance with the Health and Safety Code Section 19215, the Division of the

More information

Cutting and Shearing die design Cutting die design

Cutting and Shearing die design Cutting die design Manufacturing Processes 2 Dr. Alaa Hasan Ali Cutting and Shearing die design Cutting die design A stamping die is a special, one-of-a-kind precision tool that cuts and forms sheet metal into a desired

More information

Introduction to JIGS AND FIXTURES

Introduction to JIGS AND FIXTURES Introduction to JIGS AND FIXTURES Introduction The successful running of any mass production depends upon the interchangeability to facilitate easy assembly and reduction of unit cost. Mass production

More information

Glossary of Terms Used in Plastic Injection Mold Manufacturing

Glossary of Terms Used in Plastic Injection Mold Manufacturing Acceptable Runner/Cavity Ratio: Runner systems designed for high pressure drops to minimize material usage and increase frictional heating in the runner. Annealing: The process of relieving internal stresses

More information

Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling Channels for Block Laminated Molds

Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling Channels for Block Laminated Molds International Journal of Engineering and Advanced Technology (IJEAT ISSN: 2249 8958 Volume-4 Issue-5 June 2015 Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling

More information

Creating Smart Models From Scan Data

Creating Smart Models From Scan Data Rapidform Tech Tip Creating Smart Models From Scan Data Related Product Version Rapidform XOR3 Goal To create a smart model from scan data. A smart model is a parametric model that uses parameters intelligently

More information

A Guide to Thermoform Processing of Polypropylene. Introduction

A Guide to Thermoform Processing of Polypropylene. Introduction A Guide to Thermoform Processing of Polypropylene Introduction Thermoforming is the process of heating plastic sheet to a pliable state and forming it into shape. Thermoforming offers processing advantages

More information

Quick Guide to Injection Molding

Quick Guide to Injection Molding Quick Guide to Injection Molding Amodel polyphthalamide (PPA) Equipment Amodel PPA resins can be processed on conventional injection molding equipment. Estimated clamp tonnage of 5.5 kn/cm 2 (4 T/in 2

More information

Lathe Milling Attachment

Lathe Milling Attachment Lathe Milling Attachment By L C. MASON BY CLEVERLY stacking cold-rolled flat stock together, T-slots and slide for this lathe milling attachment are made without costly machinery. In fact, only two tools,

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

AMPSEAL* Automotive Plug Connector and Header Assembly

AMPSEAL* Automotive Plug Connector and Header Assembly AMPSEAL* Automotive Plug Connector and Header Assembly Application Specification 24 SEP 97 Rev E All dimensions are given in millimeters unless otherwise specified. All dimensional tolerances are +0.2

More information

Gas-Assist Injection Molding: An Innovative Medical Technology

Gas-Assist Injection Molding: An Innovative Medical Technology COVER STORY >> MOLDING Gas-Assist Injection Molding: An Innovative Medical Technology In certain medical device applications, gas-assist molding can provide solutions that conventional injection molding

More information

Guidelines for Earthquake Bracing of Residential Water Heaters

Guidelines for Earthquake Bracing of Residential Water Heaters Guidelines for Earthquake Bracing of Residential Water Heaters Department of General Services Division of the State Architect 1102 Q Street, Suite 5100 Sacramento, CA 95814 Phone: (916) 324-7099 Fax: (916)

More information

Modeling Curved Surfaces

Modeling Curved Surfaces Modeling Cylindrical and Curved Theory Views of Cylinders Contour Lines Extruded Surfaces Revolved Surfaces & Cutouts Profile Shape Axis of Revolution Swept Surfaces & Cutouts Profile Shape Path Curves

More information

Injection Molding Design Guide. Table of Contents

Injection Molding Design Guide. Table of Contents Injection Molding Design Guide 400 Injection Molding Design Guide Table of Contents Injection Mold Tooling Process Comparison...2 Size Limitations...3 Straight Pull Design...4 Other Geometric Considerations...5

More information

VCE VET ENGINEERING STUDIES

VCE VET ENGINEERING STUDIES Victorian Certificate of Education 2013 SUPERVISOR TO ATTACH PROCESSING LABEL HERE STUDENT NUMBER Letter Figures Words VCE VET ENGINEERING STUDIES Written examination Section Wednesday 20 November 2013

More information

Sample Feasibility Study XYZ Company Widget Part Design

Sample Feasibility Study XYZ Company Widget Part Design Sample Feasibility Study XYZ Company Widget Part Design Prepared For: XYZ Company 1234 Anywhere Street Any Town, State 12345-6789 Prepared By: Some Engineer Plastics Technology Center Penn State Erie,

More information

ECONOMIC COMMISSION OF EUROPE (ECE) BRANDING

ECONOMIC COMMISSION OF EUROPE (ECE) BRANDING Much like the U.S. Department of Transportation, The Economic Commission of Europe, or ECE, regulates the manufacturing of vehicle components. To receive ECE branded approval, tires must meet set standards

More information

Gear PEPSI CAN STOVE INSTRUCTIONS

Gear PEPSI CAN STOVE INSTRUCTIONS Gear PEPSI CAN STOVE INSTRUCTIONS [NOTE: Updated Instructions are now available. The new stove is less likely to develop flame leaks and the fuel/air mixture is improved. Instructions for a simmer ring

More information

NARROW-PITCH (0.8mm) CONNECTORS P8 SERIES

NARROW-PITCH (0.8mm) CONNECTORS P8 SERIES Socket Header Compliance with RoHS Directive NRROW-PITCH CONNECTORS FOR PC ORDS 3. Perfect for portable devices, the bellows-type provide a strong resistance against falling, impacts, and forced insertions

More information

Holes & Selective Laser Sintering

Holes & Selective Laser Sintering SLS is one of the most accurate 3D printing processes. The process has a layer thickness of 0.1mm. This is the thickness with which a new layer is added to each part. In any direction therefore the maximum

More information

Speed-Mat Rectangle Cutter

Speed-Mat Rectangle Cutter Speed-Mat Rectangle Cutter 1 Honeycomb baseboard. 2 Left hold down. 14 3 Bottom hold down. 4 4 Left / right rule. 8 5 8 5 Left / right rule pointer. 1 6 Top / bottom rule. 7 Top / bottom rule pointer.

More information

Injection moulding and modelling on a micro scale

Injection moulding and modelling on a micro scale Injection moulding and modelling on a micro scale Technology Update Injection moulding and welding of plastics 11 November 2014 Research Projects (National / European) Micro/Nano/Multimaterial Manufacturing

More information

Design Manual to BS8110

Design Manual to BS8110 Design Manual to BS8110 February 2010 195 195 195 280 280 195 195 195 195 195 195 280 280 195 195 195 The specialist team at LinkStudPSR Limited have created this comprehensive Design Manual, to assist

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters Outline 2.008 Polymer Equipment and process steps Injection Molding Considerations for process parameters Design for manufacturing, tooling and defects 1 2.008 spring 2004 S. Kim 2 Materials Solid materials

More information

Casting. Training Objective

Casting. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the essentials of the various metal casting processes used in industry today. The basic principles

More information

Flowserve - Edward Valves Development of the Flowserve Edward Equiwedge Gate Valve

Flowserve - Edward Valves Development of the Flowserve Edward Equiwedge Gate Valve Flowserve - Edward Valves Development of the Flowserve Edward Equiwedge Gate Valve Problem Gate valves in severe service applications that experience premature trim wear from seat guided discs or leakage

More information

Building an Off-Center Fixture for Turning Pendants

Building an Off-Center Fixture for Turning Pendants Building an Off-Center Fixture for Turning Pendants Turning a pendant off-center with most available metal pendant chucks means that you will have a significant amount of mass off center, which will limit

More information

Go-kart for little race-drivers

Go-kart for little race-drivers Go-kart for little race-drivers Drill and drive. Go-kart What it lacks in speed, it more than makes up for in fun: the go-kart will excite little race-drivers. 1 Introduction It s only a go-kart, but it

More information

ULTRASONIC HORNS. 20 khz through 40 khz. For use on all makes of Ultrasonic Welders: BRANSON DUKANE SONICS & MATERIALS ULTRA SONIC SEAL CO MECASONIC

ULTRASONIC HORNS. 20 khz through 40 khz. For use on all makes of Ultrasonic Welders: BRANSON DUKANE SONICS & MATERIALS ULTRA SONIC SEAL CO MECASONIC ULTRASONIC HORNS 20 khz through 40 khz For use on all makes of Ultrasonic Welders: BRANSON DUKANE SONICS & MATERIALS ULTRA SONIC SEAL CO MECASONIC HERRMANN The Rule On Joint Design: Let Sonitek do it!

More information

SHOP NOTES METAL SHAPER FOR YOUR SHOP

SHOP NOTES METAL SHAPER FOR YOUR SHOP SHOP NOTES METAL SHAPER FOR YOUR SHOP A METAL SHAPER is indispensable for certain machining operations where flat surfaces must be produced within very close limits, such as machining flats on castings,

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

2. The mold is closed up and held under hydraulic pressure while the rubber material or compound cures.

2. The mold is closed up and held under hydraulic pressure while the rubber material or compound cures. Designing with Rubber Molding Processes Compression Molding Compression molding is the process of placing a pre-load of a rubber material or compound directly in the mold cavity and compressed to the shape

More information

FG MOISTURE MONITOR Installation & Operation Manual

FG MOISTURE MONITOR Installation & Operation Manual FG MOISTURE MONITOR Installation & Operation Manual Issue 3.0 7/20/10 1 Contents SERVICE AND TECHNICAL SUPPORT... 2 INSTALLATION:... 3 MOISTURE SENSOR INSTALLATION:... 3 SENSOR CONNECTOR:... 5 MONITOR

More information

Common Mechanical Engineering Terms

Common Mechanical Engineering Terms Common Mechanical Engineering Terms Ball and Detent (n) A simple mechanical arrangement used to hold a moving part in a temporarily fixed position relative to another part. The ball slides within a bored

More information

Chapter 16. Mensuration of Cylinder

Chapter 16. Mensuration of Cylinder 335 Chapter 16 16.1 Cylinder: A solid surface generated by a line moving parallel to a fixed line, while its end describes a closed figure in a plane is called a cylinder. A cylinder is the limiting case

More information

DRAWING INSTRUMENTS AND THEIR USES

DRAWING INSTRUMENTS AND THEIR USES Chapter - A DRAWING INSTRUMENTS AND THEIR USES Drawing Instruments are used to prepare neat and accurate Drawings. To a greater extent, the accuracy of the Drawings depend on the quality of instruments

More information

PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,

PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints, 1 of 5 11/18/2004 6:24 PM PARAMETRIC MODELING David Rosen December 1997 The term parametric modeling denotes the use of parameters to control the dimensions and shape of CAD models. Think of a rubber CAD

More information

Introduction to Autodesk Inventor for F1 in Schools

Introduction to Autodesk Inventor for F1 in Schools Introduction to Autodesk Inventor for F1 in Schools F1 in Schools Race Car In this course you will be introduced to Autodesk Inventor, which is the centerpiece of Autodesk s digital prototyping strategy

More information

TRITON CONTAINER INTERNATIONAL. Reefer Technical Bulletins. Version 4.0

TRITON CONTAINER INTERNATIONAL. Reefer Technical Bulletins. Version 4.0 TRITON CONTAINER INTERNATIONAL Version 4.0 February 2013 Table Of Contents (Hold Ctrl button and click on any item below to go directly to that section of the manual.) 1 INTRODUCTION... 3 2 REFRIGERATED

More information

KITCHENS. Tip PAGE 1 FITTING YOUR KITCHEN GUIDE. How to mark out a kitchen. Tools required for installing a kitchen STEP ONE STEP TWO STEP THREE

KITCHENS. Tip PAGE 1 FITTING YOUR KITCHEN GUIDE. How to mark out a kitchen. Tools required for installing a kitchen STEP ONE STEP TWO STEP THREE FITTING YOUR KITCHEN GUIDE How to mark out a kitchen PAGE 1 Before starting on the installation, measure 870mm from the lowest point of the floor and mark a datum line around the room to indicate where

More information

Removable Aluminium posts

Removable Aluminium posts Post Solent Sail Shades Ltd 120 Billington Gardens Hedge End Southampton SO30 2RT Tel/Fax: 01489 788243 www.solentsailshades.co.uk Email: info@solentsailshades.co.uk Removable Aluminium posts Single Pole

More information

SAMPLE TEST PAPER - I

SAMPLE TEST PAPER - I SCHEME E SAMPLE TEST PAPER - I Course Name : Mechanical Engineering Group Course Code : AE/PG/PT/ME/MH/FE Semester : Third Subject : Mechanical Engineering Drawing 12042 Time : 90 Minutes Marks: 25 Instruction:

More information

C O N V E Y O R C O M P O N E N T S C H A I N S B E L T S B E A R I N G S

C O N V E Y O R C O M P O N E N T S C H A I N S B E L T S B E A R I N G S C O N V E Y O R C O M P O N E N T S C H A I N S B E L T S B E A R I N G S January 2009 Issue 6 Valu Guide Brackets The Ultimate in Adjustability and Cost Savings Valu Guide brackets are part of a family

More information

WARNING! DO NOT ATTEMPT TO INSTALL THIS KIT IN A POWERED CONVEYOR.

WARNING! DO NOT ATTEMPT TO INSTALL THIS KIT IN A POWERED CONVEYOR. Model: Document Number: 64058111 Kit Number: 64058112 Revision: 02 Description: Release Date: 04/08 Introduction This kit allows a PS90 scale to be integrated into a standard gravity conveyor. The kit

More information