Physical model of the cardiovascular system. Dynasim.

Size: px
Start display at page:

Download "Physical model of the cardiovascular system. Dynasim."

Transcription

1 Physical model of the cardiovascular system. Dynasim. Bustamante J., Barros Juan F., Roldán A., García S., Salazar A.F. Escuela de Ingeniería de Antioquia, Instituto de Ciencias de la Salud CES, Universidad Pontificia Bolivariana, Clínica Cardiovascular Santa María, Medellín, Antioquia, Colombia. ABSTRACT Introduction: In the cardiovascular system, different physical variables and fluid mechanics concepts are related, making complex its understanding. Objectives: Design and construct a physical model of the cardiovascular system. Materials and Methods: DYNASIM represents the physiological system including peripheral and pulmonary circulation. It is built with transparent materials to facilitate its observation. A pneumatic pumping system expands two rubber membranes, each in a cylindrical cavity (ventricle), which has two valves: inlet valve and outlet valve. These allow flow of fluid in only one direction, according to physiological valves. The circulatory net, system of plastic tubing, includes compliance and resistance. The first consists of a chamber with one rubber wall. The latter consists of a system that occludes the tube using a gate valve, controlled by a motor. DYNASIM is controlled by a software, from which some parameters are varied. Pressure is measured using electronic sensors. There is an interface that communicates the software with the simulating device, thus all the variables are processed and analyzed in the computer. Results: Repetitive pressure curves were obtained, which clearly show systolic and diastolic period. When compliance is decreased, pressure increases within hoped ranges. Valves and compliance work satisfactorily. A conversion of pulsatile flow at "great arteries" to continuous flow at the "atria" can be seen. Discussion: The compliance is showing a satisfactory result, because there is flow between each pulse. The resistance has a positive result due to the reduction of pulsatility and drop of the pressure. The tubing may have aided in this phenomena. Conclusions: DYNASIM makes the cardiovascular system easier to understand, as it simulates different of its parameters. Several conditions and illnesses can be modeled to study its effects. Its future applications could be related to evaluation of cardiovascular devices developments before experimenting on living beings. INTRODUCTION The dynamics of the heart and the cardiovascular system involve concepts of volume, pressure, fluid mechanics and general physics [1,2]. Cardiovascular simulators have had great application in the process of prosthetic cardiac valve evaluation [3]. These models have been developed according to their needs and based on technological advances that have allowed a closer approach to the cardiovascular system. Few simulators have teaching goals. It could be very useful to the student to interact with the cardiovascular variables and analyze how some of them are affected by different situations or illnesses. The Dynasim model is a research project supported by the Biomedical Engineering program (offered by the Antioquia School of Engineering in agreement with the Health Sciences Institute CES) and the Cardiovascular Dynamics Group from the Pontificia Bolivariana University and the Santa María Cardiovascular Clinic. OBJECTIVES The principal goal of the project is to design and construct a physical model of the cardiovascular system for teaching and research. MATERIALS AND METHODS The device is a hydraulic model (Figure 1) controlled by a computer, in which pressure data from different points of the system, obtained by electronic pressure sensors, is visualized. The model can be divided in two principal areas: mechanical system and instrumentation. Figure 2 shows a block diagram in which the system's organization is illustrated.

2 Figure 1. Physical Model of the Cardiovascular System - Dynasim. Figure 2. Block diagram of the system.

3 Mechanical system Pumping system: compressed air expands two rubber membranes located on the base of two ventricular chambers (cylindrical, acrylic chambers), pushing the fluid towards the circulatory net (Figure 3). There is no auricular systole. Figure 3. Ventricular chamber, atrial chamber and compliance chamber. Valves: there are inlet valves (mitral and tricuspid) and outlet valves (aortic and pumonary). The valves are located on the superior area of the ventricular chamber and consist of cup - shaped structures that contain an acrylic sphere. When the fluid is pushed upwards, the sphere in the inlet valve moves towards the area of the cup with smaller diameter, blocking the conduit's transverse area. The flow from the ventricular chamber to the atrial chamber is then avoided. Meanwhile, the sphere in the outlet valve floats, allowing flow towards the circulatory system. Circulatory system's compliance: The Dynasim model has a net of plastic tubing that decreases its diameter as it is located farther away from the "heart" and returns to its original size as it approaches the atrial chamber. Immediately after the ventricular outlets, two cylindrical chambers are found, which have a rubber wall. These are called compliance chambers (Figure 3), which simulate the distensibility of the great arteries as its rubber wall expands. In this way the arterial walls expand and store energy. As they recoil this energy is dissipated, aiding in the movement of the blood towards the circulatory system. One of the goals of this system, in addition to the arterial resistance, is to convert pulsatile flow coming from the heart to continuous flow at capillary level [1,2]. Circulatory system's resistance: Dynasim's vascular resistance system occludes one of the tubes using a gate valve that is moved by a motor. As it moves downward, the gate occludes the tube, decreasing its diameter. Figure 4 shows the model's vascular resistance.

4 Figure 4. Resistance system. Intrumentation Cardiac frequency control: Dynasim simulates the heart's pulsatile behavior by controlling an electrovalve, which is connected on its inlet with a compressed air source and on its outlet with the ventricular membranes. This solenoid valve, when electrically powered, opens to allow flow of air towards the ventricular membranes (systole). When its power supply is stopped, the valve closes to avoid the entrance of air and expel the air from the membranes to the atmosphere (diastole). The electrovalve is controlled from a computer using the LabVIEW (Laboratory Virtual Instrument Engineering Workbench) computer application. This application has a communication system (Measurements and Automation) between the software and the hardware (physical data acquisition system). LabVIEW works with graphic programming instead of text commands. On normal conditions, the diastole occupies a 70% of the total duration of the cardiac cycle, and the systole occupies a 30 %. However, when cardiac frequency increases, this relationship changes: each event takes 50% of the cycle [2,4,5]. Dynasim considers this change in a linear manner. A software program was developed in LabVIEW that consists of generating a train pulse and sending it to a channel in the data acquisition system to open and close the electrovalve. The channel is connected to an electronic circuit that is part of a communication interface between the software and the physical system. This circuit acts like a switch to power the electrovalve intermittently. Vascular resistance control: A DC motor is used, which moves the gate in the gate valve, occluding a tube from the circulatory net. The motor is controlled by LabVIEW and using an H circuit (a common electronic circuit in motor control), the rotating direction is determined. The resistance level is indicated in terms of percentage of occlusion. A 100% occlusion would totally avoid fluid flow. Data acquisition: The Dynasim model has the possibility of measuring pressure in different points of the system. Two electronic pressure sensors are used, which measure absolute pressure in a range of 0 psi to 60 psi. The program developed in LabVIEW filters the signal, which is shown on a graph of the front panel. Obtained data, in voltage, is processed through a calibration equation to visualize it in mmhg. When the user stops the program, a dialog box opens to save the data as a text file. Experiment Pressure data was taken in the ventricular and atrial chambers. Some measurements were made with only one ventricle working to verify some fluid mechanics phenomena. For these measurements, an air pressure of 10 psi was used. Measurements were also recorded with the two ventricles working: the left ventricle with 10 psi and the right ventricle with 5 psi. All measurements were taken with a cardiac frequency of 70 beats per minute. RESULTS Some fluid mechanics phenomena were seen, such as the change of velocity with respect to the change of

5 diameter of the tube. The compliance chambers distend, synchronized with the ventricular membranes. The valves have an acceptable behavior, even though the inlet valves require high pressure to close. Some results are shown on Figures 5, 6 and 7. Figure 5. Right ventricular pressure and left atrial pressure with the right ventricle working. Figure 6. Right atrial pressure with peripheral occlusion, left ventricle working.

6 Figure 7. Right atrial pressure with decrease in compliance. DISCUSSION The pneumatic pumping system works satisfactorily, as well as the compliance chamber. With little fluid in the system, the conversion from pulsatile flow to continuous flow can be seen. As it is described in fluid mechanics, as the conduit's diameter is decreased, the flow velocity increases. This was verified by injecting an air bubble in the system. However, the great arteries are repeatedly divided as they locate farther away from the heart. Thus, total capillary transverse section area is much larger than the aortic transverse area. This makes the flow velocity less in the capillaries than in the great arteries, facilitating the transport of oxygen from the capillaries to the tissue. Obtained plots have good repetition and consistency. When one of the ventricles works, one can deduct that there is pressure drop along the tubing. This shows that the circulatory tubing has good compliance and flexibility, as it absorbs part of the pumping energy. When compliance is decreased, the mean pressure increases, showing the physiological case: when vessels become rigid, because of smoking or age, the mean arterial pressure increases. If the system is more rigid, there is no energy absorption effect and therefore there is an increase in pressure. Occluding tests were made. When the pulmonary net is occluded, with the left ventricle working, there is an increase in the right side pressure, for the right ventricle does not have an outlet towards the circulatory system. Therefore, fluid arriving from the left ventricle accumulates in the right side and the pressure is increased. This occlusion demonstrates that there exists flow in the system. When the peripheral trajectory is occluded (with the left ventricle working) a hypovolemia condition is simulated: there is no venous return from the peripheral system, which decreases pressure in the right side. CONCLUSIONS The cardiovascular system is a highly complex mechanism, in which there are differences in the cardiac chambers; there is energy transfer from the cardiac muscle to the blood; the reology of blood varies with hematocrit, among other factors; it has an extremely long circulatory net with infinite number of bifurcations, with walls that have unique elastic characteristics and micrometric diameters. However, despite the distance between the inert and the live, interesting results can be achieved, which will be the basis for further advances. The Dynasim model allows an automatic control of the variables, facilitating the results' analysis and its general manipulation. It is necessary to implement bifurcations to the model and to use more elastic materials that are closer to the tissue's characteristics: the cardiac walls have compliance; the veins are more compliant than the arteries; the tubing of the model next to the chambers is rigid. The valves could be better by using the bivalve model, for the ventricular pressure transmits easily to the atrial chambers. The Dynasim model is a continuous project that will keep advancing. It could be a system in which new cardiovascular devices are evaluated and therefore diminish experimenting on animals or on humans. It could be used as the basis for the development of a pumping system for extracorporeal circulation machines or even as an approach to an artificial heart. REFERENCES

7 1. ZAMIR, M. The Physics of Pulsatile Flow. New York: Springer, BUSTAMANTE, John y VALBUENA, Javier. Biomec ánica Cardiovascular. Medellín: Universidad Pontificia Bolivariana, WRIGHT, John T. M. Hydrodynamic evaluation of tissue valves. London: Butterworth, BERNE, Robert M. and LEVY, Matthew N. Cardiovascular Physiology. 8 ed. New York: Mosby, GUYTON, Arthur C. Human Physiology and Mechanisms of Disease. 4 ed. New York: W.B. Saunders Company, Your questions, contributions and commentaries will be answered by the authors in the Medical Informatics list. Please fill in the form and press the "Send" button. Question, contribution or commentary: Name and Surname:: Country:: Argentina Send Erase Top Updating: 10/29/2003

Note: The left and right sides of the heart must pump exactly the same volume of blood when averaged over a period of time

Note: The left and right sides of the heart must pump exactly the same volume of blood when averaged over a period of time page 1 HEART AS A PUMP A. Functional Anatomy of the Heart 1. Two pumps, arranged in series a. right heart: receives blood from the systemic circulation (via the great veins and vena cava) and pumps blood

More information

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back to the left atria from the left ventricle, blood is pumped

More information

Blood vessels. transport blood throughout the body

Blood vessels. transport blood throughout the body Circulatory System Parts and Organs Blood vessels transport blood throughout the body Arteries blood vessels that carry blood AWAY from the heart Pulmonary arteries carry the deoxygenated blood from heart

More information

Factors Affecting Blood Pressure. Vessel Elasticity Blood Volume Cardiac Output

Factors Affecting Blood Pressure. Vessel Elasticity Blood Volume Cardiac Output Factors that Affect Pressure Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction pressure is affected by several factors:

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Draw a table to describe the similarities and differences between arteries and veins? Anatomy Direction of blood flow: Oxygen concentration: Arteries Thick, elastic smooth

More information

Electrocardiography I Laboratory

Electrocardiography I Laboratory Introduction The body relies on the heart to circulate blood throughout the body. The heart is responsible for pumping oxygenated blood from the lungs out to the body through the arteries and also circulating

More information

The Body s Transport System

The Body s Transport System Circulation Name Date Class The Body s Transport System This section describes how the heart, blood vessels, and blood work together to carry materials throughout the body. Use Target Reading Skills As

More information

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle

More information

Evaluation copy. Blood Pressure. Project PROJECT DESIGN REQUIREMENTS

Evaluation copy. Blood Pressure. Project PROJECT DESIGN REQUIREMENTS Blood Pressure Project 9 Blood pressure is a measure of the fluid pressure within the circulatory system. This pressure is required to ensure the delivery of oxygen and nutrients to, and the removal of

More information

Exchange solutes and water with cells of the body

Exchange solutes and water with cells of the body Chapter 8 Heart and Blood Vessels Three Types of Blood Vessels Transport Blood Arteries Carry blood away from the heart Transport blood under high pressure Capillaries Exchange solutes and water with cells

More information

Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School

Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School This guide is for middle and high school students participating in AIMS Anatomy of the Human Heart and

More information

Functions of Blood System. Blood Cells

Functions of Blood System. Blood Cells Functions of Blood System Transport: to and from tissue cells Nutrients to cells: amino acids, glucose, vitamins, minerals, lipids (as lipoproteins). Oxygen: by red blood corpuscles (oxyhaemoglobin - 4

More information

Heart and Vascular System Practice Questions

Heart and Vascular System Practice Questions Heart and Vascular System Practice Questions Student: 1. The pulmonary veins are unusual as veins because they are transporting. A. oxygenated blood B. de-oxygenated blood C. high fat blood D. nutrient-rich

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Heart Physiology for the heart to work properly contraction and relaxation of chambers must be coordinated cardiac muscle tissue differs from smooth and skeletal muscle tissues

More information

1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood?

1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood? 1 1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood? 2 The plan shows the blood system of a mammal. What does the part labelled X represent? A heart

More information

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Philip J. Bergmann Lab Objectives 1. To learn how blood flows through a dual circuit circulation with lungs. 2. To

More information

Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003

Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003 Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003 Introduction Direct measurement of arterial blood pressure is obtained via a peripheral

More information

Practical class 3 THE HEART

Practical class 3 THE HEART Practical class 3 THE HEART OBJECTIVES By the time you have completed this assignment and any necessary further reading or study you should be able to:- 1. Describe the fibrous pericardium and serous pericardium,

More information

Overview of the Cardiovascular System

Overview of the Cardiovascular System Overview of the Cardiovascular System 2 vascular (blood vessel) loops: Pulmonary circulation: from heart to lungs and back) Systemic circulation: from heart to other organs and back Flow through systemic

More information

The EasySense unit can detect that the Smart Q Heart Rate Sensor is connected and the range it is set to.

The EasySense unit can detect that the Smart Q Heart Rate Sensor is connected and the range it is set to. Heart Rate Sensor Heart Rate Sensor (Product No PC-3147) Pulse rate Range: 0 to 200 bpm Resolution: 1 bpm Waveform Range: -2000 to 2000 mv Resolution: 1 mv Introduction The Smart Q Heart Rate Sensor monitors

More information

The heart then repolarises (or refills) in time for the next stimulus and contraction.

The heart then repolarises (or refills) in time for the next stimulus and contraction. Atrial Fibrillation BRIEFLY, HOW DOES THE HEART PUMP? The heart has four chambers. The upper chambers are called atria. One chamber is called an atrium, and the lower chambers are called ventricles. In

More information

2.2.1 Pressure and flow rate along a pipe: a few fundamental concepts

2.2.1 Pressure and flow rate along a pipe: a few fundamental concepts 1.1 INTRODUCTION Single-cell organisms live in direct contact with the environment from where they derive nutrients and into where they dispose of their waste. For living systems containing multiple cells,

More information

Section Four: Pulmonary Artery Waveform Interpretation

Section Four: Pulmonary Artery Waveform Interpretation Section Four: Pulmonary Artery Waveform Interpretation All hemodynamic pressures and waveforms are generated by pressure changes in the heart caused by myocardial contraction (systole) and relaxation/filling

More information

Normal & Abnormal Intracardiac. Lancashire & South Cumbria Cardiac Network

Normal & Abnormal Intracardiac. Lancashire & South Cumbria Cardiac Network Normal & Abnormal Intracardiac Pressures Lancashire & South Cumbria Cardiac Network Principle Pressures recorded from catheter tip Electrical transducer - wheatstone bridge mechanical to electrical waveform

More information

Cardiovascular Biomechanics

Cardiovascular Biomechanics Cardiovascular Biomechanics Instructor Robin Shandas, Ph.D. Associate Professor of Pediatric Cardiology and Mechanical Engineering Robin.shandas@colorado.edu (303) 837-2586 (MWF) / (303) 492-0553 (T,Th)

More information

Provided by the American Venous Forum: veinforum.org

Provided by the American Venous Forum: veinforum.org CHAPTER 1 NORMAL VENOUS CIRCULATION Original author: Frank Padberg Abstracted by Teresa L.Carman Introduction The circulatory system is responsible for circulating (moving) blood throughout the body. The

More information

Normal Intracardiac Pressures. Lancashire & South Cumbria Cardiac Network

Normal Intracardiac Pressures. Lancashire & South Cumbria Cardiac Network Normal Intracardiac Pressures Lancashire & South Cumbria Cardiac Network Principle Pressures recorded from catheter tip Electrical transducer - wheatstone bridge mechanical to electrical waveform display

More information

Edwards FloTrac Sensor & Edwards Vigileo Monitor. Measuring Continuous Cardiac Output with the FloTrac Sensor and Vigileo Monitor

Edwards FloTrac Sensor & Edwards Vigileo Monitor. Measuring Continuous Cardiac Output with the FloTrac Sensor and Vigileo Monitor Edwards FloTrac Sensor & Edwards Vigileo Monitor Measuring Continuous Cardiac Output with the FloTrac Sensor and Vigileo Monitor 1 Topics System Configuration Physiological Principles Pulse pressure relationship

More information

HEART HEALTH WEEK 3 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease HEART FAILURE. Relatively mild, symptoms with intense exercise

HEART HEALTH WEEK 3 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease HEART FAILURE. Relatively mild, symptoms with intense exercise WEEK 3 SUPPLEMENT HEART HEALTH A Beginner s Guide to Cardiovascular Disease HEART FAILURE Heart failure can be defined as the failing (insufficiency) of the heart as a mechanical pump due to either acute

More information

The MEDOS VAD System

The MEDOS VAD System The MEDOS VAD System On the market since 1994 more than 500 operations in about 80 heart centres short and medium therm use one of the leading systems in Europe Application field not as a matter of routine,

More information

Chapter 16: Circulation

Chapter 16: Circulation Section 1 (The Body s Transport System) Chapter 16: Circulation 7 th Grade Cardiovascular system (the circulatory system) includes the heart, blood vessels, and blood carries needed substances to the cells

More information

Anatomi & Fysiologi 060301. The cardiovascular system (chapter 20) The circulation system transports; What the heart can do;

Anatomi & Fysiologi 060301. The cardiovascular system (chapter 20) The circulation system transports; What the heart can do; The cardiovascular system consists of; The cardiovascular system (chapter 20) Principles of Anatomy & Physiology 2009 Blood 2 separate pumps (heart) Many blood vessels with varying diameter and elasticity

More information

Chapter 19 Ci C r i cula l t a i t o i n

Chapter 19 Ci C r i cula l t a i t o i n Chapter 19 Circulation A closed system Circulatory System Consisting of Heart, Arteries, Veins, Capillaries, Blood & the Lymphatic system Blood Make up The blood is made up of Plasma and three main types

More information

Chapter 20: The Cardiovascular System: The Heart

Chapter 20: The Cardiovascular System: The Heart Chapter 20: The Cardiovascular System: The Heart Chapter Objectives ANATOMY OF THE HEART 1. Describe the location and orientation of the heart within the thorax and mediastinal cavity. 2. Describe the

More information

Our Human Body On-site student activities Years 5 6

Our Human Body On-site student activities Years 5 6 Our Human Body On-site student activities Years 5 6 Our Human Body On-site student activities: Years 5-6 Student activity (and record) sheets have been developed with alternative themes for students to

More information

Magnetic Resonance Quantitative Analysis. MRV MR Flow. Reliable analysis of heart and peripheral arteries in the clinical workflow

Magnetic Resonance Quantitative Analysis. MRV MR Flow. Reliable analysis of heart and peripheral arteries in the clinical workflow Magnetic Resonance Quantitative Analysis MRV MR Flow Reliable analysis of heart and peripheral arteries in the clinical workflow CAAS MRV Functional Workflow Designed for imaging specialists, CAAS MRV

More information

CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM

CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM INTRODUCTION Lung cancer affects a life-sustaining system of the body, the respiratory system. The respiratory system is responsible for one of the essential

More information

Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart

Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart Lecture Outline Cardiovascular Physiology Cardiac Output Controls & Blood Pressure Cardiovascular System Function Functional components of the cardiovascular system: Heart Blood Vessels Blood General functions

More information

Geometric multiscaling in the circulatory system

Geometric multiscaling in the circulatory system Geometric multiscaling in the circulatory system Local: 3D FSI flow model Global: 1D network of arteries and veins (Euler hyperbolic system) Global: 0D capillary network (DAE system) Geometric multiscaling

More information

Circulatory System and Blood

Circulatory System and Blood Circulatory System and Blood 1. Identify the arteries in the diagram and give one function for each. Y: Common carotid artery: sends oxygenated blood to the brain, provide nutrients. X: Subclavian artery:

More information

12.1: The Function of Circulation page 478

12.1: The Function of Circulation page 478 12.1: The Function of Circulation page 478 Key Terms: Circulatory system, heart, blood vessel, blood, open circulatory system, closed circulatory system, pulmonary artery, pulmonary vein, aorta, atrioventricular

More information

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version Case Study: Factors that Affect Blood Pressure Instructor Version Goal This activity (case study and its associated questions) is designed to be a student-centered learning activity relating to the factors

More information

3 rd Russian-Bavarian Conference on Bio-Medical Engineering

3 rd Russian-Bavarian Conference on Bio-Medical Engineering 3 rd Russian-Bavarian Conference on Bio-Medical Engineering Blood Pressure Estimation based on Pulse Transit Time and Compensation of Vertical Position Dipl.-Inform. Med. Christian Douniama Dipl.-Ing.

More information

Sensors Collecting Manufacturing Process Data

Sensors Collecting Manufacturing Process Data Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

More information

Hemodynamic Monitoring: Principles to Practice M. L. Cheatham, MD, FACS, FCCM

Hemodynamic Monitoring: Principles to Practice M. L. Cheatham, MD, FACS, FCCM SUMMARY HEMODYNAMIC MONITORING: FROM PRINCIPLES TO PRACTICE Michael L. Cheatham, MD, FACS, FCCM Director, Surgical Intensive Care Units Orlando Regional Medical Center Orlando, Florida Fluid-filled catheters

More information

PHYSIOLOGY AND MAINTENANCE Vol. III - Blood Circulation: Its Dynamics and Physiological Control - Emil Monos

PHYSIOLOGY AND MAINTENANCE Vol. III - Blood Circulation: Its Dynamics and Physiological Control - Emil Monos BLOOD CIRCULATION: ITS DYNAMICS AND PHYSIOLOGICAL CONTROL Emil Monos Institute of Human Physiology, Semmelweis University Budapest, Hungary. Keywords: Adventitia, arteries, blood flow, blood pressure,

More information

Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart.

Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart. Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction The blood vessels

More information

Responses to Static (Isometric) Exercise

Responses to Static (Isometric) Exercise Responses to Static (Isometric) Exercise Suggestions for Teachers Background Static exercise involves the contraction of skeletal muscle without a change in muscle length, hence the alternative term, isometric

More information

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following:

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following: Name: 2161-1 - Page 1 1) Choose the disease that is most closely related to the given phrase. a disease of the bone marrow characterized by uncontrolled production of white blood cells A) meningitis B)

More information

The Circulatory System. Chapter 17 Lesson 1

The Circulatory System. Chapter 17 Lesson 1 The Circulatory System Chapter 17 Lesson 1 Functions of the Circulatory System Your circulatory system maintains an internal environment in which all the cells in your body are nourished. As your heart

More information

DATA ACQUISITION FROM IN VITRO TESTING OF AN OCCLUDING MEDICAL DEVICE

DATA ACQUISITION FROM IN VITRO TESTING OF AN OCCLUDING MEDICAL DEVICE DATA ACQUISITION FROM IN VITRO TESTING OF AN OCCLUDING MEDICAL DEVICE Florentina ENE 1, Carine GACHON 2, Nicolae IONESCU 3 ABSTRACT: This paper presents a technique for in vitro testing of an occluding

More information

Recognizing and understanding schematic symbols will enable you to comprehend a circuit s function.

Recognizing and understanding schematic symbols will enable you to comprehend a circuit s function. Schematic symbols are used to identify and graphically depict the function of fluid power components. Recognizing and understanding schematic symbols will enable you to comprehend a circuit s function.

More information

By Casey Schmidt and Wendy Ford

By Casey Schmidt and Wendy Ford By Casey Schmidt and Wendy Ford Body systems Digestive System Circulatory System Respiratory System Excretory System Immune System Reproductive System Nervous System Muscular System Skeletal System Endocrine

More information

Closed-Loop Motion Control Simplifies Non-Destructive Testing

Closed-Loop Motion Control Simplifies Non-Destructive Testing Closed-Loop Motion Control Simplifies Non-Destructive Testing Repetitive non-destructive testing (NDT) applications abound, and designers should consider using programmable motion controllers to power

More information

Pressure Sensor Based Estimation of Pulse Transit Time

Pressure Sensor Based Estimation of Pulse Transit Time International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 13 (2014), pp. 1321-1328 International Research Publications House http://www. irphouse.com Pressure Sensor

More information

BIOL 1108 Vertebrate Anatomy Lab

BIOL 1108 Vertebrate Anatomy Lab BIOL 1108 Vertebrate Anatomy Lab This lab explores major organs associated with the circulatory, excretory, and nervous systems of mammals. Circulatory System Vertebrates are among the organisms that have

More information

Common types of congenital heart defects

Common types of congenital heart defects Common types of congenital heart defects Congenital heart defects are abnormalities that develop before birth. They can occur in the heart's chambers, valves or blood vessels. A baby may be born with only

More information

Investigating the Human Body On-site student activities: Years 7-8 Investigating the Human Body On-site student activities Years 7 8

Investigating the Human Body On-site student activities: Years 7-8 Investigating the Human Body On-site student activities Years 7 8 Investigating the Human Body On-site student activities Years 7 8 Student activity (and record) sheets have been developed with alternative themes for students to use as guides and focus material during

More information

Project 4.2.1: Heart Rate

Project 4.2.1: Heart Rate Project 4.2.1: Heart Rate Introduction Even before you were born, one of the first things your doctor did when you went for an office visit was listen to your heart. Your heart rate, the number of times

More information

Clinical Training for Visage 7 Cardiac. Visage 7

Clinical Training for Visage 7 Cardiac. Visage 7 Clinical Training for Visage 7 Cardiac Visage 7 Overview Example Usage 3 Cardiac Workflow Examples 4 Remove Chest Wall 5 Edit Chest Wall Removal 6 Object Display Popup 7 Selecting Optimal Phase 8 Thick

More information

Understanding your child s heart Atrial septal defect

Understanding your child s heart Atrial septal defect Understanding your child s heart Atrial septal defect About this factsheet This factsheet is for the parents of babies and children who have an atrial septal defect (ASD). It explains, what an atrial septal

More information

Fellow TEE Review Workshop Hemodynamic Calculations 2013. Director, Intraoperative TEE Program. Johns Hopkins School of Medicine

Fellow TEE Review Workshop Hemodynamic Calculations 2013. Director, Intraoperative TEE Program. Johns Hopkins School of Medicine Fellow TEE Review Workshop Hemodynamic Calculations 2013 Mary Beth Brady, MD, FASE Director, Intraoperative TEE Program Johns Hopkins School of Medicine At the conclusion of the workshop, the participants

More information

Resuscitation in congenital heart disease. Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto

Resuscitation in congenital heart disease. Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto Resuscitation in congenital heart disease Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto Evolution of Congenital Heart Disease Extraordinary success: Overall

More information

To provide the body (cells) with oxygen, and remove CO 2. To provide the body (cells) with nutrients and remove wastes.

To provide the body (cells) with oxygen, and remove CO 2. To provide the body (cells) with nutrients and remove wastes. Circulatory system. Basic function: To provide the body (cells) with oxygen, and remove CO 2. To provide the body (cells) with nutrients and remove wastes. Not all organisms have a circulatory system -

More information

Cardiology. Anatomy and Physiology of the Heart.

Cardiology. Anatomy and Physiology of the Heart. Cardiology Self Learning Package Module 1: Anatomy and Physiology of the Heart. Module 1: Anatomy and Physiology of the Heart Page 1 CONTENT Introduction Page 3 How to use the ECG Self Learning package.page

More information

Starling s Law Regulation of Myocardial Performance Intrinsic Regulation of Myocardial Performance

Starling s Law Regulation of Myocardial Performance Intrinsic Regulation of Myocardial Performance Regulation of Myocardial Performance Intrinsic Regulation of Myocardial Performance Just as the heart can initiate its own beat in the absence of any nervous or hormonal control, so also can the myocardium

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT BLOOD CIRCULATION AND TRANSPORT HUMAN BEING PLANTS Function of heart Wilting Structure of heart Blood vessels: characteristics and functions Transpiration: function

More information

GRADE 11F: Biology 3. UNIT 11FB.3 9 hours. Human gas exchange system and health. Resources. About this unit. Previous learning.

GRADE 11F: Biology 3. UNIT 11FB.3 9 hours. Human gas exchange system and health. Resources. About this unit. Previous learning. GRADE 11F: Biology 3 Human gas exchange system and health UNIT 11FB.3 9 hours About this unit This unit is the third of six units on biology for Grade 11 foundation. The unit is designed to guide your

More information

1 DESCRIPTION OF THE APPLIANCE

1 DESCRIPTION OF THE APPLIANCE 1 DESCRIPTION OF THE APPLIANCE 1.1 INTRODUCTION The cast iron SF boilers are a valid solution for the present energetic problems, since they can run with solid fuels: wood and coal. These series of boilers

More information

Diagram showing Systemic and Portal Circulation

Diagram showing Systemic and Portal Circulation Diagram showing Systemic and Portal Circulation The Lymphatic System The Lymphatic System comprises of lymphatic capillaries, lymphatic vessels, nodes and ducts. Lymph fluid is not blood plasma, it contains

More information

How To Understand What You Know

How To Understand What You Know Heart Disorders Glossary ABG (Arterial Blood Gas) Test: A test that measures how much oxygen and carbon dioxide are in the blood. Anemia: A condition in which there are low levels of red blood cells in

More information

MASTER CYLINDER. Section 2. Master Cylinder. Tandem Master Cylinder. Master Cylinder

MASTER CYLINDER. Section 2. Master Cylinder. Tandem Master Cylinder. Master Cylinder MASTER CYLINDER Master Cylinder The master cylinder converts the motion of the brake pedal into hydraulic pressure. It consists of the reservoir tank, which contains the brake fluid; and the piston and

More information

Applications of Doppler Ultrasound in Fetal Growth Assessment. David Cole

Applications of Doppler Ultrasound in Fetal Growth Assessment. David Cole Applications of Doppler Ultrasound in Fetal Growth Assessment David Cole Aims The aim of this presentation is to consider the use of Doppler ultrasound to investigate and monitor those pregnancies at risk

More information

Blood Vessels and Circulation

Blood Vessels and Circulation 13 Blood Vessels and Circulation FOCUS: Blood flows from the heart through the arterial blood vessels to capillaries, and from capillaries back to the heart through veins. The pulmonary circulation transports

More information

Human Anatomy and Physiology II Laboratory

Human Anatomy and Physiology II Laboratory Human Anatomy and Physiology II Laboratory The Circulation (Two Weeks) 1 This lab involves two weeks work studying the vasculature of the human body. Both weeks involve the exercise in the lab manual entitled

More information

Electrocardiogram and Heart Sounds

Electrocardiogram and Heart Sounds Electrocardiogram and Heart Sounds An introduction to the recording and analysis of electrocardiograms, and the sounds of the heart. Written by Staff of ADInstruments Introduction The beating of the heart

More information

OEM MAXNIBP Frequently Asked Questions

OEM MAXNIBP Frequently Asked Questions Frequently Asked Questions Why does the monitor sometimes inflate the BP cuff, then shortly thereafter reinflate the cuff? How will I know if the monitor is experiencing motion artifact during a measurement?

More information

MICROGRAVITY EFFECTS ON HUMAN PHYSIOLOGY: CIRCULATORY SYSTEM

MICROGRAVITY EFFECTS ON HUMAN PHYSIOLOGY: CIRCULATORY SYSTEM National Aeronautics and Space Administration MICROGRAVITY EFFECTS ON HUMAN PHYSIOLOGY: CIRCULATORY SYSTEM Instructional Objectives Students will: analyze the effects of external stimuli on the physiological

More information

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics Blood vessels and blood pressure I. Introduction - distribution of CO at rest II. General structure of blood vessel walls - walls are composed of three distinct layers: 1. Tunica intima is the innermost

More information

Ny teknologi: Fagdagene ved St. Olavs Hospital Lasse Løvstakken Dept. Circulation and Medical Imaging 11.06.2010

Ny teknologi: Fagdagene ved St. Olavs Hospital Lasse Løvstakken Dept. Circulation and Medical Imaging 11.06.2010 1 Ny teknologi: Ultralyd måler m blodstrøm Fagdagene ved St. Olavs Hospital Lasse Løvstakken Dept. Circulation and Medical Imaging 11.06.2010 2 Conventional imaging methods of blood flow using ultrasound

More information

Hydrodynamic characteristics of prosthetic heart valves Cardiamed

Hydrodynamic characteristics of prosthetic heart valves Cardiamed Hydrodynamic characteristics of prosthetic heart valves Cardiamed Hydrodynamic characteristics of blood flow passing through a prosthetic heart valve have profound effect on the activation of thrombus

More information

The science of medicine. The compassion to heal.

The science of medicine. The compassion to heal. A PATIENT S GUIDE TO ELECTROPHYSIOLOGY STUDIES OF THE HEART The science of medicine. The compassion to heal. This teaching booklet is designed to introduce you to electrophysiology studies of the heart.

More information

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service. Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have

More information

OPERATING AND MAINTENANCE MANUAL

OPERATING AND MAINTENANCE MANUAL OPERATING AND MAINTENANCE MANUAL AUTOMATIC SCREEN FILTER FMA SERIE 5000 Sistemas de Filtrado y Tratamiento de Fluidos S.A. Pol. Industrial La Armentera Parc. 86 INDEX INTRODUCTION...3 TECHNICAL CHARACTERISTICS...5

More information

Anatomy and Physiology: Understanding the Importance of CPR

Anatomy and Physiology: Understanding the Importance of CPR Anatomy and Physiology: Understanding the Importance of CPR Overview This document gives you more information about the body s structure (anatomy) and function (physiology). This information will help

More information

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs Vital Signs: Assessment and Interpretation Elma I. LeDoux, MD, FACP, FACC Associate Professor of Medicine Vtial sign #1: PULSE Reflects heart rate (resting 60-90/min) Should be strong and regular Use 2

More information

Comparing Organs BIOLOGY SCIENCE INSTRUCTIONAL TASKS

Comparing Organs BIOLOGY SCIENCE INSTRUCTIONAL TASKS BIOLOGY SCIENCE INSTRUCTIONAL TASKS Comparing Organs Grade-Level Expectations The exercises in these instructional tasks address content related to the following science grade-level expectation: Contents

More information

MEASURING AND RECORDING BLOOD PRESSURE

MEASURING AND RECORDING BLOOD PRESSURE MEASURING AND RECORDING BLOOD PRESSURE INTRODUCTION The blood pressure, along with the body temperature, pulse, and respirations, is one of the vital signs. These measurements are used to quickly, easily,

More information

1. SYSTEM OVERVIEW. 1) Basic Theory of ABS Function 10-3 4891-01

1. SYSTEM OVERVIEW. 1) Basic Theory of ABS Function 10-3 4891-01 10-3 1. SYSTEM OVERVIEW When braking suddenly or braking on slippery roads, the vehicle keeps moving forward but the wheels are locking and not rotating. If these happen, the vehicle may lose stability

More information

Human Anatomy & Physiology II with Dr. Hubley

Human Anatomy & Physiology II with Dr. Hubley Human Anatomy & Physiology II with Dr. Hubley Exam #1 Name: Instructions This exam consists of 40 multiple-choice questions. Each multiple-choice question answered correctly is worth one point, and the

More information

Acute heart failure may be de novo or it may be a decompensation of chronic heart failure.

Acute heart failure may be de novo or it may be a decompensation of chronic heart failure. Management of Acute Left Ventricular Failure Acute left ventricular failure presents as pulmonary oedema due to increased pressure in the pulmonary capillaries. It is important to realise though that left

More information

Electrodes placed on the body s surface can detect electrical activity, APPLIED ANATOMY AND PHYSIOLOGY. Circulatory system

Electrodes placed on the body s surface can detect electrical activity, APPLIED ANATOMY AND PHYSIOLOGY. Circulatory system 4 READING AND INTERPRETING THE ELECTROCARDIOGRAM Electrodes placed on the body s surface can detect electrical activity, which occurs in the heart. The recording of these electrical events comprises an

More information

The Secret of Hydraulic Schematics. BTPHydraulics www.iranfluidpower.com

The Secret of Hydraulic Schematics. BTPHydraulics www.iranfluidpower.com The Secret of Hydraulic Schematics BTPHydraulics www.iranfluidpower.com www.iranfluidpower.com Table of Contents The Secret to Reading and Interpreting Hydraulic Schematics... 1 Hydraulic System Schematics...

More information

Class A Foam Mixing and Application Equipment

Class A Foam Mixing and Application Equipment Class A Foam Mixing and Application Equipment Adding Phos-Chek Class A foam concentrate to water: There are many methods of adding Phos-Chek Class A foam concentrate to water. The different methods have

More information

Lab 3: Introduction to Data Acquisition Cards

Lab 3: Introduction to Data Acquisition Cards Lab 3: Introduction to Data Acquisition Cards INTRODUCTION: In this lab, you will be building a VI to display the input measured on a channel. However, within your own VI you will use LabVIEW supplied

More information

Facts about Congenital Heart Defects

Facts about Congenital Heart Defects Facts about Congenital Heart Defects Joseph A. Sweatlock, Ph.D., DABT New Jersey Department of Health Early Identification & Monitoring Program Congenital heart defects are conditions that are present

More information

INVESTIGATING HEART RATE AND BLOOD PRESSURE

INVESTIGATING HEART RATE AND BLOOD PRESSURE Hughes Undergraduate Biological Science Education Initiative HHMI INVESTIGATING HEART RATE AND BLOOD PRESSURE Learn how to measure heart rate and blood pressure. Learn the normal values for heart rate

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 4 DIRECTIONAL CONTROL VALVES The material needed for outcome 2 is very extensive

More information

THE HEART Dr. Ali Ebneshahidi

THE HEART Dr. Ali Ebneshahidi THE HEART Dr. Ali Ebneshahidi Functions is of the heart & blood vessels 1. The heart is an essential pumping organ in the cardiovascular system where the right heart pumps deoxygenated blood (returned

More information