Design Type III Compensation Network For Voltage Mode Step-down Converters

Size: px
Start display at page:

Download "Design Type III Compensation Network For Voltage Mode Step-down Converters"

Transcription

1 Introduction This application note details how to calculate a type III compensation network and investigates the relationship between phase margin and load transient response for the Skyworks family of voltage mode control step-down converters. This family includes the AAT84, AAT85, AAT89, AAT687, AAT688, and AAT689. Voltage mode control has become a very popular topology for DC to DC converters, especially with low noise output systems including DSL and cable modems, notebook computers, satellite set-top boxes, and wireless LAN systems. Background In order to reduce the DC-DC converter s output voltage ripple, the equivalent series resistance (ESR) of the output capacitor needs to be reduced. Ceramic output capacitors have a very small equivalent series resistance (ESR), low cost, and small size, making them the ideal output filter solution for DC-to-DC converters. However, the use of low ESR ceramic capacitors significantly affects the design of the error amplifier in the feedback loop. The power stage consists of a double pole due to the L C OUT filter and an ESR zero. The ESR zero is pushed far away from the double pole frequency which results in inadequate phase margin at the cross-over frequency. Therefore, type III compensation is used to stabilize the loop and optimize the output transient response to dynamic load changes. Voltage Mode Control Loop As illustrated in Figure, a typical voltage mode control loop has three main stages: step-down power stage, compensation network, and PWM modulator. The Type III compensation network generates two zeros and two poles. The two zeros are placed from 60% to 50% of double pole frequency to counter the 80 phase lag due to the L C OUT output filter. The two poles are set at the switching frequency of the converter to nullify the ESR zero and attenuate the high frequency noise. V IN STEP-DOWN POWER STAGE Driver L R DCR V OUT C OUT R ESR R OUT PWM MODULATOR COMPENSATION NETWORK COMP V reff R fbh COMPARATOR RAMP Error Amp R C Cff R ff C R fbl Figure : Closed Loop Step-Down Converter with Type III Network Compensation. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

2 Step-Down Power Stage Transfer Function The transfer function of the power stage of the step-down converter can be determined by the voltage division: Eq. : V OUT V IN = Z OUT Z L + Z OUT Where Z L and Z OUT are the inductor impedance and output impedance of the power stage. The R DCR includes the DC winding resistance, the turn-on resistance of the MOSFET, and the trace resistance. R ESR is the equivalent series resistor of the output capacitor. Z L and Z OUT are calculated using Equations and 3. Eq. : Z OUT = R LOAD // R ESR + = sc OUT s C OUT R LOAD R ESR + R LOAD s C OUT (R LOAD + R ESR ) + Eq. 3: Z L = s L + R DCR Where the complex variable s = j w and - j = V IN STEP-DOWN POWER STAGE Z L Driver L R DCR Z OUT V OUT C OUT R ESR R LOAD Figure : Step-Down Converter Power Stage. The step-down power stage open loop gain is given by substituting Equations and 3 into Equation. Algebraic manipulation yields the following expression for the open-loop transfer function of the power stage: Eq. 4: V OUT R LOAD (s C OUT R ESR + ) G P = = V IN s L C OUT (R LOAD + R ESR ) + s{l + C OUT [R DCR (R LOAD + R ESR ) + R LOAD R ESR ]} + R LOAD + R DCR A typical Bode plot of the step-down converter power stage is illustrated in Figure 3. A double pole at the cut-off frequency causes the gain to roll off with a -40dB/decade slope (blue) and the phase to exhibit a very sharp slope downward from 0 degree to -80 degree phase lag (red). The ESR zero is observed at a very high frequency due to the ceramic output capacitor. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

3 Output Double Pole at cut-off frequency Gain (db) and Phase (degree) -40dB/dec ESR zero at very high frequency -0dB/dec -80 degree phase lag due to double pole Frequency (Hz) Figure 3: The Bode Plot of the Output Stage. Error Amplifier Transfer Function Calculation The error amplifier transfer function with type III compensation as shown in Figure 4 is calculated from Equation 5: Eq. 5: G E = V COMP V OUT = // R + s C s C R fbh // R ff + s C ff Z V REF V COMP R fbh V OUT Error Amp R C C ff P R ff Z C R fbl P Figure 4: Error Amplifier With Type III Compensation Network. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 3

4 By algebraic manipulation, G E can be explicitly expressed in terms of zeros and poles in Equation 6. R Eq. 6: fbh + R G ff E = R fbh R ff C s + s + R C (R fbh + R ff ) C ff (C + C ) s s + s + R C C R ff C ff Equation 6 gives two zeroes at frequencies F Z and F Z and two poles at frequencies F P and F P in the following expressions: F Z = π (R fbh + R ff ) C ff and F Z = π R C F P = π R ff C ff and F P = C C π R C + C 80 degree phase boost Gain (db) and Phase (degree) Placing the two zeros close to the output double pole frequency Placing the two poles at cross-over frequency Figure 5: Error Amplifier With Type III Compensation Bode Plot. Type III compensation provides two zeros and two poles which push the cross-over frequency as high as possible and boosts the phase margin greater than 45 degree. A higher bandwidth yields a faster load transient response. The faster transient response results in a smaller output voltage spike. PWM Modulator Stage The PWM modulator gain is inversely proportional to the peak-to-peak input ramp voltage of the oscillator and is derived via Equation 7. Eq. 7: G M = V IN V RAMP 4 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

5 Step-Down Converter Loop Gain with Type III Compensation The loop gain of the system is expressed in terms of G M, G E, and G P factors as shown in Equation 8. Eq. 8: G LOOP = G M G E G P The magnitude in db and the phase in degree of the converter loop gain are derived from Equations 9 and 0. Eq. 9: G LOOP (db) = 0.log (G LOOP ) = 0.log (G M G E G P ) Eq. 0: P LOOP = arg(g LOOP ) 80 π The magnitude and phase Bode plots of the converter loop gain with type III compensation are shown in Figure 5. By placing the two zeros close to the output double pole and the two poles at switching frequency, the crossover frequency is pushed to 0% to 60% of switching frequency and in the vicinity of maximum phase boost in order to achieve an optimum phase margin Φ M. Gain (db) and Phase (degree) Output Double Pole Placing the two zeros close to the output double pole frequency Φ M Cross-Over Frequency at /0 Switching Frequency Figure 6: Step-Down Converter Loop Gain With Type III Compensation Bode Plot. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 5

6 Type III Compensation Design Process For Voltage Mode Control Step-Down Converter: For example, assume the voltage mode step-down converter has the following specifications: V IN = 6V to 4V V OUT = 3.3V V OUT - V REF 3.3V - 0.6V R FBL = 6.04KΩ, R FBH = R FBL = 6.04K = 7.4KΩ V REF 0.6V V RAMP = V IN L = 4.7µH C OUT = xµf, ESR = mω I OUT =.5A F SW = 490KHz. Set the crossover frequency in the range of /6 to /0 of switching frequency to avoid the Niquist pole: Eq. : F C = F SW 0 = 49KHz. Place the first zero from 60% to 50% of the double pole frequency of the L C OUT filter: Eq. : C ff = L C OUT 4.7µH 44µF = = 48pF K R fbh. 7.4KΩ Where the value of factor K is within the range of 0.6 to Set the first pole at switching frequency and calculate R ff from: Eq. 3: R ff = = = 675Ω π C ff F SW π 48pF 490KHz 4. At cross-over frequency (F C ) the loop gain is unity. Setting G LOOP = at s = jw c, the value of R is given by Equation 4. (π F Eq. 4: C ) L C OUT + V (π 49KHz) 4.7µH 44µF R RAMP = = =.6KΩ π F C C ff π 49KHz 48pF 5. Set the second zero to coincide with the first zero, and solve for C: V IN Eq. 5: C = L C OUT 4.7µH 44µF = = pf K R..6KΩ 6. Place the second pole from switching frequency to one decay higher for adequate phase margin, and solve for C: Eq. 6: C = = = 8pF π R F SW π.6kω 490KHz 6 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

7 The Relationship between Frequency Domain and Time Domain in a Step-Down Converter Knowing the relationship between the phase margin in the frequency domain and load transient response in time domain is beneficial to achieving the best results. In this way, we can select either a slow output transient response but without any overshoot or, a faster output transient response with a small amount of overshoot. Let s concentrate on the small area in the vicinity of the cross over frequency (see Figure 7). The curve has two different slopes (-0dB/ decade and -40dB/ decade) due to the location of the original pole w 0 and the high frequency pole w. Assuming the other compensation pole w and the ESR zero are cancelled out. The open loop transfer function in this region can be approximated by Equation 7: Eq. 7: T(s) s ω 0 s + ω The close loop transfer function can derive from T(s): Eq. 8: G LOOP (s) = + T(s) = = s s s s ω 0 ω ω 0 ω r ω r Q + Where the quality coefficient Q and the resonant frequency w r are defined using Equations 9 and 0. Eq. 9: Q = ω 0 ω Eq. 0: ω r = ω 0 ω The cross-over frequency w c can be solved by equating Equation 8 to unity at the crossover frequency: ω 0 ω Eq. : ω c = ω = ω + 4(Q) - Gain (db) and Phase (degree) Output Double Pole Placing the two zeros close to the output double pole frequency Φ M Cross-Over Frequency at /0 Switching Frequency Figure 7: The Gain Curve Has Two Different Slopes (-0dB/decade and -40dB/decade) at Crossover Frequency due to the Location of the Original Pole ω 0 and the High Frequency Pole ω. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 7

8 ω C - ω 0 ω C ω - - C Eq. : arg T(ω C ) = - tan + tan = -tan - 0 ω ω π Eq. 3: ϕ M = π + arg T(ω C ) = tan - ω - = tan ω C + 4Q 4 - The relationship between the phase margin and the quality coefficient can be derived from Equation 3: + tan(ϕ M ) Eq. 4: Q = = tan(ϕ M ) cos(ϕ M ) sin(ϕ M ) The percent overshoot and quality factor in the second order system are given by Equation 5. Eq. 5: %OS = 00 e -π 4Q - = 00 e -π 4cosϕ M sin ϕm - Figure 8 plots the percent overshoot versus phase margin of a typical second order system. Percent Overshoot vs. Phase Margin Pecent Overshoot (%) Phase Margin (degree) Figure 8: Percent Overshoot vs. Phase Margin for Second Order System. The output transient response of a 3.3V output step-down converter with different phase margin is measured in Figure 9. The step load is generated from 00mA to.5a with A/µs slew rate. The red curve corresponding to 68 phase margin has 60µs recovery time without overshoot and a transient voltage spike of 404mV. The black and green curves experience very fast recovery time (40µs) with very small overshoot and a small transient voltage spike of 80mV. Finally, the blue and pink curves reveal an unstable system due to the phase margin of less than Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

9 3.6V Output Voltage (00mV/div) 3.5V 3.4V 3.3V 3.V 3.V PM=68º PM=58º PM=48º PM=33º PM=6º 3.0V Time (40µs/div) Figure 9: The Relationship Between Phase Margin, Overshoot and Recovery Time of the Output Transient Response of a 3.3V Output Buck Converter. Phase Margin and Transient Response vs. DC Gain (F C = 50KHz) Based on the discussion above of the frequency domain and time domain, the recovery time can be adjusted faster to reduce the peak-to-peak output transient response of a step-down converter. This can be done by pushing the zeros a bit above the double poles frequency (K =.) in order to boost the DC gain from 65dB to 75dB. Figure 0 illustrates the relationship between the phase margin and load transient response for K = 0.6 and K =. at the same crossover frequency of 50KHz. A higher DC gain along with a smaller phase margin of 58 yields a faster recovery time of 60µs, which results in a smaller peak-to-peak output transient response (80mV) for a 00mA to.5a dynamic load. Frequency Domain Time Domain K=0.6 DC Gain = 65dB PM=68º t r =40 us V PP =404mV.5A Cff = nf Rff = 365Ω R = 3.34kΩ C = 3300pF C = 47pF F co =50KHz 00mA Frequency (Hz) Time (40μs/div) K=. DC Gain = 75dB PM=58º tr=60us V PP =80mV.5A Cff = 470pF Rff = 68Ω R =.5kΩ C = nf C = 7pF F co =50KHz 00 ma Frequency (Hz) Time (40μs/div) Figure 0: Phase Margin and Transient Response For Differing K Factors (K = 0.6 and K =.). Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 9

10 Phase Margin and Transient Response vs. Bandwidth (K =.) As illustrated in Figure, the output voltage spike can be further improved by pushing the crossover frequency (F C ) to 80KHz if a small amount of overshoot is acceptable. However, further increasing the bandwidth reduces the phase margin below 45, resulting in an unstable system. In addition, increasing the bandwidth to exceed the effective control bandwidth no longer reduces the output voltage spike due to the voltage drop across the ESR of the output capacitor which dominates the transient voltage spike. For a 3.3V output voltage buck converter using a 4.7µH inductor during a load transient step from 00mA to.5a, the effective control bandwidth is derived from Equation 6. Eq. 6: F CE = V O 4 I O L 3.3V = = 76KHz 4.5A 4.7µH Frequency Domain Time Domain K=. PM=58º K=. V PP =80mV.5A Cff = 470pF Rff = 68Ω R =.5kΩ C = nf C = 7pF F co =50KHz 00mA Frequency (Hz) Time (40μs/div) K=. K=. PM=55º.5A V PP = 66mV Cff = 470pF Rff = 68Ω R = 8.7kΩ C = 680pF C = 8pF F co =80KHz 00mA Frequency (Hz) Time (40μs/div) Figure : Frequency Domain vs. Time Domain For Different Bandwidth (F CO = 50KHz and F CO = 80KHz). 0 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

11 Loop Gain Measurement The following guidelines show the method used to measure the loop gain of a DC-DC converter:. Break the feedback loop and insert a 50Ω resistor between the broken original connection. Insert the secondary winding terminal of the one-to-one isolation transformer between the 50Ω resistor. Configure the specified test equipment as shown in Figure.. Inject a sinusoidal signal from SOURCE OUT of the network analyzer to the loop through the primary winding terminal of the transformer while monitoring the ratio of CHA and CHB on the network analyzer. 3. Set the converter output current to heavy load while monitoring the LX node of the converter on the oscilloscope (to obtain a good result the converter must be in continuous PWM mode). 4. Sweep the frequency from SOURCE OUT of the network analyzer from 0Hz to MHz and adjust the magnitude of the injected signal (around 0mV to 00mV) in order to have a clean PWM waveform at the LX node. Analog Network Analyzer Oscilloscope SOURCE OUT CHA CHB Power Supply V 5A L 4.7µH 50 LOAD A VIN VIN LX Isolation Transformer Broken Original Connection VOUT R ff C IN Buck Converter FB Rfbh Cff COUT R fbl PGND Figure : Loop Gain Measurement Set-up. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

12 Conclusion Using low ESR ceramic output capacitors for voltage mode controlled buck converters yields very low output voltage ripple, but requires type III compensation for adequate phase margin. The type III compensation network provides two zeros and two poles that push the crossover frequency to a possible maximum value with adequate phase margin for the control loop. The trade-off between the stability and output transient response can be adjusted by using the factor K, which represents the position of zeros in the vicinity frequency of the output double poles. In applications which require no overshoot, the two zeros are placed at 60% (K = 0.6) of the output double poles frequency to achieve approximately 70 degrees of phase margin. However, if the transient output voltage spike is critical, the two zeros can be placed up to 50% (K =.5) of the output double pole frequency if a small amount of overshoot is acceptable. In addition, a higher bandwidth yields a faster transient response. However, a bandwidth higher than the critical bandwidth can no longer reduce the transient output voltage spike. A typical bandwidth for type III compensation is in the range of 0% to 60% of switching frequency. Copyright 0 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ( Skyworks ) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN- CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters. Skyworks, the Skyworks symbol, and Breakthrough Simplicity are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at are incorporated by reference. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier

Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class

More information

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

More information

Evaluation Board for the AAT1275 Boost Converter with USB Power Switch

Evaluation Board for the AAT1275 Boost Converter with USB Power Switch Introduction EVALUATION BOARD DATA SHEET The AAT1275 evaluation board provides a platform for test and evaluation of the AAT1275 switching boost converter with USB Power Switch. The evaluation board demonstrates

More information

APN1001: Circuit Models for Plastic Packaged Microwave Diodes

APN1001: Circuit Models for Plastic Packaged Microwave Diodes APPLICATION NOTE APN11: Circuit Models for Plastic Packaged Microwave Diodes Abstract This paper reports on the measurement and establishment of circuit models for SOT-23 and SOD-323 packaged diodes. Results

More information

SC Series: MIS Chip Capacitors

SC Series: MIS Chip Capacitors DATA SHEET SC Series: MIS Chip Capacitors Applications Systems requiring DC blocking or RF bypassing Fixed capacitance tuning element in filters, oscillators, and matching networks Features Readily available

More information

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads DATA SHEET Silicon Schottky Barrier Diode Bondable Chips and Beam Leads Applications Detectors Mixers Features Available in both P-type and N-type low barrier designs Low 1/f noise Large bond pad chip

More information

DATA SHEET SE2425U : 2.4 GHz Bluetooth Power Amplifier IC. Applications. Product Description. Features. Ordering Information

DATA SHEET SE2425U : 2.4 GHz Bluetooth Power Amplifier IC. Applications. Product Description. Features. Ordering Information Applications Bluetooth tm wireless technology (Class 1) USB dongles, PCMCIA, flash cards, Access Points Enhanced data rate Features Integrated input and inter-stage match +25 dbm GFSK Output Power +19.5

More information

SKY13370-374LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated

SKY13370-374LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated DATA SHEET SKY13370-374LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated Applications WiMAX 802.16 RF1 RF2 Dual-band WLANs (802.11 a/b/g/n) LTE/4G systems 50 Ω 50 Ω Features 50 Ω matched RF ports in all

More information

SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider

SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider DATA SHEET SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider Applications TD-LTE systems Satellite communications 2.4 GHz ISM band Features Low insertion loss: 0.3 db @ 2.5 GHz High isolation:

More information

SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder

SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder DATA SHEET SKY13380-350LF: 20 MHz-3.0 GHz High Power SP4T Switch With Decoder Applications GSM/WCDMA/EDGE datacards and handsets Mobile high power switching systems Features Broadband frequency range:

More information

CLA Series: Silicon Limiter Diode Bondable Chips

CLA Series: Silicon Limiter Diode Bondable Chips DATA SHEET CLA Series: Silicon Limiter Diode Bondable Chips Applications LNA receiver protection Commercial and defense radar Features Established Skyworks limiter diode process High-power, mid-range,

More information

AAT3238 DATA SHEET. 300mA MicroPower TM High Performance LDO Linear Regulator. Applications. Features. General Description. Typical Application

AAT3238 DATA SHEET. 300mA MicroPower TM High Performance LDO Linear Regulator. Applications. Features. General Description. Typical Application General Description The MicroPower low dropout (LDO) linear regulator is ideally suited for portable applications where very fast transient response, extended battery life, and small size are critical.

More information

VCC1,2. H/L Lin. Bias, Enable, Detector Circuits

VCC1,2. H/L Lin. Bias, Enable, Detector Circuits Applications DSSS 5 GHz WLAN (IEEE802.11an) Access Points, PCMCIA, PC cards Features 5GHz Matched 22dBm Power Amplifier Integrated power amplifier enable pin (VEN) Buffered, temperature compensated power

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

SMS7630-061: Surface Mount, 0201 Zero Bias Silicon Schottky Detector Diode

SMS7630-061: Surface Mount, 0201 Zero Bias Silicon Schottky Detector Diode DATA SHEET SMS7630-061: Surface Mount, 0201 Zero Bias Silicon Schottky Detector Diode Applications Sensitive RF and microwave detector circuits Sampling and mixer circuits High volume wireless systems

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

Design A High Performance Buck or Boost Converter With Si9165

Design A High Performance Buck or Boost Converter With Si9165 Design A High Performance Buck or Boost Converter With Si9165 AN723 AN723 by Kin Shum INTRODUCTION The Si9165 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage.

More information

MP2259 1A, 16V, 1.4MHz Step-Down Converter

MP2259 1A, 16V, 1.4MHz Step-Down Converter MP59 1A, 1V, 1.MHz Step-Down Converter TM The Future of Analog IC Technology DESCRIPTION The MP59 is a monolithic integrated stepdown switch mode converter with an internal power MOSFET. It achieves 1A

More information

CLA4607-085LF: Surface Mount Limiter Diode

CLA4607-085LF: Surface Mount Limiter Diode DATA SHEET CLA4607-085LF: Surface Mount Limiter Diode Applications Low-loss, high-power limiters Receiver protectors Anode (Pin 1) Anode (Pin 3) Features Low thermal resistance: 55 C/W Typical threshold

More information

AN1991. Audio decibel level detector with meter driver

AN1991. Audio decibel level detector with meter driver Rev. 2.1 20 March 2015 Application note Document information Info Keywords Abstract Content SA604A, LM358, RSSI, cellular radio The SA604A can provide a logarithmic response proportional to the input signal

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

Application of network analyzer in measuring the performance functions of power supply

Application of network analyzer in measuring the performance functions of power supply J Indian Inst Sci, July Aug 2006, 86, 315 325 Indian Institute of Science Application of network analyzer in measuring the performance functions of power supply B SWAMINATHAN* AND V RAMANARAYANAN Power

More information

SKYA21012: 20 MHz to 6.0 GHz GaAs SPDT Switch

SKYA21012: 20 MHz to 6.0 GHz GaAs SPDT Switch DATA SHEET SKYA2112: 2 MHz to 6. GHz GaAs SPDT Switch Automotive Applications INPUT Infotainment Automated toll systems Output1 Output2 Garage door opener 82.11 b/g/n WLAN, Bluetooth systems Wireless control

More information

Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages

Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages APPLICATION NOTE Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages Introduction This Application Note provides sample PCB land pattern

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

THE RIGHT-HALF-PLANE ZERO --A SIMPLIFIED EXPLANATION

THE RIGHT-HALF-PLANE ZERO --A SIMPLIFIED EXPLANATION THE RGHT-HALF-PLANE ZERO --A SMPLFED EXPLANATON n small signal loop analysis, poles and zeros are normally located in the left half of the complex s-plane. The Bode plot of a conventional or lefthalf-plane

More information

Custom Products. Magnetic Components. Vishay Dale. www.vishay.com

Custom Products. Magnetic Components. Vishay Dale. www.vishay.com Magnetic Components SWITCH MODE MAGNETICS AIR CORE INDUCTORS INDUCTIVE PRODUCTS CUSTOM DESIGN AND PRODUCTION has extensive facilities for custom design and production of custom magnetics. Design applications

More information

Input and Output Capacitor Selection

Input and Output Capacitor Selection Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how

More information

Understanding the Terms and Definitions of LDO Voltage Regulators

Understanding the Terms and Definitions of LDO Voltage Regulators Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions

More information

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TAR5SB15~TAR5SB50

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TAR5SB15~TAR5SB50 TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TARSB~TARSB Point Regulators (Low-Dropout Regulator) TARSB~TARSB The TARSBxx Series is comprised of general-purpose bipolar single-power-supply

More information

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132

More information

OLF500: High CMR, High-Speed Logic Gate Hermetic Surface Mount Optocoupler

OLF500: High CMR, High-Speed Logic Gate Hermetic Surface Mount Optocoupler TM DATA SHEET OLF500: High CMR, High-Speed Logic Gate Hermetic Surface Mount Optocoupler Features Hermetic SMT flat-pack package Electrical parameters guaranteed over 55 C to +125 C ambient temperature

More information

Testing a power supply for line and load transients

Testing a power supply for line and load transients Testing a power supply for line and load transients Power-supply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.

More information

Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power

Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power Application Note, Rev.1.0, September 2008 TLE8366 Automotive Power Table of Contents 1 Abstract...3 2 Introduction...3 3 Dimensioning the Output and Input Filter...4 3.1 Theory...4 3.2 Output Filter Capacitor(s)

More information

LDS8720. 184 WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

LDS8720. 184 WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT 184 WLED Matrix Driver with Boost Converter FEATURES High efficiency boost converter with the input voltage range from 2.7 to 5.5 V No external Schottky Required (Internal synchronous rectifier) 250 mv

More information

Series AMLDL-Z Up to 1000mA LED Driver

Series AMLDL-Z Up to 1000mA LED Driver FEATURES: Click on Series name for product info on aimtec.com Series Up to ma LED Driver Models Single output Model Input Voltage (V) Step Down DC/DC LED driver Operating Temperature range 4ºC to 85ºC

More information

José A. Cobos, Pedro Alou Centro de Electrónica Industrial (CEI)

José A. Cobos, Pedro Alou Centro de Electrónica Industrial (CEI) José A. Cobos, Pedro Alou Centro de (CEI) Universidad Politécnica de Madrid www.cei.upm.es September 2008 Outline Motivation Cout, Current & voltage steps Optimal time control Analog implementations V

More information

3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines

3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines 3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines Odile Ronat International Rectifier The fundamental reason for the rapid change and growth in information

More information

Power supply output voltages are dropping with each

Power supply output voltages are dropping with each DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

MIC33050. General Description. Features. Applications. Typical Application. 4MHz Internal Inductor PWM Buck Regulator with HyperLight Load

MIC33050. General Description. Features. Applications. Typical Application. 4MHz Internal Inductor PWM Buck Regulator with HyperLight Load 4MHz Internal Inductor PWM Buck Regulator with HyperLight Load General Description The Micrel is a high-efficiency 600mA PWM synchronous buck (step-down) regulator with internal inductor featuring HyperLight

More information

unit : mm With heat sink (see Pd Ta characteristics)

unit : mm With heat sink (see Pd Ta characteristics) Ordering number: EN1321E Monolithic Linear IC LA4261 3.5 W 2-Channel AF Power Amplifier for Home Stereos and Music Centers Features. Minimum number of external parts required (No input capacitor, bootstrap

More information

Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN

Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

TS321 Low Power Single Operational Amplifier

TS321 Low Power Single Operational Amplifier SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed

More information

USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

More information

TS1005 Demo Board COMPONENT LIST. Ordering Information. SC70 Packaging Demo Board SOT23 Packaging Demo Board TS1005DB TS1005DB-SOT

TS1005 Demo Board COMPONENT LIST. Ordering Information. SC70 Packaging Demo Board SOT23 Packaging Demo Board TS1005DB TS1005DB-SOT REVISION NOTE The current revision for the TS1005 Demo Boards display the identifier TS100x Demo Board on the top side of the evaluation board as depicted in Figure 1. If the identifier is not printed

More information

Chapter 11 Current Programmed Control

Chapter 11 Current Programmed Control Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock

More information

Varactor Diodes. Introduction. Key Electrical Parameters. Reverse Breakdown Voltage and Reverse Leakage Current APPLICATION NOTE

Varactor Diodes. Introduction. Key Electrical Parameters. Reverse Breakdown Voltage and Reverse Leakage Current APPLICATION NOTE APPLICATION NOTE Varactor Diodes Introduction A varactor diode is a P-N junction diode that changes its capacitance and the series resistance as the bias applied to the diode is varied. The property of

More information

Technical Note #3. Error Amplifier Design and Applications. Introduction

Technical Note #3. Error Amplifier Design and Applications. Introduction Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital

More information

Series AMEPR30-AZ up to 2.5A AC-DC / DC-DC LED Driver / Converter

Series AMEPR30-AZ up to 2.5A AC-DC / DC-DC LED Driver / Converter FEATURES: Click on Series name for product info on aimtec.com Models Single output Model Max Output Power (W) 1 AC-DC Constant Current or Constant Over temperature protection Voltage LED Driver Over current

More information

Prepared by: Paul Lee ON Semiconductor http://onsemi.com

Prepared by: Paul Lee ON Semiconductor http://onsemi.com Introduction to Analog Video Prepared by: Paul Lee ON Semiconductor APPLICATION NOTE Introduction Eventually all video signals being broadcasted or transmitted will be digital, but until then analog video

More information

Constant Current Control for DC-DC Converters

Constant Current Control for DC-DC Converters Constant Current Control for DC-DC Converters Introduction... Theory of Operation... Power Limitations... Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery Charger

More information

Application Note 149. January 2015. Modeling and Loop Compensation Design of Switching Mode Power Supplies AN149-1. Henry J. Zhang

Application Note 149. January 2015. Modeling and Loop Compensation Design of Switching Mode Power Supplies AN149-1. Henry J. Zhang Modeling and Loop Compensation Design of Switching Mode Power Supplies Henry J. Zhang January 25 Introduction Today s electronic systems are becoming more and more complex, with an increasing number of

More information

Features. 3.3V,100mA 0.85V. COUT 4.7μF. Skyworks Solutions, Inc. Phone [781] 376-3000 Fax [781] 376-3100 sales@skyworksinc.com www.skyworksinc.

Features. 3.3V,100mA 0.85V. COUT 4.7μF. Skyworks Solutions, Inc. Phone [781] 376-3000 Fax [781] 376-3100 sales@skyworksinc.com www.skyworksinc. General Description The is a high efficiency, synchronous, fixed frequency, step-up converter designed for single-cell or dual-cell alkaline, NiMH, or NiCd battery-powered applications. The high 1.2MHz

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE

AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE INTRODUCTION In most modern PFC circuits, to lower the input current harmonics and

More information

Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products. INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

More information

Audio Tone Control Using The TLC074 Operational Amplifier

Audio Tone Control Using The TLC074 Operational Amplifier Application Report SLOA42 - JANUARY Audio Tone Control Using The TLC74 Operational Amplifier Dee Harris Mixed-Signal Products ABSTRACT This application report describes the design and function of a stereo

More information

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal

More information

AN2389 Application note

AN2389 Application note Application note An MCU-based low cost non-inverting buck-boost converter for battery chargers Introduction As the demand for rechargeable batteries increases, so does the demand for battery chargers.

More information

AN-8019 Reliable USB Modem Design Using the Combination of an Integrated Load Switch and a Buck Converter

AN-8019 Reliable USB Modem Design Using the Combination of an Integrated Load Switch and a Buck Converter www.fairchildsemi.com AN-8019 Reliable USB Modem Design Using the Combination of an Integrated Load Switch and a Buck Converter Introduction In the portable electronics market, a wireless network allows

More information

MP2365 3A, 28V, 1.4MHz Step-Down Converter

MP2365 3A, 28V, 1.4MHz Step-Down Converter The Future of Analog IC Technology MP365 3A, 8,.MHz Step-Down Converter DESCRIPTION The MP365 is a.mhz step-down regulator with a built-in Power MOSFET. It achieves 3A continuous output current over a

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

High Frequency True PWM Dimming White LED Driver MP3304 and MP3305

High Frequency True PWM Dimming White LED Driver MP3304 and MP3305 The Future of Analog IC Technology AN021 High Frequency True PWM Dimming White LED Driver MP3304 and MP3305 High Frequency True PWM Dimming White LED Driver MP3304 and MP3305 Prepared by Zhijun Ye and

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

Datasheet. 2A 380KHZ 20V PWM Buck DC/DC Converter. Features

Datasheet. 2A 380KHZ 20V PWM Buck DC/DC Converter. Features General Description Features The is a 380 KHz fixed frequency monolithic step down switch mode regulator with a built in internal Power MOSFET. It achieves 2A continuous output current over a wide input

More information

DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE

DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE Enhanced PWM LED Dimming Circuit Description The NCL30051LEDGEVB LED driver evaluation board provides PWM dimming capability via gating the resonant half bridge converter on and off at the PWM rate. Effective

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

APN1009: A Varactor Controlled Phase Shifter for PCS Base Station Applications

APN1009: A Varactor Controlled Phase Shifter for PCS Base Station Applications APPLICATION NOTE APN1009: A Varactor Controlled Phase Shifter for PCS Base Station Applications Introduction Power amplifiers in today s base stations use compensation techniques to reduce distortion.

More information

Single-Stage High Power Factor Flyback for LED Lighting

Single-Stage High Power Factor Flyback for LED Lighting Application Note Stockton Wu AN012 May 2014 Single-Stage High Power Factor Flyback for LED Lighting Abstract The application note illustrates how the single-stage high power factor flyback converter uses

More information

SKY77344-21 Power Amplifier Module Evaluation Information

SKY77344-21 Power Amplifier Module Evaluation Information SKY77344-21 Power Amplifier Module Evaluation Information Applicability: SKY77344 Version -21 Introduction This Application Note describes the functionality, board layout and applications instructions

More information

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

A Simple Current-Sense Technique Eliminating a Sense Resistor

A Simple Current-Sense Technique Eliminating a Sense Resistor INFINITY Application Note AN-7 A Simple Current-Sense Technique Eliminating a Sense Resistor Copyright 998 A SIMPE CURRENT-SENSE TECHNIQUE EIMINATING A SENSE RESISTOR INTRODUCTION A sense resistor R S,

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

PAM8403. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

PAM8403. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated FILTERLESS 3W CLASS-D STEREO AUDIO AMPLIFIER Description Pin Assignments The is a 3W, class-d audio amplifier. It offers low THD+N, allowing it to achieve high-quality sound reproduction. The new filterless

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications White paper High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

FREQUENCY RESPONSE ANALYZERS

FREQUENCY RESPONSE ANALYZERS FREQUENCY RESPONSE ANALYZERS Dynamic Response Analyzers Servo analyzers When you need to stabilize feedback loops to measure hardware characteristics to measure system response BAFCO, INC. 717 Mearns Road

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit 32-Channel High Voltage Amplifier Array Features 32 independent high voltage amplifiers 3V operating voltage 295V output voltage 2.2V/µs typical output slew rate Adjustable output current source limit

More information

NPN wideband transistor in a SOT89 plastic package.

NPN wideband transistor in a SOT89 plastic package. SOT89 Rev. 05 21 March 2013 Product data sheet 1. Product profile 1.1 General description in a SOT89 plastic package. 1.2 Features and benefits High gain Gold metallization ensures excellent reliability

More information

AN2866 Application note

AN2866 Application note Application note How to design a 13.56 MHz customized tag antenna Introduction RFID (radio-frequency identification) tags extract all of their power from the reader s field. The tags and reader s antennas

More information

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Application Report SLOA043 - December 1999 A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Shawn Workman AAP Precision Analog ABSTRACT This application report compares

More information

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08 INTEGRATED CIRCUITS DATA SHEET power amplifier with diagnostic facility Supersedes data of March 1994 File under Integrated Circuits, IC01 1996 Jan 08 FEATURES Requires very few external components High

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UPS61 UNISONIC TECHNOLOGIES CO., LTD HIGH PERFORMANCE CURRENT MODE POWER SWITCH DESCRIPTION The UTC UPS61 is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

TECHNICAL NOTE 7-1. ARCNET Cable Length vs. Number of Nodes for the HYC9088 in Coaxial Bus Topology By: Daniel Kilcourse May 1991.

TECHNICAL NOTE 7-1. ARCNET Cable Length vs. Number of Nodes for the HYC9088 in Coaxial Bus Topology By: Daniel Kilcourse May 1991. TECHNICAL NOTE 7-1 ARCNET Cable Length vs. Number of Nodes for the HYC9088 in Coaxial Bus Topology By: Daniel Kilcourse May 1991 Page 1 80 Arkay Drive Hauppauge, NY 11788 (631) 435-6000 FAX (631) 273-3123

More information

Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit

Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and

More information

AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE

AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE CrM Buck LED Driver Evaluation Board Prepared by: Fabien Franc ON Semiconductor Introduction This document describes the CrM Buck LED driver evaluation board. This board provides a step down converter

More information

SiGe:C Low Noise High Linearity Amplifier

SiGe:C Low Noise High Linearity Amplifier Rev. 2 21 February 2012 Product data sheet 1. Product profile 1.1 General description The is a low noise high linearity amplifier for wireless infrastructure applications. The LNA has a high input and

More information