Feature RAM (bytes) Times I/O Pins Serial port Interrupts sources 6 8 6

Size: px
Start display at page:

Download "Feature RAM (bytes) Times I/O Pins Serial port Interrupts sources 6 8 6"

Transcription

1 Topic 1 (16 M) 8051 Microcontroller 1.1 Introduction to 8051 family Microcontroller Microcontroller 1. Salient Features 2. Pins description 3. Architecture of Special function Register (SFR) 5. Memory organization 6. I/O ports, Timer/counters, Interrupt structure 7. Serial port interface 8. Boolean operation 9. Power Down Operation 1.1 Introduction to 8051 family Microcontroller Now a days we seen the introduction of a technology that has radically changed the way in which we control the world around us. We see the many components are use a microcontrollers. Microcontroller is a computer on chip. We see the smart DVD, Video games, TV, Automobiles, home security, microwaves, AC, etc. There are two other members in the 8051 family microcontroller, they are Comparison of 8051 family members Feature ROM (on chip program space in 4 K 8 K 0 K bytes) RAM (bytes) Times I/O Pins Serial port Interrupts sources The 8051 is the most popular member of the 8051 family, this is because the 8051 is available in different memory types, such as UV-EPROM, flash, NV-RAM. Some Companies producing 8051 family 1. Intel 2. Atmel 3. Philips 4. Siemens 5. Dallas Semiconductor

2 Different in Microprocessor and Microcontroller Microprocessor Microprocessor is heart of Computer system. Microprocessor externally connect ROM, RAM, I/O ports, and Timer. Since memory and I/O has to be connected externally, the circuit becomes large. Cannot be used in compact systems and hence inefficient Cost of the entire system increases Due to external components, the entire power consumption is high. Hence it is not suitable to use with devices running on stored power like batteries. Most of the microprocessors do not have power saving features. Since memory and I/O components are all external, each instruction will need external operation, hence it is relatively slower. Microprocessor have less number of registers, hence more operations are memory based. Microprocessors are based on von Neumann model/architecture where program and data are stored in same memory module Mainly used in personal computers Microcontroller Micro Controller is a heart of embedded system. Microcontroller is a single chip available all this ROM, RAM, I/O ports, and Timer. Since memory and I/O are present internally, the circuit is small. Can be used in compact systems and hence it is an efficient technique Cost of the entire system is low Since external components are low, total power consumption is less and can be used with devices running on stored power like batteries. Most of the micro controllers have power saving modes like idle mode and power saving mode. This helps to reduce power consumption even further. Since components are internal, most of the operations are internal instruction, hence speed is fast. Micro controller have more number of registers, hence the programs are easier to write. Micro controllers are based on Harvard architecture where program memory and Data memory are separate Used mainly in washing machine, MP3 players, TV, Automobile, etc. (AT89C51, AT89LV51, AT89C52, DS5000-8, etc.)

3 Microcontroller 1. Salient Features Feature 8051 ROM (on chip program space in 4 K bytes) RAM (bytes) 128 Times 2 I/O Pins 32 Serial port 1 Interrupts sources KB on chip program memory (ROM or EPROM)) bytes on chip data memory (RAM) bit data bus bit address bus general purpose registers each of 8 bits 6. Two -16 bit timers T0 and T1 7. Five Interrupts (3 internal and 2 external). 8. Four Parallel ports each of 8-bits (PORT0, PORT1, PORT2, PORT3) with a total of 32 I/O lines. 9. One 16-bit program counter and One 16-bit DPTR (data pointer) 10. One 8-bit stack pointer 11. One Microsecond instruction cycle with 12 MHz Crystal. 12. One full duplex serial communication port.

4 2. Pins descriptions 8051 microcontroller has available 40 DIP pins. Out of this 32 pins use to I/O Ports as P0, P1, P2, and P3. Pin No. 20 and 40 use to Ground and +5V power. Pin No. 9 use to Reset to 8051 microcontroller for working from starting address. Pin no.29, 30 and 31 use to PSEN, ALE, EA respectively, PSEN use to program store enable, ALE is Address Latch enable and EA use to external enable. Pin no. 1 to 9 use to Port 1 for I/O function.

5 Pin no 10 to 17 use to port 3, working for this port is dual type first is I/O function and second is read, Write, Timer, serial data communication and external interrupt. Pin no. 21 to 28 use to Port 2, working for this port is dual type first is I/O function and second is Address Bus. Pin no. 32 to 39 use to Port 0, working for this port is dual type first is I/O function and second is Address and data bus communication. And last pin no. 18 and 19 use for a crystal oscillator for XTAL 2 and XTAL 1 3. Architecture of 8051

6 The 8051 architecture consists of these specific features Eight bit CPU with register A ( the accumulator ) and B Sixteen bit program counter ( PC ) and Data Pointer ( DPTR ) Eight bit program status world ( PSW ) Eight bit stack pointer ( SP ) Internal ROM or EPROM 4K Internal RAM of 128 bytes 1. Four register banks, each containing eight registers 2. Sixteen bytes, which may be addressed at the bit level 3. Eight bytes of general-purpose data memory Thirty two input/output pins arranged as four 8-bit ports P0 P3 Two 16 bit timer/counters T0 and T1 Full duplex serial data receiver/transmitter SBUF Control registers TCON, TMOD, SCON, PCON, IP, and IE Two external and three internal interrupt sources Oscillator and clock circuits

7 The 8051 oscillator and clock The heart of the 8051 is the circuitry that generate the clock pulses by which all internal operations works. Pin XTAL1 and XTAL2 are provided for connecting a resonant network to form an oscillator. Quartz crystal and capacitors are worked for generating this clock pulses. Crystal frequency is the basic internal clock frequency of the microcontroller design to run 1 megahertz to 16 megahertz. Serial communication needs often dictate the frequency of the oscillator because the requirement that internal counter must divide the basic clock frequency. Program instructions may require one, two, or four machine cycles to be executed, depending on the type of instruction. To calculate the time any particular instruction will take to be executed, find the number of cycles, C. the time to execute that instruction is then found by multiplying c by 12 and dividing the product by the crystal frequency. Tinst=(C*12 d)/crystal frequency

8 Program Counter and Data Pointer The 8051 contains two 16-bit registers 1. Program counter (PC) 2. Data Pointer (DPTR) Each is used to hold the address of a byte in memory Program instruction bytes are fetched from locations in memory that are addressed by the PC, Program ROM may be on chip at addresses 0000h to 0FFFh, external to exceed 0000h to FFFFh. The PC is automatically incremented after every instruction byte is fetched. The PC is only register that does not have an internal address. The DPTR register is made up of two 8-bit register, named DPH and DPL They are uses for internal and external code access and external data access. DPTR does not have a single internal address. A and B CPU Registers The 8051 contains 34 general purpose or working registers. Two of these registers A and B, hold result of many instructions, particularly math and logical operations, of the 8051 central processing unit (CPU). The other 32 are arranged as part of internal RAM in four banks, B0 B3. The A (accumulator) register is the most versatile of the two CPU registers and is used for many operations, including addition, subtraction, internal multiplication and division. And Boolean bit manipulations. The A register also used for all data transfers between the 8051 and any external memory. The b register used with the A register for multiplication and division operations and has no other function other than as a location where data may be stored.

9 Flags and the Program Status World (PSW) Flags are 1-bit registers provided to store the result of certain program instructions. Other instructions can test the condition of the flags and make decisions based on the flag states. The 8051 has four math flags that respond automatically to the outcomes of math operations and three general purpose user flags that can be set to 1 or cleared to 0 by the programmer as designed. The math flags include Carry (C), Auxiliary Carry (AC), Overflow (OV), and Parity (P). User flags are named F0, GF0 and GF1. Internal Memory: - A functioning computer must have memory for program code bytes, commonly in ROM, and RAM memory for variable data that can be altered as the program runs. The 8051 has internal RAM and ROM memory for these functions. Additional memory can be added externally using suitable circuits which use same address in different memories, for code and data. Internal circuitry accesses the correct memory based on the nature of the operation in progress.

10 Internal RAM 8051 has a 128-byte of internal RAM. Thirty two bytes from address 00h to 1Fh that make up 32 working registers organized as four banks of eight registers each. The four register banks are numbered 0 to 3 and are made up of eight registers named R0 to R7. Each register can be addressed by name or by its RAM address. Bit addressable area of 16 bytes occupies RAM byte addresses 20h to 2Fh, forming a total of 128 addressable bits. Addressable bit may be specified by its bit address of 00h to 7Fh, or bits may form any byte address from 20h to 2Fh. A general purpose RAM area above the bit area, from 30h to 7Fh, addressable as bytes. Special Function Register (SFR): - The 8051 operations that do not use the internal 128-byte RAM addresses from 00h to 7Fh are done by a group of specific internal registers, each called a Special Function Register (SFR). Which may be addressed much like internal RAM, using addresses from 80h to FFh. Some SFRs are also bit addressable, as is the case for the bit area of RAM. This feature allows the programmer to change only what needs to be altered, leaving the remaining bits in that SFR unchanged. Not all of the addresses from 80h to FFh are used for SFR, and attempting to use an address that is not defined, or empty, result in unpredictable result. The SFR names and equivalent internal RAM addresses show in table. PC is not a part of the SFR and has no internal RAM address.

11 Internal ROM The 8051 is organized so that data memory and program code memory can be in two entirely different physical memory entities. Each has the same address ranges. The structure of the internal RAM has been discussed previously. Corresponding block of internal program code, contained in an internal Rom, occupies code address space 0000h to 0FFFh. The PC is ordinarily used to address program code bytes from addresses 0000h to 0FFFh. Program addresses higher than 0FFFh, which exceed the internal ROM capacity, will cause the 8051 to automatically fetch code bytes from external program memory. Code bytes can also be fetched exclusively from an external memory, addresses 0000h to FFFFh, by connecting the external access pin (EA pin 31) to ground. Input/output (I/O) ports:- One major feature of a microcontroller is the versatility built into the input / output circuits that connect the 8051 to the outside world. Microcontroller has 32 I/O pins.

12 They have a three ports P0, P1, P2, and P3. Each port has eight pins 0 to 7. Port 0: - Port 0 pins may serve as input as inputs, outputs when used together as a bidirectional low order address and data bus for external memory. Pins used for this port is Pin No. 32 to 39. For example when a pin is to be used as input, a 1 must be written to corresponding port 0 latch be the program, thus turning the output transistors off. Pin latches that are programmed to a 0 will turn on. External pull-up resisters will be needed to supply a login high when using port 0 as an output. When port 0 is used as an address bus to external memory, internal control signals switch the address lines to the gates. This pins also use to Data bus, so both address and data bus indicating this port is AD0 to AD7. Port 1:- Port 1 pins have no dual functions. Output latch is connected directly to the gate of the lower FET (field effect transistors). Programming logic implemented to this port pins directly. Pins used for this port is Pin No. 1 to 8. Port 2: - Port 2 may be used as an input / output port similar in operation to port 1. The alternate use of 2 is to supply a high order address byte. Port 2 use an address line A8 to A15. Pins used for this port is Pin No. 21 to 28. Port 3: - Port 3 is an input / output port similar to port 1. Pins used for this port is pin no. 10 to 17. Port 3 is alternate use

13 External Memory The system designer is not limited by the amount of internal RAM and ROM available on chip. Two separate external memory spaces are made available by the 16-bit PC and DPTR and by different control pins for enabling external ROM and RAM chips. Internal control circuitry accesses the correct physical memory, depending on the machine cycle state and the opcode being executed. There are several reasons for adding external memory, particularly program memory, when applying the 8051 in a system. Counters and Timers Many microcontroller applications require the counting of external events, such as the frequency of a pulse train, or the generation of precise internal time delays between computer actions. Both of these tasks can be accomplished using software techniques, but software loops for counting or timing keep the processor occupied so that other, perhaps more important, functions are not done. The relieve the processor of this burden, two 16-bit up counters, named T0 and T1, are provided for the general use of the programmer. Each counter may be programmed to count internal clock pulses, acting as a timer, or programmed to count external pulses as a counter. The counter are divided into two 8-bit registers called the timer low (TL0, TL1) and timer high (TH0, TH1) bytes. All counter action is controlled by bit states in the timer mode control register (TMOD), the timer/counter control register (TCON), and certain program instructions.

14 Timer Counter Interrupts The counters have been included on the chip to relieve the processor of timing and counting chores. When program wishes to count a certain number of internal pulses or external events, a number is placed in one of the counters. The number represents the maximum count less the desired count, plus 1. The counter increments from the initial number to the maximum and then rolls over to 0 on the final pulse and also sets a timer flag. Timing If a counter is programmed to be a timer, it will count the internal clock frequency of 8051 oscillator divided by 12d. As example the crystal frequency is 6.0 megahertz, then the timer clock will have a frequency of 500 kilohertz. The resultant timer clock is gated to the timer by means of the circuit show in figure. Figure: - Timer/Counter Control Logic Timer Modes of Operation The timers may operate in any one of four modes that are determined by the mode bits, M1 and M0, in the TMOD register.

15

16 Serial Data Input / Output Computers must be able to communicate with other computers in modern multiprocessor distributed system. One cost-effective way to communicate is to send and receive data bits serially. The 8051 has a serial data communication circuit that uses register SBUF to hold data. Register SCON controls data communication, register PCON controls data rates, and pins RXD (P3.0) and TXD (P3.1) connect to the serial data network. Serial Data Interrupts Serial data communication is a relatively slow process, occupying many milliseconds per data byte to accomplish. In order not to tie up valuable processor time, serial data flags are included in SCON to aid in efficient data transmission and reception.

17 Notice that data transmission is under the complete control of the program, but reception of data is unpredictable and at random times that are beyond the control of the program.

18 Interrupts A computer program has only two ways to determine the conditions that exist in internal and external circuits. One method uses software instructions that jump to subroutines on the states of flags and port pins. The second method responds to hardware signals, called interrupts that force the program to call a subroutine. Software techniques use up processor time that could be devoted to other tasks, interrupts take processor time only when action by the program is needed. Timer flag interrupt When a timer / counter overflows, the corresponding timer flag, TF0 or TF1, is set to 1.

19 The flag is cleared to 0 when the resulting interrupt generates a program call to the appropriate timer subroutine in memory. Serial Port Interrupt If a data byte is received, an interrupt bit, is set to 1 in the SCON register. When a data byte has been transmitted an interrupt bit, TI, is set in SCON. The program that handles serial data communication must reset RI or TI to 0 to enable the next data communication operation. External Interrupts Pins INT0 and INT1 are used by external circuitry. Inputs on these pins can set the interrupt flags IE0 and IE1 in the TCON register to 1 by two different methods.

20 Assignment 1. Draw the format of PSW. Explain the function of each bit. 2. State the salient features of microcontroller List the alternate function of 8051 port 3 pins. Also write the instruction to set all the port 1 pins as input. 4. Draw and explain the RAM structure of Draw the structure of port 0 of Also state the need of pull up resistors 6. Explain various power saving modes of microcontroller Draw format of TMOD SFR. Explain the function of each bit 8. Draw the format of IE SFR. Explain the function of each bit. Write an instruction to enable only timer interrupt. 9. Explain SFR with diagram. 10. Explain 8051 oscillator and clock. 11. Draw the 8051 Pin out Diagram.

8051 hardware summary

8051 hardware summary 8051 hardware summary 8051 block diagram 8051 pinouts + 5V ports port 0 port 1 port 2 port 3 : dual-purpose (general-purpose, external memory address and data) : dedicated (interfacing to external devices)

More information

Flash Microcontroller. Memory Organization. Memory Organization

Flash Microcontroller. Memory Organization. Memory Organization The information presented in this chapter is collected from the Microcontroller Architectural Overview, AT89C51, AT89LV51, AT89C52, AT89LV52, AT89C2051, and AT89C1051 data sheets of this book. The material

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA

8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

Microcomputer Components SAB 80515/SAB 80C515 8-Bit Single-Chip Microcontroller Family

Microcomputer Components SAB 80515/SAB 80C515 8-Bit Single-Chip Microcontroller Family Microcomputer Components SAB 80515/SAB 80C515 8-Bit Single-Chip Microcontroller Family User's Manual 08.95 SAB 80515 / SAB 80C515 Family Revision History: 8.95 Previous Releases: 12.90/10.92 Page Subjects

More information

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

Microtronics technologies Mobile: 99707 90092

Microtronics technologies Mobile: 99707 90092 For more Project details visit: http://www.projectsof8051.com/rfid-based-attendance-management-system/ Code Project Title 1500 RFid Based Attendance System Synopsis for RFid Based Attendance System 1.

More information

8051 Serial Port. Crystal TXD. I/O Device RXD. Embedded Systems 1 5-1 8051 Peripherals

8051 Serial Port. Crystal TXD. I/O Device RXD. Embedded Systems 1 5-1 8051 Peripherals 8051 Serial Port The 8051 contains a UART Universal Asynchronous Receiver Transmitter The serial port is full-duplex It can transmit and receive simultaneously 2 Port 3 pins are used to provide the serial

More information

8031AH 8051AH 8032AH 8052AH NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS

8031AH 8051AH 8032AH 8052AH NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS 8031AH 8051AH 8032AH 8052AH MCS 51 NMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS Automotive High Performance HMOS Process Internal Timers Event Counters 2-Level Interrupt Priority Structure 32 I O Lines (Four

More information

8051 MICROCONTROLLER COURSE

8051 MICROCONTROLLER COURSE 8051 MICROCONTROLLER COURSE Objective: 1. Familiarization with different types of Microcontroller 2. To know 8051 microcontroller in detail 3. Programming and Interfacing 8051 microcontroller Prerequisites:

More information

Flash Microcontroller. Architectural Overview. Features. Block Diagram. Figure 1. Block Diagram of the AT89C core

Flash Microcontroller. Architectural Overview. Features. Block Diagram. Figure 1. Block Diagram of the AT89C core Features 8-Bit CPU Optimized for Control Applications Extensive Boolean Processing Capabilities (Single-Bit Logic) On-Chip Flash Program Memory On-Chip Data RAM Bidirectional and Individually Addressable

More information

Keil C51 Cross Compiler

Keil C51 Cross Compiler Keil C51 Cross Compiler ANSI C Compiler Generates fast compact code for the 8051 and it s derivatives Advantages of C over Assembler Do not need to know the microcontroller instruction set Register allocation

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

Serial Communications

Serial Communications Serial Communications 1 Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs Operation

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

Design and Implementation of Home Monitoring System Using RF Technology

Design and Implementation of Home Monitoring System Using RF Technology International Journal of Advances in Electrical and Electronics Engineering 59 Available online at www.ijaeee.com & www.sestindia.org/volume-ijaeee/ ISSN: 2319-1112 Design and Implementation of Home Monitoring

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

Advanced Microcontrollers Grzegorz Budzyń Lecture. 3: Electrical parameters of microcontrollers 8051 family

Advanced Microcontrollers Grzegorz Budzyń Lecture. 3: Electrical parameters of microcontrollers 8051 family Advanced Microcontrollers Grzegorz Budzyń Lecture 3: Electrical parameters of microcontrollers 8051 family Plan Electrical parameters of microcontrollers 8051 core(8-bit) Main features 8051 based microcontrollers

More information

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 01 PIC Characteristics and Examples PIC microcontroller characteristics Power-on reset Brown out reset Simplified instruction set High speed execution Up to

More information

AT89C1051. 8-Bit Microcontroller with 1 Kbyte Flash. Features. Description. Pin Configuration

AT89C1051. 8-Bit Microcontroller with 1 Kbyte Flash. Features. Description. Pin Configuration AT89C1051 Features Compatible with MCS-51 Products 1 Kbyte of Reprogrammable Flash Memory Endurance: 1,000 Write/Erase Cycles 2.7 V to 6 V Operating Range Fully Static Operation: 0 Hz to 24 MHz Two-Level

More information

Hardware and Software Requirements

Hardware and Software Requirements C Compiler Real-Time OS Simulator Training Evaluation Boards Installing and Using the Keil Monitor-51 Application Note 152 May 31, 2000, Munich, Germany by Keil Support, Keil Elektronik GmbH support.intl@keil.com

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

DS87C520/DS83C520 EPROM/ROM High-Speed Micro

DS87C520/DS83C520 EPROM/ROM High-Speed Micro www.maxim-ic.com PRELIMINARY EPROM/ROM High-Speed Micro FEATURES 80C52-compatible - 8051 pin and instruction set compatible - Four 8-bit I/O ports - Three 16-bit timer/counters - 256 bytes scratchpad RAM

More information

Cellphone Based Device Control With Voice Acknowledgement

Cellphone Based Device Control With Voice Acknowledgement Cellphone Based Device Control With Voice Acknowledgement Avigyan Datta Gupta 1, Sayan Samanta 2, Avishek Acharjee 3 1,2 Future Institute of Engineering and Management, Kolkata-700150 3 Techno India, Kolkata-700150

More information

2.0 Command and Data Handling Subsystem

2.0 Command and Data Handling Subsystem 2.0 Command and Data Handling Subsystem The Command and Data Handling Subsystem is the brain of the whole autonomous CubeSat. The C&DH system consists of an Onboard Computer, OBC, which controls the operation

More information

DS87C530/DS83C530. EPROM/ROM Micro with Real Time Clock PRELIMINARY FEATURES PACKAGE OUTLINE DALLAS DS87C530 DS83C530 DALLAS DS87C530 DS83C530

DS87C530/DS83C530. EPROM/ROM Micro with Real Time Clock PRELIMINARY FEATURES PACKAGE OUTLINE DALLAS DS87C530 DS83C530 DALLAS DS87C530 DS83C530 PRELIMINARY DS87C530/DS83C530 EPROM/ROM Micro with Real Time Clock FEATURES 80C52 Compatible 8051 Instruction set compatible Four 8 bit I/O ports Three 16 bit timer/counters 256 bytes scratchpad RAM PACKAGE

More information

Building a computer. Electronic Numerical Integrator and Computer (ENIAC)

Building a computer. Electronic Numerical Integrator and Computer (ENIAC) Building a computer Electronic Numerical Integrator and Computer (ENIAC) CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors

More information

The Programming Interface

The Programming Interface : In-System Programming Features Program any AVR MCU In-System Reprogram both data Flash and parameter EEPROM memories Eliminate sockets Simple -wire SPI programming interface Introduction In-System programming

More information

TDA8029. 1. General description. 2. Features and benefits. Low power single card reader

TDA8029. 1. General description. 2. Features and benefits. Low power single card reader Rev. 3.3 19 July 2016 Product data sheet 1. General description The is a complete one chip, low cost, low power, robust smart card reader. Its different power reduction modes and its wide supply voltage

More information

Lecture N -1- PHYS 3330. Microcontrollers

Lecture N -1- PHYS 3330. Microcontrollers Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers

More information

Central Processing Unit

Central Processing Unit Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

4 Character 5x7 LED Matrix Display

4 Character 5x7 LED Matrix Display Mini project report on 4 Character 5x7 LED Matrix Display Submitted by Agarwal Vikas, MTech II, CEDT K.Sreenivasulu M.E (Micro) II, CEDT CENTRE FOR ELECTRONICS DESIGN AND TECHNOLOGY INDIAN INSTITUTE OF

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double

More information

Real-Time Clock. * Real-Time Computing, edited by Duncan A. Mellichamp, Van Nostrand Reinhold

Real-Time Clock. * Real-Time Computing, edited by Duncan A. Mellichamp, Van Nostrand Reinhold REAL-TIME CLOCK Real-Time Clock The device is not a clock! It does not tell time! It has nothing to do with actual or real-time! The Real-Time Clock is no more than an interval timer connected to the computer

More information

Microcontroller Based Low Cost Portable PC Mouse and Keyboard Tester

Microcontroller Based Low Cost Portable PC Mouse and Keyboard Tester Leonardo Journal of Sciences ISSN 1583-0233 Issue 20, January-June 2012 p. 31-36 Microcontroller Based Low Cost Portable PC Mouse and Keyboard Tester Ganesh Sunil NHIVEKAR *, and Ravidra Ramchandra MUDHOLKAR

More information

M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features

M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features 512-Kbit, serial flash memory, 50 MHz SPI bus interface Features 512 Kbits of flash memory Page program (up to 256 bytes) in 1.4 ms (typical) Sector erase (256 Kbits) in 0.65 s (typical) Bulk erase (512

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

EMBEDDED SYSTEM BASICS AND APPLICATION

EMBEDDED SYSTEM BASICS AND APPLICATION EMBEDDED SYSTEM BASICS AND APPLICATION TOPICS TO BE DISCUSSED System Embedded System Components Classifications Processors Other Hardware Software Applications 2 INTRODUCTION What is a system? A system

More information

DS1621 Digital Thermometer and Thermostat

DS1621 Digital Thermometer and Thermostat Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent

More information

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform

More information

456 26 Microcontrollers Figure 26-1 Objectives Key Words and Terms 26.1 OVERVIEW OF THE MICROCONTROLLER microcontroller

456 26 Microcontrollers Figure 26-1 Objectives Key Words and Terms 26.1 OVERVIEW OF THE MICROCONTROLLER microcontroller This sample chapter is for review purposes only. Copyright The Goodheart-Willcox Co., Inc. All rights reserved. 456 Electronic Communication and Data Systems Objectives After studying this chapter, you

More information

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic

More information

The Central Processing Unit:

The Central Processing Unit: The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. AT89LP52 - Preliminary

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. AT89LP52 - Preliminary Features 8-bit Microcontroller Compatible with 8051 Products Enhanced 8051 Architecture Single Clock Cycle per Byte Fetch 12 Clock per Machine Cycle Compatibility Mode Up to 20 MIPS Throughput at 20 MHz

More information

STEPPER MOTOR SPEED AND POSITION CONTROL

STEPPER MOTOR SPEED AND POSITION CONTROL STEPPER MOTOR SPEED AND POSITION CONTROL Group 8: Subash Anigandla Hemanth Rachakonda Bala Subramanyam Yannam Sri Divya Krovvidi Instructor: Dr. Jens - Peter Kaps ECE 511 Microprocessors Fall Semester

More information

Palaparthi.Jagadeesh Chand. Associate Professor in ECE Department, Nimra Institute of Science & Technology, Vijayawada, A.P.

Palaparthi.Jagadeesh Chand. Associate Professor in ECE Department, Nimra Institute of Science & Technology, Vijayawada, A.P. Patient Monitoring Using Embedded Palaparthi.Jagadeesh Chand Associate Professor in ECE Department, Nimra Institute of Science & Technology, Vijayawada, A.P Abstract The aim of this project is to inform

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52 Features Compatible with MCS -51 Products 8K Bytes of In-System Programmable (ISP) Flash Memory Endurance: 10,000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

Objectives. Units of Memory Capacity. CMPE328 Microprocessors (Spring 2007-08) Memory and I/O address Decoders. By Dr.

Objectives. Units of Memory Capacity. CMPE328 Microprocessors (Spring 2007-08) Memory and I/O address Decoders. By Dr. CMPE328 Microprocessors (Spring 27-8) Memory and I/O address ecoders By r. Mehmet Bodur You will be able to: Objectives efine the capacity, organization and types of the semiconductor memory devices Calculate

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section

PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section PRELIMINARY DS2434 Battery Identification Chip FEATURES Provides unique ID number to battery packs PACKAGE OUTLINE Eliminates thermistors by sensing battery temperature on chip DALLAS DS2434 1 2 3 256

More information

Programming A PLC. Standard Instructions

Programming A PLC. Standard Instructions Programming A PLC STEP 7-Micro/WIN32 is the program software used with the S7-2 PLC to create the PLC operating program. STEP 7 consists of a number of instructions that must be arranged in a logical order

More information

Programmable Logic Controller PLC

Programmable Logic Controller PLC Programmable Logic Controller PLC UPCO ICAI Departamento de Electrónica y Automática 1 PLC Definition PLC is a user friendly, microprocessor based, specialized computer that carries out control functions

More information

Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes:

Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes: Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes: An 8 or 16 bit microprocessor (CPU). A small amount of RAM. Programmable ROM and/or flash memory.

More information

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,

More information

DS1307ZN. 64 x 8 Serial Real-Time Clock

DS1307ZN. 64 x 8 Serial Real-Time Clock DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid

More information

CoE3DJ4 Digital Systems Design. Chapter 4: Timer operation

CoE3DJ4 Digital Systems Design. Chapter 4: Timer operation CoE3DJ4 Digital Systems Design Chapter 4: Timer operation Timer There are two 16-bit timers each with four modes of operation Timers are used for (a) interval timing, (b) event counting or (c) baud rate

More information

Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK

Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-16: Real time clock 1 Real Time Clock (RTC) A clock, which is based on the interrupts at preset intervals. An interrupt service routine executes

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

The I2C Bus. NXP Semiconductors: UM10204 I2C-bus specification and user manual. 14.10.2010 HAW - Arduino 1

The I2C Bus. NXP Semiconductors: UM10204 I2C-bus specification and user manual. 14.10.2010 HAW - Arduino 1 The I2C Bus Introduction The I2C-bus is a de facto world standard that is now implemented in over 1000 different ICs manufactured by more than 50 companies. Additionally, the versatile I2C-bus is used

More information

RF CONTROLLED VEHICLE ROBOT WITH METAL DETECTOR

RF CONTROLLED VEHICLE ROBOT WITH METAL DETECTOR RF CONTROLLED VEHICLE ROBOT WITH METAL DETECTOR PAGE NO. 1. ABSTRACT 10 2. INTRODUCTION TO EMBEDDED SYSTEMS 13 3. BLOCK DIAGRAM OF PROJECT 4. HARDWARE REQUIREMENTS 4.1 VOLTAGE REGULATOR 4.2 MICROCONTROLLER

More information

Chapter 5, The Instruction Set Architecture Level

Chapter 5, The Instruction Set Architecture Level Chapter 5, The Instruction Set Architecture Level 5.1 Overview Of The ISA Level 5.2 Data Types 5.3 Instruction Formats 5.4 Addressing 5.5 Instruction Types 5.6 Flow Of Control 5.7 A Detailed Example: The

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

Monitoring of Intravenous Drip Rate

Monitoring of Intravenous Drip Rate Monitoring of Intravenous Drip Rate Vidyadhar V. Kamble, Prem C. Pandey, Chandrashekar P. Gadgil, and Dinesh S. Choudhary Abstract A drip rate meter, for monitoring intravenous infusion, is developed using

More information

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

More information

Design Analysis of a Security Lock System using Pass-Code and Smart-Card

Design Analysis of a Security Lock System using Pass-Code and Smart-Card IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834, p- ISSN: 2278-8735. Volume 4, Issue 6 (Jan. - Feb. 2013), PP 64-72 Design Analysis of a Security Lock System using

More information

Timer A (0 and 1) and PWM EE3376

Timer A (0 and 1) and PWM EE3376 Timer A (0 and 1) and PWM EE3376 General Peripheral Programming Model Each peripheral has a range of addresses in the memory map peripheral has base address (i.e. 0x00A0) each register used in the peripheral

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

1. Computer System Structure and Components

1. Computer System Structure and Components 1 Computer System Structure and Components Computer System Layers Various Computer Programs OS System Calls (eg, fork, execv, write, etc) KERNEL/Behavior or CPU Device Drivers Device Controllers Devices

More information

Embedded. Engineer s. Development. Tool (EEDT 5.0)

Embedded. Engineer s. Development. Tool (EEDT 5.0) Embedded Engineer s Development Tool (EEDT 5.0) User Manual and Tutorial Handbook DeccanRobots Developed and Distributed by DeccanRobots As a part of Embedded Engineer s Development Tool 5.0 www.deccanrobots.com

More information

AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE

AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the

More information

8XC51FX CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS

8XC51FX CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLERS Commercial Express 87C51FA 83C51FA 80C51FA 87C51FB 83C51FB 87C51FC 83C51FC See Table 1 for Proliferation Options High Performance CHMOS EPROM ROM CPU 12 24 33 MHz

More information

80C51/87C51/80C52/87C52 80C51 8-bit microcontroller family 4 K/8 K OTP/ROM low voltage (2.7 V 5.5 V), low power, high speed (33 MHz), 128/256 B RAM

80C51/87C51/80C52/87C52 80C51 8-bit microcontroller family 4 K/8 K OTP/ROM low voltage (2.7 V 5.5 V), low power, high speed (33 MHz), 128/256 B RAM INTEGRATED CIRCUITS low power, high speed (33 MHz), 28/256 B RAM Replaces datasheet 80C5/87C5/80C3 of 2000 Jan 20 2000 Aug 07 DESCRIPTION The Philips is a high-performance static 80C5 design fabricated

More information

A N. O N Output/Input-output connection

A N. O N Output/Input-output connection Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Atmel Norway 2005. XMEGA Introduction

Atmel Norway 2005. XMEGA Introduction Atmel Norway 005 XMEGA Introduction XMEGA XMEGA targets Leadership on Peripheral Performance Leadership in Low Power Consumption Extending AVR market reach XMEGA AVR family 44-100 pin packages 16K 51K

More information

Interfacing To Alphanumeric Displays

Interfacing To Alphanumeric Displays Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems

More information

Spacecraft Computer Systems. Colonel John E. Keesee

Spacecraft Computer Systems. Colonel John E. Keesee Spacecraft Computer Systems Colonel John E. Keesee Overview Spacecraft data processing requires microcomputers and interfaces that are functionally similar to desktop systems However, space systems require:

More information

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253 Features Compatible with MCS -51 Products 12K Bytes of In-System Programmable (ISP) Flash Program Memory SPI Serial Interface for Program Downloading Endurance: 10,000 Write/Erase Cycles 2K Bytes EEPROM

More information

8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.

8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1. AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Motorola M68HC11 Specs Assembly Programming Language BUFFALO Topics of Discussion Microcontrollers M68HC11 Package & Pinouts Accumulators Index Registers Special Registers

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Programming PIC Microcontrollers in PicBasic Pro Lesson 1 Cornerstone Electronics Technology and Robotics II

Programming PIC Microcontrollers in PicBasic Pro Lesson 1 Cornerstone Electronics Technology and Robotics II Programming PIC Microcontrollers in PicBasic Pro Lesson 1 Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro Program

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information