Image Compression. Image Data

Size: px
Start display at page:

Download "Image Compression. Image Data"

Transcription

1 Image Compression Image Data Inherently large M*N*bytes_per_pixel Consider this 30 frames per second video 640x480 (R-G-B-A) frame 4 bytes per pixel equals ~ MB per frame 30MB for second Over GB for minute

2 Image Compression We need a way to compress image data Conserve bandwidth For backing store (disk drive, CD-ROM) Network transmission Data Compression Two categories Information Preserving Error free compression Original data can be recovered completely Lossy Original data is approximated Less than perfect Generally allows much higher compression 2

3 Basics Data Compression Process of reducing the amount of data required to represent a given quantity of information Data vs. Information Data and Information are not the same thing Basics Data vs. Information Data the means by which information is conveyed various amounts of data can convey the same information Information A signal that contains no uncertainty 3

4 Example of data vs. information Dataset Dataset 2 NxN image circle(0,0,r) NxN*byte (pixel data) 24* byte (24 ascii characters to store the above text) Redundancy Redundancy data that provides no relevant information data that restates what is already known For example say N and N2 denote the number of data units in two sets that represent the same information Relative redundancy of the first set of data N is R D = - /C r where C r is the Compression Ratio C r = n / n2 4

5 Redundancy Relative Redundancy of N to N2 R D = - /C r Compression Ratio C r = n / n2 if (n2 = n) C r =, R D = 0 Compression Ratio is, implying there is no redundancy if (n2 << n) Highly redundant data N2 is much more compact than N i.e., high compression ratio N = 0 & N2 = Example Compression Ratio C R = N/N2 = 0 (or 0:) R D = - (/0) or 0.9 Implying 90% of the data in N is redundant 5

6 Compression Given a set of N data units Try to remove redundant data that is not needed to express the underlying information Hopefully your new set, N N << N Image Compression Three basic types of redundancies Coding Redundancy Interpixel Redundancy Psycho-visual Redundancy Image compression Reduce one or more of these redundancies 6

7 Coding Redundancy Recall the Histogram p r (r k ) = n k /n k=0,,2,.., L- L is the number of gray levels n k is the number of pixels with gray level r k n is the total number of pixels p r (r k ) is the probability that r k will occur in this image Let L(r k ) = the number of bits needed to represent the gray level r k Coding Redundancy Let L(r k ) = the number of bits needed to represent the gray level r k The average number of bits needed to represented each pixel is Lavg = Σ L(r k ) p r (r k ) Thus, the total number of bits needed to code an image N*M*Lavg 7

8 Coding Redundancy Example Consider an image with 8 gray levels L(r k ) is a natural binary coding set m-bit counting sequence ie (2 m ) thus, to encode 8 distinct codes needs m = 3 Each pixel uses 3 bits Lavg = 3bits Coding Redundancy However, consider using the codes in this table Lavg = Sum l 2 (r k )p r (r k ) = 2(9) + 2(0.25) + 2(0.2) + 3(6) + 4(0.08) + 5(0.06) + 6(0.03) + 6(0.02) Lavg = 2.7 bits 8

9 Coding Redundancy Lavg = 3 bits L2avg = 2.7 bits Cr = Lavg/L2avg = 3/2.7 or. Rd = - /. = Thus approximately 0 percent of the data in L is redundant Variable Length Coding Assigning fewer bits to more probable symbols achieves compression This process is commonly referred to as variable-length-coding What is the pitfall? Equally probable symbols Generally no gain.. Then don t encode... Need to know how to choose the symbol 9

10 Variable Length Coding and Compression If gray-levels of an image are coded using more symbols than absolutely necessary It is said to contain coding redundancy Variable length coding is very powerful and is frequently applied Not just for images Characters strings too Gzip, Zip, etc use a form of variable length coding Interpixel Redundancy Think of an average binary image The value of a pixel can be reasonably predicted from its neighbors Sometimes called Spatial Redundancy Geometric Redundancy Interframe Redundancy Well call it interpixel redundancy 0

11 Interpixel Redundancy In order to reduce redundancy in 2D pixel arrays We can convert them into more efficient, non-visual format Transforms of this type are called mappings they are reversible if the original image elements can be reconstructed from the transformed data sets Run-length Encoding Each scan line, y, of an binary image f(:,y) is encoded as a sequence of 0 and s f(0,y) f(,y) f(2,y)... f(n-, y) An alternative encode as a pair of sequences (g,r) (g2,r2).. (gi,ri)... (gn,rn) where g encodes the gray-level (0 or ) and ri encodes the run length in pixels

12 Example Threshold Example The entire image in previous example 024x343 pixels ( bit) required only 2,66 runs each run requires bits to encode N = 024x343 (the binary image) N2 = 2,66 * (run length encoded image) Cr = (024)(343)/(2,66*) = 2.63 Rd = - /2.63 = 0.62 N (the binary image) is roughly 62% redundant 2

13 Psychovisual Redundancy Brightness as perceived by the eye is dependent on many things The fact is, the eye does not respond with equal sensitivity to all visual information Some information has less relative importance than other information This information is said to be psychovisually redundant It can be eliminated without significantly impairing visual quality Psychovisual Redundancy Unlike Coding and Interpixel Redundancy Psychovisual is associated with real or quantifiable visual information It is possible only because the elimination of this data does not effect the visual process But we lose quantifiable information Thus, this type of reduction is called quantification And it is lossy 3

14 Lots of examples Improved Gray-Scale Quantization (IGS) Maps 8 bits to 4 bits Adds some random noise to pixels before quantization This noise helps removes our sensitivity to edges created by quantization Original Straight Quantization IGS Quantization Lots of examples Color Quantization is very common MPEG and (digital video) DV Standards Terms like 4:2:2 For every 4 intensity pixels only 2 color pixels are stored (in X and Y direction) 4:: For every 4 intensity pixels only color pixels are stored (in X and Y direction) 4

15 Temporal Interlacing TV signal is interlaced frame is composed of 2 fields one with odd scanlines one with even scanlines Frame rate is 29.9 per second (NTSC) 24 per second (PAL) But ~60 fields per second are displayed Exploits temporal and spatial coherency progressive scan Full frame Interlacing Odd Even (De-interlacing) 5

16 Fidelity Criteria Psychovisual data reduction results in a loss of quantitative visual information Because information of interest may be lost a repeatable or reproducible means of quantifying the nature and extent of information loss is desirable Fidelity Criteria Two class of criteria are used Objective fidelity criteria Subjective fidelity criteria Objective loss can be expressed as a function of the input image and the resulting compressed (then decompressed) image 6

17 Objective Fidelity Criteria Let f(x,y) be the input image Let f (x,y) be the approximated f(x,y) from compression/decompression For any value of x and y, the error e(x,y) between f(x,y) and f (x,y) is e(x,y) = f (x,y) - f(x,y) Objective Fidelity Criteria The total error between the two images e = M x= 0 N y= 0 [ f '( x, y) f ( x, y)] The Root-Mean-Square Error e rms = M 2 [ [ '(, ) (, )] ] N f x y f x y 2 MN x= 0 y= 0 7

18 Objective Fidelity Criteria Commonly used fidelity criteria is mean-square signal-to-noise ratio defined as: SNR x= 0 y= 0 ms = M N x= 0 y= 0 M N f '( x, y) [ f '( x, y) f ( x, y)] 2 2 signal noise (Mean squared error) Subjective Fidelity Criteria Human-based criteria Usually side-by-side comparison 8

19 Image Compression Models f(x,y) Source encoder Channel encoder Channel Channel decoder Source decoder f (x,y) f(x,y) Mapper Quantizer Symbol Encoder Symbol decoder Inverse Mapper f (x,y) Loss Error-Free Image Compression (Lossless Compression) 9

20 Error-Free Compression To reduce only coding redundancy Most popular technique is Huffman Encoding This is a variable-length coding technique Huffman encoding yields the smallest possible number of code symbols per source symbol Optimal for a fixed number of source symbols subject that source symbols are coded one at a time Huffman Encoding Huffman encoding Perform a series of source reductions Ordering the probabilities of the symbols occurrence combine the lowest probable symbols into a single symbol that replaces them in the next reduction assigns codes based on these reduction This is variable-length coding So, we will have to build variable-length codes 20

21 Huffman Encoding (Reduction) a2 a6 a a4 a3 a5 Original Source Symbol Probability Source Reduction 3 4 Huffman Encoding (Reduction) a2 a6 a a4 a3 a5 Original Source Symbol Probability Source Reduction 3 4 2

22 Huffman Encoding (Reduction) Symbol a2 a6 a a4 a3 a5 Original Source Source Reduction Probability Huffman Encoding (Reduction) a2 a6 a a4 a3 a5 Original Source Symbol Source Reduction Probability

23 Huffman Encoding (Reduction) a2 a6 a a4 a3 a5 Original Source Symbol Source Reduction Probability Code assignment Original Source Source Reduction Sym Prob Code a a6 a 0.2 a4 a a

24 24 Code assignment 0.04 a a3 a a 00 a a Code Prob Sym Source Reduction Original Source Code assignment 0.04 a a3 0 a a a a Code Prob Sym Source Reduction Original Source

25 25 Code assignment 0.04 a a a a a a Code Prob Sym Source Reduction Original Source Code assignment a a a a a a Code Prob Sym Source Reduction Original Source

26 Huffman Encoding Uniquely Decodable a2 Symbol Table consider a6 a a a3 a a2 a2 a6 a3 a Huffman Encoding Very powerful encoding scheme Produces the optimal codes Given an input symbol set And its known distribution Need to store symbol table along with compressed data! 26

27 Error Free Interpixel Encoding Run Length Encoding d d2 d3 We call this a run d,d2,d3,d4,d5,d6,d7,.... Distances alternate between white and black 27

28 Run-length coding variations Divide image into 2D regions If all white, assign a If all black, assign a 00 Otherwise, code the block using some technique (D RLE, etc) Previous Row RAC Relative address coding c Current Row e c Look at white to black transitions In current row, position c is the first transition This run is length ec Examine previous row at position c Find the first transition before c, c this distance is c c 28

29 Previous Row RAC Relative address coding c Current Row e c Encode the smallest distance, d = min( ec, c c ) You ll need to a flag to denote which distance is used (, or 0) Need to handle boundaries The idea is to reduce the number of bits needed to store the run Predictive Encoding Consider a gray-scale image Try to predict what a pixel s value is going to be Only encode the difference between the predicted value and the real value 29

30 Predictive Encoding f(x,y) + e(x,y) Compressed Image Predictor Nearest integer f (x,y) e(x,y) = f(x,y) f (x,y) Predictive Decoding Compressed Image e(x,y) + f(x,y) Predictor f (x,y) 30

31 Predictor Various local, global, and adaptive methods can be used Most common is a linear combination of m previous pixels f '( m x, y) = round α i f i= ( x i, y) fixed weights Predictor Differential Coding If previous pixel is used we call this differential coding m= and α= I Encode the difference Can reduce symbol set size Helps variable length coding x 3

32 Example Original f(x,y) e(x,y) Differential Coding Interpixel Coding Encoding Interpixel coding Is usually followed by variable-length coding RLE or Predictive Huffman Source Encoder 32

33 Image Compression Models f(x,y) Source encoder Channel encoder Channel Channel decoder Source decoder f (x,y) f(x,y) Mapper Quantizer Symbol Encoder Symbol decoder Inverse Mapper f (x,y) Loss Image Compression Schemes Error Free Compression (often called lossless compression) Data can be recovered completely Some applications require this type of image compression Medical imagery Digital Preservation Digital archives of black and white documents However, most compression schemes allow for loss in order to achieve high compression rates 33

34 Next Lecture Lossy Compression Quantization Transform-based compression With Quantization JPEG standard 34

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8. Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image

More information

Information, Entropy, and Coding

Information, Entropy, and Coding Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated

More information

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES 1 JAGADISH H. PUJAR, 2 LOHIT M. KADLASKAR 1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli,

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

Video compression: Performance of available codec software

Video compression: Performance of available codec software Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes

More information

encoding compression encryption

encoding compression encryption encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -

More information

JPEG Image Compression by Using DCT

JPEG Image Compression by Using DCT International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693 JPEG Image Compression by Using DCT Sarika P. Bagal 1* and Vishal B. Raskar 2 1*

More information

Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera

Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera Comparison of different image compression formats ECE 533 Project Report Paula Aguilera Introduction: Images are very important documents nowadays; to work with them in some applications they need to be

More information

Video-Conferencing System

Video-Conferencing System Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

Conceptual Framework Strategies for Image Compression: A Review

Conceptual Framework Strategies for Image Compression: A Review International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Conceptual Framework Strategies for Image Compression: A Review Sumanta Lal

More information

Compression techniques

Compression techniques Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion

More information

For Articulation Purpose Only

For Articulation Purpose Only E305 Digital Audio and Video (4 Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of thinking, learning, problem solving, team work, communication,

More information

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding C. SARAVANAN cs@cc.nitdgp.ac.in Assistant Professor, Computer Centre, National Institute of Technology, Durgapur,WestBengal,

More information

Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel

Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Geographic Information Technology Training Alliance (GITTA) presents: Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Content 1.... 2 1.1. General Compression Concepts...3

More information

Best practices for producing quality digital video files

Best practices for producing quality digital video files University of Michigan Deep Blue deepblue.lib.umich.edu 2011-03-09 Best practices for producing quality digital video files Formats Group, Deep Blue http://hdl.handle.net/2027.42/83222 Best practices for

More information

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac. Video Encryption Exploiting Non-Standard 3D Data Arrangements Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.at Andreas Uhl 1 Carinthia Tech Institute & Salzburg University Outline

More information

Introduction to Medical Image Compression Using Wavelet Transform

Introduction to Medical Image Compression Using Wavelet Transform National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自

More information

FCE: A Fast Content Expression for Server-based Computing

FCE: A Fast Content Expression for Server-based Computing FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao li@mentor.com Fei Li Department of Computer Science

More information

Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

More information

Introduzione alle Biblioteche Digitali Audio/Video

Introduzione alle Biblioteche Digitali Audio/Video Introduzione alle Biblioteche Digitali Audio/Video Biblioteche Digitali 1 Gestione del video Perchè è importante poter gestire biblioteche digitali di audiovisivi Caratteristiche specifiche dell audio/video

More information

Figure 1: Relation between codec, data containers and compression algorithms.

Figure 1: Relation between codec, data containers and compression algorithms. Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization

Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IV (Mar-Apr. 2014), PP 43-47 Secured Lossless Medical Image Compression Based On Adaptive Binary

More information

WHITE PAPER DECEMBER 2010 CREATING QUALITY BAR CODES FOR YOUR MOBILE APPLICATION

WHITE PAPER DECEMBER 2010 CREATING QUALITY BAR CODES FOR YOUR MOBILE APPLICATION DECEMBER 2010 CREATING QUALITY BAR CODES FOR YOUR MOBILE APPLICATION TABLE OF CONTENTS 1 Introduction...3 2 Printed bar codes vs. mobile bar codes...3 3 What can go wrong?...5 3.1 Bar code Quiet Zones...5

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 11 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION Image compression is mainly used to reduce storage space, transmission time and bandwidth requirements. In the subsequent sections of this chapter, general

More information

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

More information

Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska

Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska PROBLEM STATEMENT A ROBUST COMPRESSION SYSTEM FOR LOW BIT RATE TELEMETRY - TEST RESULTS WITH LUNAR DATA Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska The

More information

Object Recognition and Template Matching

Object Recognition and Template Matching Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of

More information

Standard encoding protocols for image and video coding

Standard encoding protocols for image and video coding International Telecommunication Union Standard encoding protocols for image and video coding Dave Lindbergh Polycom Inc. Rapporteur, ITU-T Q.E/16 (Media Coding) Workshop on Standardization in E-health

More information

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different

More information

Understanding HD: Frame Rates, Color & Compression

Understanding HD: Frame Rates, Color & Compression Understanding HD: Frame Rates, Color & Compression HD Format Breakdown An HD Format Describes (in no particular order) Resolution Frame Rate Bit Rate Color Space Bit Depth Color Model / Color Gamut Color

More information

Digital Audio and Video Data

Digital Audio and Video Data Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

More information

Scanners and How to Use Them

Scanners and How to Use Them Written by Jonathan Sachs Copyright 1996-1999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types

More information

ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS

ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS Dasaradha Ramaiah K. 1 and T. Venugopal 2 1 IT Department, BVRIT, Hyderabad, India 2 CSE Department, JNTUH,

More information

Introduction to Digital Video

Introduction to Digital Video Introduction to Digital Video Significance of the topic With the increasing accessibility of technology for everyday people, things are starting to get digitalized: digital camera, digital cable, digital

More information

ELECTRONIC DOCUMENT IMAGING

ELECTRONIC DOCUMENT IMAGING AIIM: Association for Information and Image Management. Trade association and professional society for the micrographics, optical disk and electronic image management markets. Algorithm: Prescribed set

More information

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator. CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

More information

Digital Versus Analog Lesson 2 of 2

Digital Versus Analog Lesson 2 of 2 Digital Versus Analog Lesson 2 of 2 HDTV Grade Level: 9-12 Subject(s): Science, Technology Prep Time: < 10 minutes Activity Duration: 50 minutes Materials Category: General classroom National Education

More information

Video compression. Contents. Some helpful concepts.

Video compression. Contents. Some helpful concepts. Video compression. Uncompressed video is extremely large, which makes it hard to store and move. In most cases we compress video to manage it. The amount of compression depends on the task at hand. Contents

More information

What Resolution Should Your Images Be?

What Resolution Should Your Images Be? What Resolution Should Your Images Be? The best way to determine the optimum resolution is to think about the final use of your images. For publication you ll need the highest resolution, for desktop printing

More information

A deterministic fractal is an image which has low information content and no inherent scale.

A deterministic fractal is an image which has low information content and no inherent scale. FRACTAL IMAGE COMPRESSION: A RESOLUTION INDEPENDENT REPRESENTATION FOR IMAGER?? Alan D. Sloan 5550 Peachtree Parkway Iterated Systems, Inc. Norcross, Georgia 30092 1. Background A deterministic fractal

More information

Raster Data Structures

Raster Data Structures Raster Data Structures Tessellation of Geographical Space Geographical space can be tessellated into sets of connected discrete units, which completely cover a flat surface. The units can be in any reasonable

More information

Analog-to-Digital Voice Encoding

Analog-to-Digital Voice Encoding Analog-to-Digital Voice Encoding Basic Voice Encoding: Converting Analog to Digital This topic describes the process of converting analog signals to digital signals. Digitizing Analog Signals 1. Sample

More information

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary:

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary: Video Compression : 6 Multimedia Systems (Module Lesson ) Summary: 6 Coding Compress color motion video into a low-rate bit stream at following resolutions: QCIF (76 x ) CIF ( x 88) Inter and Intra Frame

More information

Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application

Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine

More information

balesio Native Format Optimization Technology (NFO)

balesio Native Format Optimization Technology (NFO) balesio AG balesio Native Format Optimization Technology (NFO) White Paper Abstract balesio provides the industry s most advanced technology for unstructured data optimization, providing a fully system-independent

More information

!"#$"%&' What is Multimedia?

!#$%&' What is Multimedia? What is Multimedia? %' A Big Umbrella Goal of This Course Understand various aspects of a modern multimedia pipeline Content creating, editing Distribution Search & mining Protection Hands-on experience

More information

ADVANTAGES OF AV OVER IP. EMCORE Corporation

ADVANTAGES OF AV OVER IP. EMCORE Corporation ADVANTAGES OF AV OVER IP More organizations than ever before are looking for cost-effective ways to distribute large digital communications files. One of the best ways to achieve this is with an AV over

More information

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

More information

Diffusion and Data compression for data security. A.J. Han Vinck University of Duisburg/Essen April 2013 Vinck@iem.uni-due.de

Diffusion and Data compression for data security. A.J. Han Vinck University of Duisburg/Essen April 2013 Vinck@iem.uni-due.de Diffusion and Data compression for data security A.J. Han Vinck University of Duisburg/Essen April 203 Vinck@iem.uni-due.de content Why diffusion is important? Why data compression is important? Unicity

More information

Understanding Video Latency What is video latency and why do we care about it?

Understanding Video Latency What is video latency and why do we care about it? By Pete Eberlein, Sensoray Company, Inc. Understanding Video Latency What is video latency and why do we care about it? When choosing components for a video system, it is important to understand how the

More information

Understanding Compression Technologies for HD and Megapixel Surveillance

Understanding Compression Technologies for HD and Megapixel Surveillance When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance

More information

Hybrid Lossless Compression Method For Binary Images

Hybrid Lossless Compression Method For Binary Images M.F. TALU AND İ. TÜRKOĞLU/ IU-JEEE Vol. 11(2), (2011), 1399-1405 Hybrid Lossless Compression Method For Binary Images M. Fatih TALU, İbrahim TÜRKOĞLU Inonu University, Dept. of Computer Engineering, Engineering

More information

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ. Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your

More information

Sommario [1/2] Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali

Sommario [1/2] Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali Introduzione alle Biblioteche Digitali Sommario [1/2] Cenni storici Vannevar Bush Dalle Biblioteche ai Cataloghi Automatizzati Gli OPAC accessibili via Web Le Biblioteche Digitali Cos è una Biblioteca

More information

Analysis of Compression Algorithms for Program Data

Analysis of Compression Algorithms for Program Data Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory

More information

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- sumedha.phatak@mavs.uta.edu Objective: A study, implementation and comparison of

More information

Characterizing Digital Cameras with the Photon Transfer Curve

Characterizing Digital Cameras with the Photon Transfer Curve Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

White paper. HDTV (High Definition Television) and video surveillance

White paper. HDTV (High Definition Television) and video surveillance White paper HDTV (High Definition Television) and video surveillance Table of contents Introduction 3 1. HDTV impact on video surveillance market 3 2. Development of HDTV 3 3. How HDTV works 4 4. HDTV

More information

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden)

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Quality Estimation for Scalable Video Codec Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Purpose of scalable video coding Multiple video streams are needed for heterogeneous

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

Today s topics. Digital Computers. More on binary. Binary Digits (Bits)

Today s topics. Digital Computers. More on binary. Binary Digits (Bits) Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro

More information

Prepared by: Paul Lee ON Semiconductor http://onsemi.com

Prepared by: Paul Lee ON Semiconductor http://onsemi.com Introduction to Analog Video Prepared by: Paul Lee ON Semiconductor APPLICATION NOTE Introduction Eventually all video signals being broadcasted or transmitted will be digital, but until then analog video

More information

2695 P a g e. IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India

2695 P a g e. IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India Integrity Preservation and Privacy Protection for Digital Medical Images M.Krishna Rani Dr.S.Bhargavi IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India Abstract- In medical treatments, the integrity

More information

How to Send Video Images Through Internet

How to Send Video Images Through Internet Transmitting Video Images in XML Web Service Francisco Prieto, Antonio J. Sierra, María Carrión García Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería Telemática Escuela Superior

More information

Jitter Measurements in Serial Data Signals

Jitter Measurements in Serial Data Signals Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b

LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b LZ77 The original LZ77 algorithm works as follows: A phrase T j starting at a position i is encoded as a triple of the form distance, length, symbol. A triple d, l, s means that: T j = T [i...i + l] =

More information

ENG4BF3 Medical Image Processing. Image Visualization

ENG4BF3 Medical Image Processing. Image Visualization ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues

More information

Colored Hats and Logic Puzzles

Colored Hats and Logic Puzzles Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try

More information

ENGINEERING COMMITTEE Digital Video Subcommittee SCTE 20 2012 METHODS FOR CARRIAGE OF CEA-608 CLOSED CAPTIONS AND NON-REAL TIME SAMPLED VIDEO

ENGINEERING COMMITTEE Digital Video Subcommittee SCTE 20 2012 METHODS FOR CARRIAGE OF CEA-608 CLOSED CAPTIONS AND NON-REAL TIME SAMPLED VIDEO ENGINEERING COMMITTEE Digital Video Subcommittee SCTE 20 2012 METHODS FOR CARRIAGE OF CEA-608 CLOSED CAPTIONS AND NON-REAL TIME SAMPLED VIDEO NOTICE The Society of Cable Telecommunications Engineers (SCTE)

More information

HIGH-DEFINITION: THE EVOLUTION OF VIDEO CONFERENCING

HIGH-DEFINITION: THE EVOLUTION OF VIDEO CONFERENCING HIGH-DEFINITION: THE EVOLUTION OF VIDEO CONFERENCING Technology Brief Polycom, Inc. 4750 Willow Road Pleasanton, CA 94588 1.800.POLYCOM This white paper defines high-definition (HD) and how it relates

More information

The Blu-ray Disc. Teacher's manual. Jean Schleipen, Philips Research, Eindhoven, The Netherlands

The Blu-ray Disc. Teacher's manual. Jean Schleipen, Philips Research, Eindhoven, The Netherlands Jean Schleipen, Philips Research, Eindhoven, The Netherlands Many parties were involved in making this project available for schools: This technology project was originally developed by Philips (The Netherlands)

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

Fast Arithmetic Coding (FastAC) Implementations

Fast Arithmetic Coding (FastAC) Implementations Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by

More information

Understanding Megapixel Camera Technology for Network Video Surveillance Systems. Glenn Adair

Understanding Megapixel Camera Technology for Network Video Surveillance Systems. Glenn Adair Understanding Megapixel Camera Technology for Network Video Surveillance Systems Glenn Adair Introduction (1) 3 MP Camera Covers an Area 9X as Large as (1) VGA Camera Megapixel = Reduce Cameras 3 Mega

More information

Basics of Digital Recording

Basics of Digital Recording Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a

More information

Technical Information. Digital Signals. 1 bit. Part 1 Fundamentals

Technical Information. Digital Signals. 1 bit. Part 1 Fundamentals Technical Information Digital Signals 1 1 bit Part 1 Fundamentals t Technical Information Part 1: Fundamentals Part 2: Self-operated Regulators Part 3: Control Valves Part 4: Communication Part 5: Building

More information

Parametric Comparison of H.264 with Existing Video Standards

Parametric Comparison of H.264 with Existing Video Standards Parametric Comparison of H.264 with Existing Video Standards Sumit Bhardwaj Department of Electronics and Communication Engineering Amity School of Engineering, Noida, Uttar Pradesh,INDIA Jyoti Bhardwaj

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Quick start guide! Terri Meyer Boake

Quick start guide! Terri Meyer Boake Film Editing Tutorial Quick start guide! Terri Meyer Boake 1. Preparing yourself and your files: This information is valid for all film editing software: FCP, Premiere (the version of FC being used is

More information

Digital Image Requirements for New Online US Visa Application

Digital Image Requirements for New Online US Visa Application Digital Image Requirements for New Online US Visa Application As part of the electronic submission of your DS-160 application, you will be asked to provide an electronic copy of your photo. The photo must

More information

Image Compression and Decompression using Adaptive Interpolation

Image Compression and Decompression using Adaptive Interpolation Image Compression and Decompression using Adaptive Interpolation SUNILBHOOSHAN 1,SHIPRASHARMA 2 Jaypee University of Information Technology 1 Electronicsand Communication EngineeringDepartment 2 ComputerScience

More information

H.264/MPEG-4 AVC Video Compression Tutorial

H.264/MPEG-4 AVC Video Compression Tutorial Introduction The upcoming H.264/MPEG-4 AVC video compression standard promises a significant improvement over all previous video compression standards. In terms of coding efficiency, the new standard is

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Version ECE IIT, Kharagpur Lesson H. andh.3 Standards Version ECE IIT, Kharagpur Lesson Objectives At the end of this lesson the students should be able to :. State the

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

The Ad Hoc Group on television evaluation materials

The Ad Hoc Group on television evaluation materials SPECIAL REPORT FROM THE AD HOC GROUP Mastering and Archiving Uncompressed Digital Video Test Materials By Charles Fenimore This is a report on the status of the SMPTE Ad Hoc Group (AHG) charged with creating

More information

PRODUCING DV VIDEO WITH PREMIERE & QUICKTIME

PRODUCING DV VIDEO WITH PREMIERE & QUICKTIME This article contains guidelines and advice on producing DV video for the screen using a DV camcorder, Adobe Premiere and QuickTime. PRODUCING DV VIDEO WITH PREMIERE & QUICKTIME PRODUCING DV VIDEO WITH

More information

Parameter values for the HDTV standards for production and international programme exchange

Parameter values for the HDTV standards for production and international programme exchange Recommendation ITU-R BT.79-6 (6/215) Parameter values for the HDTV standards for production and international programme exchange BT Series Broadcasting service (television) ii Rec. ITU-R BT.79-6 Foreword

More information

C Implementation & comparison of companding & silence audio compression techniques

C Implementation & comparison of companding & silence audio compression techniques ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 26 C Implementation & comparison of companding & silence audio compression techniques Mrs. Kruti Dangarwala 1 and Mr. Jigar Shah 2 1 Department of Computer

More information

Study and Implementation of Video Compression standards (H.264/AVC, Dirac)

Study and Implementation of Video Compression standards (H.264/AVC, Dirac) Study and Implementation of Video Compression standards (H.264/AVC, Dirac) EE 5359-Multimedia Processing- Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) Objective A study, implementation and comparison

More information

MEMORY STORAGE CALCULATIONS. Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun)

MEMORY STORAGE CALCULATIONS. Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun) 1/29/2007 Calculations Page 1 MEMORY STORAGE CALCULATIONS Professor Jonathan Eckstein (adapted from a document due to M. Sklar and C. Iyigun) An important issue in the construction and maintenance of information

More information