Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding
|
|
|
- Karen Cook
- 10 years ago
- Views:
Transcription
1 Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding C. SARAVANAN Assistant Professor, Computer Centre, National Institute of Technology, Durgapur,WestBengal, India, Pin R. PONALAGUSAMY Professor, Department of Mathematics, National Institute of Technology, Tiruchirappalli, Tamilnadu, India, Pin Abstract Usage of Image has been increasing and used in many applications. Image compression plays vital role in saving storage space and saving time while sending images over network. A new compression technique proposed to achieve more compression ratio by reducing number of source symbols. The source symbols are reduced by applying source symbols reduction and further the Huffman coding is applied to achieve compression. The source symbols reduction technique reduces the number of source symbols by combining together to form a new symbol. Therefore, the number of Huffman code to be generated also reduced. The Huffman code symbols reduction achieves better compression ratio. The experiment has been conducted using the proposed technique and the Huffman coding on standard images. The experiment result has analyzed and the result shows that the newly proposed compression technique achieves 10% more compression ratio than the regular Huffman coding. Keywords: Lossless Image Compression, Source Symbols Reduction, Huffman Coding. 1. INTRODUCTION The image compression highly used in all applications like medical imaging, satellite imaging, etc. The image compression helps to reduce the size of the image, so that the compressed image could be sent over the computer network from one place to another in short amount of time. Also, the compressed image helps to store more number of images on the storage device [1-4,]. It s well known that the Huffman s algorithm is generating minimum redundancy codes compared to other algorithms [6-11]. The Huffman coding has effectively used in text, image, video compression, and conferencing system such as, JPEG, MPEG-2, MPEG-4, and H.263 etc. [12]. The Huffman coding technique collects unique symbols from the source image and calculates its probability value for each symbol and sorts the symbols based on its probability value. Further, from the lowest probability value symbol to the highest probability value symbol, two symbols combined at a time to form a binary tree. Moreover, allocates zero to the left node and one to the right node starting from the root of the tree. To obtain Huffman code for a particular symbol, all zero and one collected from the root to that particular node in the same order [13 and 14]. 2. PROPOSED COMPRESSION TECHNIQUE The number of source symbols is a key factor in achieving compression ratio. A new compression technique proposed to reduce the number of source symbols. The source symbols combined together in the same order from left to right to form a less number of new source symbols. The source symbols reduction explained with an example as shown below. International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 246
2 The following eight symbols are assumed as part of an image, 1, 2, 3, 4, 5, 6, 7, 8. By applying source symbols reduction from left to right in the same sequence, four symbols are combined together to form a new element, thus two symbols 1234 and 5678 are obtained. This technique helps to reduce 8 numbers of source symbols to 2 numbers i.e. 2 n symbols are reduced to 2 (n-2) symbols. For the first case, there are eight symbols and the respective Symbols and Huffman Codes are 1-0, 2-10, 3-110, , , , , The proposed technique reduced the eight symbols to two and the reduced Symbols and Huffman codes are , The minimum number of bits and maximum number of bits required to represent the new symbols for an eight bit grayscale image calculated. The following possible combinations worked out and handled perfectly to ensure the lossless compression. The following are few different possible situations to be handled by source symbols reduction. If all symbols in the four consecutive symbols are 0, i.e , then the resulting new symbol will be 0. If the four consecutive symbols are , then the resulting new symbol will be 1. If the four consecutive symbols are , then the resulting new symbol will be If the four symbols are , then the resulting new symbol will be If the four symbols are , then the resulting new symbol will be If the four symbols are , then the resulting new symbol will be The average number L avg of bits required to represent a symbol is defined as, L L = l( r avg k = 1 where, r k is the discrete random variable for k=1,2, L with associated probabilities p r (r k ). The number of bits used to represent each value of r k is l(r k ). The number of bits required to represent an image is calculated by number of symbols multiplied by L avg [5]. In the Huffman coding, probability of each symbols is and L avg = In the proposed technique, probability of each symbol is 0.5 and L avg =1.0. The L avg confirms that the proposed technique achieves better compression than the Huffman Coding. From the above different possible set of data, the following maximum and minimum number of digits of a new symbol formed by source symbols reduction calculated for an eight bits grey-scale image. The eight bits grey-scale image symbols have values ranging from 0 to 255. The minimum number of digits required to represent the new symbol could be 1 digit and the maximum number of digits required to represent the new symbols could be 12 digits. Therefore, if the number of columns of the image is multiples of four, then this technique could be applied as it is. Otherwise, the respective remaining columns (1 or 2 or 3 columns) will be kept as it is during the source symbols reduction and expansion. Four rows and four columns of eight bits grey-scale image having sixteen symbols considered to calculate required storage size. To represent these 16 symbols requires 16 x 1 byte = 16 bytes storage space. The proposed source symbol reduction technique reduces the 16 symbols into 4 symbols. The four symbols require 4 x 4 bytes = 16 bytes. Therefore, the source symbols data and the symbols obtained by the source symbols reduction requires equal amount of storage space. However, in the coding stage these two techniques make difference. In the first case, sixteen symbols generate sixteen Huffman codes, whereas the International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 247 k ) p r ( r k ) (1)
3 proposed technique generates four Huffman codes and reduces L avg. Therefore, the experiment confirms that the source symbols reduction technique helps to achieve more compression. The different stages of newly proposed compression technique are shown in figure 1. The source image applied by source symbols reduction technique then the output undergoes the Huffman encoding which generates compressed image. In order to get the original image, the Huffman decoding applied and an expansion of source symbols takes place to reproduce the image. Source Image Source Symbols Reduction Huffman Encoding Compressed Image Reproduced Image Source Symbols Expansion Huffman Decoding FIGURE 1: Proposed Compression Technique Five different test images with different redundancy developed for experiment from 0% to 80% in step size of 20% i.e 0%, 20%, 40%, 60%, and 80% redundancy. The Huffman coding could not be applied on data with 100% redundancy or single source symbol, as a result 100% redundancy is not considered for the experiment. The test images with 16 rows and 16 columns will have totally 256 symbols. The images are 8 bit grey-scale and the symbol values range from 0 to 255. To represent each symbol eight bit is required. Therefore, size of an image becomes 256 x 8 = 2048 bit. The five different level redundancy images are applied the Huffman coding and the proposed technique. The compressed size and time required to compress and decompress (C&D) are noted. 3. EXPERIMENT RESULTS Following table 1 shows the different images developed for the experiment and corresponding compression results using the regular Huffman Coding and the proposed technique. The images are increasing in redundancy 0% to 80% from top to bottom in the table. IMAGE Huffman Coding SSR+HC Technique Compressed size (bits) Compressed size (bits) TABLE 1: Huffman Coding Compression Result The experiment shows that the higher data redundancy helps to achieve more compression. The experiment shows that the proposed compression technique achieves more compression than the Huffman Coding. The first image has 0% redundancy and its compressed image size is 2048 bit using the Huffman coding whereas the proposed compression technique has resulted compressed image of size 384 bit. No compression takes place for the first image using Huffman coding, where as the proposed technique achieved about 81% compression. International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 248
4 For all images the compressed size obtained from the proposed technique better than the Huffman coding. The proposed compression technique achieves better compression. The results obtained from the present analysis are shown in figure 2. FIGURE 2: Compressed Size comparisons Table 2 shows the comparison between these two techniques. Compression Ratio (CR) is defined as Originalsi ze CR = (2) Compressed size Redundancy Huffman Coding Compression Ratio SSR+HC Technique Compression Ratio 0% % % % % TABLE 2: Compression Ratio versus Time From the result of the experiment it is found that the two compression techniques are lossless compression technique, therefore the compression error not considered. The following figure 3 compares the compression ratio of the experiment. From the figure it is observed that the proposed technique has performed better than the Huffman Coding. The proposed technique shows better compression ratio for the images having higher redundancy when compared with the images of lower redundancy. International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 249
5 FIGURE 3: Compression ratio comparisons In the real time, images are usually having higher data redundancy. Hence, the proposed technique will be suitable for the user who desires higher compression. Moreover, standard gray scale images considered for testing. The standard images require 65,536 bytes storage space of 256 rows and 256 columns. The image is eight bit gray scale image. The standard images applied using the two the compression techniques and standard JPEG compression technique. The compression size of the experiment is noted. The following figure 4 is one of the source image used for the experiment and figure 5 is the reproduced image using the proposed technique. FIGURE 4: Source image chart.tif FIGURE 5: Reproduced image chart.tif Table 3 shows the compression result using Huffman coding, and the proposed technique for one of the standard image chart.tif. The proposed technique has achieved better compressed size than the Huffman coding. The source symbols reduction and expansion takes more time if the number of symbols are higher. Hence, the newly proposed technique is suitable to achieve more compression. Source Image Size (bits) Huffman Coding Compressed size (bits) SSR+HC Technique Compressed size (bits) 5,128,000 1,015,104 54,207 TABLE 3: Compression test results for chart.tif International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 250
6 4. CONCLUSIONS The present experiment reveals that the proposed technique achieves better compression ratio than the Huffman Coding. The experiment also reveals that the compression ratio in Huffman Coding is almost close with the experimental images. Whereas, the proposed compression technique Source Symbols Reduction and Huffman Coding enhance the performance of the Huffman Coding. This enables us to achieve better compression ratio compared to the Huffman coding. Further, the source symbols reduction could be applied on any source data which uses Huffman coding to achieve better compression ratio. Therefore, the experiment confirms that the proposed technique produces higher lossless compression than the Huffman Coding. Thus, the proposed technique will be suitable for compression of text, image, and video files. 5. REFERENCES 1. Gonzalez, R.C. and Woods, R.E., Digital Image Processing 2 nd ed., Pearson Education, India, Salomon, Data Compression, 2nd Edition. Springer, Othman O. Khalifa, Sering Habib Harding and Aisha-Hassan A. Hashim, Compression using Wavelet Transform, Signal Processing: An International Journal, Volume (2), Issue (5), 2008, pp Singara Singh, R. K. Sharma, M.K. Sharma, Use of Wavelet Transform Extension for Graphics Image Compression using JPEG2000 Framework, International Journal of Image Processing, Volume 3, Issue 1, Pages 55-60, Abramson, N., Information Theory and Coding, McGraw-Hill, New York, Huffman, D.A., A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 40(9), pp , Steven Pigeon, Yoshua Bengio A Memory-Efficient Huffman Adaptive Coding Algorithm for Very Large Sets of Symbols Université de Montréal, Rapport technique # Steven Pigeon, Yoshua Bengio A Memory-Efficient Huffman Adaptive Coding Algorithm for Very Large Sets of Symbols Revisited Université de Montréal, Rapport technique # R.G. Gallager Variation on a theme by Huffman IEEE. Trans. on Information Theory, IT-24(6), 1978, pp D.E. Knuth Dynamic Huffman Coding Journal of Algorithms, 6, 1983 pp J.S. Vitter Design and analysis of Dynamic Huffman Codes Journal of the ACM, 34#4, 1987, pp Chiu-Yi Chen; Yu-Ting Pai; Shanq-Jang Ruan, Low Power Huffman Coding for High Performance Data Transmission, International Conference on Hybrid Information Technology, 2006, 1(9-11), 2006 pp Lakhani, G, Modified JPEG Huffman coding, IEEE Transactions Image Processing, 12(2), 2003 pp R. Ponalagusamy and C. Saravanan, Analysis of Medical Image Compression using Statistical Coding Methods, Advances in Computer Science and Engineering: Reports and Monographs, Imperial College Press, UK, Vol.2., pp , International Journal of Image Processing (IJIP), Volume (3) : Issue (5) 251
A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES
A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES 1 JAGADISH H. PUJAR, 2 LOHIT M. KADLASKAR 1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli,
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Hybrid Lossless Compression Method For Binary Images
M.F. TALU AND İ. TÜRKOĞLU/ IU-JEEE Vol. 11(2), (2011), 1399-1405 Hybrid Lossless Compression Method For Binary Images M. Fatih TALU, İbrahim TÜRKOĞLU Inonu University, Dept. of Computer Engineering, Engineering
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2 1 Tata Consultancy Services, India [email protected] 2 Bangalore University, India ABSTRACT
Performance Analysis of medical Image Using Fractal Image Compression
Performance Analysis of medical Image Using Fractal Image Compression Akhil Singal 1, Rajni 2 1 M.Tech Scholar, ECE, D.C.R.U.S.T, Murthal, Sonepat, Haryana, India 2 Assistant Professor, ECE, D.C.R.U.S.T,
Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)
Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- [email protected] Objective: A study, implementation and comparison of
Analysis of Compression Algorithms for Program Data
Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory
Video compression: Performance of available codec software
Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes
A comprehensive survey on various ETC techniques for secure Data transmission
A comprehensive survey on various ETC techniques for secure Data transmission Shaikh Nasreen 1, Prof. Suchita Wankhade 2 1, 2 Department of Computer Engineering 1, 2 Trinity College of Engineering and
Statistical Modeling of Huffman Tables Coding
Statistical Modeling of Huffman Tables Coding S. Battiato 1, C. Bosco 1, A. Bruna 2, G. Di Blasi 1, G.Gallo 1 1 D.M.I. University of Catania - Viale A. Doria 6, 95125, Catania, Italy {battiato, bosco,
Colour Image Encryption and Decryption by using Scan Approach
Colour Image Encryption and Decryption by using Scan Approach, Rinkee Gupta,Master of Engineering Scholar, Email: [email protected] Jaipal Bisht, Asst. Professor Radharaman Institute Of Technology
Information, Entropy, and Coding
Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated
Introduction to image coding
Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS Dasaradha Ramaiah K. 1 and T. Venugopal 2 1 IT Department, BVRIT, Hyderabad, India 2 CSE Department, JNTUH,
Study and Implementation of Video Compression standards (H.264/AVC, Dirac)
Study and Implementation of Video Compression standards (H.264/AVC, Dirac) EE 5359-Multimedia Processing- Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) Objective A study, implementation and comparison
Performance Evaluation of Online Image Compression Tools
Performance Evaluation of Online Image Compression Tools Rupali Sharma 1, aresh Kumar 1, Department of Computer Science, PTUGZS Campus, Bathinda (Punjab), India 1 [email protected], [email protected]
Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM Iuon Chang Lin Department of Management Information Systems, National Chung Hsing University, Taiwan, Department of Photonics and Communication Engineering,
Secured Lossless Medical Image Compression Based On Adaptive Binary Optimization
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IV (Mar-Apr. 2014), PP 43-47 Secured Lossless Medical Image Compression Based On Adaptive Binary
Figure 1: Relation between codec, data containers and compression algorithms.
Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order
Compression techniques
Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion
Introduction to Medical Image Compression Using Wavelet Transform
National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自
Parametric Comparison of H.264 with Existing Video Standards
Parametric Comparison of H.264 with Existing Video Standards Sumit Bhardwaj Department of Electronics and Communication Engineering Amity School of Engineering, Noida, Uttar Pradesh,INDIA Jyoti Bhardwaj
Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.
Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image
An Implementation of a High Capacity 2D Barcode
An Implementation of a High Capacity 2D Barcode Puchong Subpratatsavee 1 and Pramote Kuacharoen 2 Department of Computer Science, Graduate School of Applied Statistics National Institute of Development
CHAPTER 2 LITERATURE REVIEW
11 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION Image compression is mainly used to reduce storage space, transmission time and bandwidth requirements. In the subsequent sections of this chapter, general
encoding compression encryption
encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -
Image Compression and Decompression using Adaptive Interpolation
Image Compression and Decompression using Adaptive Interpolation SUNILBHOOSHAN 1,SHIPRASHARMA 2 Jaypee University of Information Technology 1 Electronicsand Communication EngineeringDepartment 2 ComputerScience
Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India
Abstract Image compression is now essential for applications such as transmission and storage in data bases. In this paper we review and discuss about the image compression, need of compression, its principles,
Today s topics. Digital Computers. More on binary. Binary Digits (Bits)
Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro
A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms
A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms Dr. Mohammad V. Malakooti Faculty and Head of Department of Computer Engineering, Islamic Azad University, UAE
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER Gholamreza Anbarjafari icv Group, IMS Lab, Institute of Technology, University of Tartu, Tartu 50411, Estonia [email protected]
Development and Evaluation of Point Cloud Compression for the Point Cloud Library
Development and Evaluation of Point Cloud Compression for the Institute for Media Technology, TUM, Germany May 12, 2011 Motivation Point Cloud Stream Compression Network Point Cloud Stream Decompression
Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera
Comparison of different image compression formats ECE 533 Project Report Paula Aguilera Introduction: Images are very important documents nowadays; to work with them in some applications they need to be
2695 P a g e. IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India
Integrity Preservation and Privacy Protection for Digital Medical Images M.Krishna Rani Dr.S.Bhargavi IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India Abstract- In medical treatments, the integrity
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images Borusyak A.V. Research Institute of Applied Mathematics and Cybernetics Lobachevsky Nizhni Novgorod
A New Digital Encryption Scheme: Binary Matrix Rotations Encryption Algorithm
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 2, February 2015, PP 18-27 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A
ANALYSIS AND EFFICIENCY OF ERROR FREE COMPRESSION ALGORITHM FOR MEDICAL IMAGE
ANALYSIS AND EFFICIENCY OF ERROR FREE COMPRESSION ALGORITHM FOR MEDICAL IMAGE 1 J HEMAMALINI, 2 D KAAVYA 1 Asstt Prof., Department of Information Technology, Sathyabama University, Chennai, Tamil Nadu
Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet K. Ramkishor James. P. Mammen
A Dynamic Programming Approach for Generating N-ary Reflected Gray Code List
A Dynamic Programming Approach for Generating N-ary Reflected Gray Code List Mehmet Kurt 1, Can Atilgan 2, Murat Ersen Berberler 3 1 Izmir University, Department of Mathematics and Computer Science, Izmir
Split Based Encryption in Secure File Transfer
Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical
SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A
International Journal of Science, Engineering and Technology Research (IJSETR), Volume, Issue, January SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A N.Rama Tej Nehru, B P.Sunitha
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Data Mining Un-Compressed Images from cloud with Clustering Compression technique using Lempel-Ziv-Welch
Data Mining Un-Compressed Images from cloud with Clustering Compression technique using Lempel-Ziv-Welch 1 C. Parthasarathy 2 K.Srinivasan and 3 R.Saravanan Assistant Professor, 1,2,3 Dept. of I.T, SCSVMV
Streaming Lossless Data Compression Algorithm (SLDC)
Standard ECMA-321 June 2001 Standardizing Information and Communication Systems Streaming Lossless Data Compression Algorithm (SLDC) Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries
Bitmap Index an Efficient Approach to Improve Performance of Data Warehouse Queries Kale Sarika Prakash 1, P. M. Joe Prathap 2 1 Research Scholar, Department of Computer Science and Engineering, St. Peters
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Applying Attribute Level Locking to Decrease the Deadlock on Distributed Database
Applying Attribute Level Locking to Decrease the Deadlock on Distributed Database Dr. Khaled S. Maabreh* and Prof. Dr. Alaa Al-Hamami** * Faculty of Science and Information Technology, Zarqa University,
Storage Optimization in Cloud Environment using Compression Algorithm
Storage Optimization in Cloud Environment using Compression Algorithm K.Govinda 1, Yuvaraj Kumar 2 1 School of Computing Science and Engineering, VIT University, Vellore, India [email protected] 2 School
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Fast Arithmetic Coding (FastAC) Implementations
Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by
How to Send Video Images Through Internet
Transmitting Video Images in XML Web Service Francisco Prieto, Antonio J. Sierra, María Carrión García Departamento de Ingeniería de Sistemas y Automática Área de Ingeniería Telemática Escuela Superior
Research on the UHF RFID Channel Coding Technology based on Simulink
Vol. 6, No. 7, 015 Research on the UHF RFID Channel Coding Technology based on Simulink Changzhi Wang Shanghai 0160, China Zhicai Shi* Shanghai 0160, China Dai Jian Shanghai 0160, China Li Meng Shanghai
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras W3A.5 Douglas Chai and Florian Hock Visual Information Processing Research Group School of Engineering and Mathematics Edith
Modified Golomb-Rice Codes for Lossless Compression of Medical Images
Modified Golomb-Rice Codes for Lossless Compression of Medical Images Roman Starosolski (1), Władysław Skarbek (2) (1) Silesian University of Technology (2) Warsaw University of Technology Abstract Lossless
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE
Frsq: A Binary Image Coding Method
Frsq: A Binary Image Coding Method Peter L. Stanchev, William I. Grosky, John G. Geske Kettering University, Flint, MI 4854, {pstanche, jgeske}@kettering.edu University of Michigan-Dearborn, Dearborn,
Euler Vector: A Combinatorial Signature for Gray-Tone Images
Euler Vector: A Combinatorial Signature for Gray-Tone Images Arijit Bishnu, Bhargab B. Bhattacharya y, Malay K. Kundu, C. A. Murthy fbishnu t, bhargab, malay, [email protected] Indian Statistical Institute,
DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION
DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION K. Revathy 1 & M. Jayamohan 2 Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India 1 [email protected]
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
FCE: A Fast Content Expression for Server-based Computing
FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao [email protected] Fei Li Department of Computer Science
A Quality of Service Performance Evaluation Strategy for Delay Classes in General Packet Radio Service
A Quality of Service Performance Evaluation Strategy for Delay Classes in General Packet Radio Service P. Calduwel Newton 1 and L. Arockiam 2 1 Assistant Professor in Computer Science, Bishop Heber College
ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING
Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA
Section 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition
IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Adaptive sequence of Key Pose Detection for Human Action Recognition 1 T. Sindhu
Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object
Friendly Medical Image Sharing Scheme
Journal of Information Hiding and Multimedia Signal Processing 2014 ISSN 2073-4212 Ubiquitous International Volume 5, Number 3, July 2014 Frily Medical Image Sharing Scheme Hao-Kuan Tso Department of Computer
Reversible Data Hiding for Security Applications
Reversible Data Hiding for Security Applications Baig Firdous Sulthana, M.Tech Student (DECS), Gudlavalleru engineering college, Gudlavalleru, Krishna (District), Andhra Pradesh (state), PIN-521356 S.
Tape Drive Data Compression Q & A
Tape Drive Data Compression Q & A Question What is data compression and how does compression work? Data compression permits increased storage capacities by using a mathematical algorithm that reduces redundant
Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected]
Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different
Structures for Data Compression Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel
Geographic Information Technology Training Alliance (GITTA) presents: Responsible persons: Claudia Dolci, Dante Salvini, Michael Schrattner, Robert Weibel Content 1.... 2 1.1. General Compression Concepts...3
Diffusion and Data compression for data security. A.J. Han Vinck University of Duisburg/Essen April 2013 [email protected]
Diffusion and Data compression for data security A.J. Han Vinck University of Duisburg/Essen April 203 [email protected] content Why diffusion is important? Why data compression is important? Unicity
A New Digital Communications Course Enhanced by PC-Based Design Projects*
Int. J. Engng Ed. Vol. 16, No. 6, pp. 553±559, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. A New Digital Communications Course Enhanced by PC-Based Design Projects*
SCAN-CA Based Image Security System
SCAN-CA Based Image Security System Bhagyashree.S.Anantwar 1, S.P.Sonavane 2 Student, Department of Computer Science and Engg, Walchand College of Engg, Sanli, India 1 Asso. Professor, Department of Information
CNFSAT: Predictive Models, Dimensional Reduction, and Phase Transition
CNFSAT: Predictive Models, Dimensional Reduction, and Phase Transition Neil P. Slagle College of Computing Georgia Institute of Technology Atlanta, GA [email protected] Abstract CNFSAT embodies the P
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
White paper. H.264 video compression standard. New possibilities within video surveillance.
White paper H.264 video compression standard. New possibilities within video surveillance. Table of contents 1. Introduction 3 2. Development of H.264 3 3. How video compression works 4 4. H.264 profiles
REGION OF INTEREST CODING IN MEDICAL IMAGES USING DIAGNOSTICALLY SIGNIFICANT BITPLANES
REGION OF INTEREST CODING IN MEDICAL IMAGES USING DIAGNOSTICALLY SIGNIFICANT BITPLANES Sharath T. ChandraShekar Sarayu Technologies, India Gomata L. Varanasi Samskruti, India ABSTRACT Accelerated expansion
Redundant Wavelet Transform Based Image Super Resolution
Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics
Stateful Inspection Firewall Session Table Processing
International Journal of Information Technology, Vol. 11 No. 2 Xin Li, ZhenZhou Ji, and MingZeng Hu School of Computer Science and Technology Harbin Institute of Technology 92 West Da Zhi St. Harbin, China
WATERMARKING FOR IMAGE AUTHENTICATION
WATERMARKING FOR IMAGE AUTHENTICATION Min Wu Bede Liu Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA Fax: +1-609-258-3745 {minwu, liu}@ee.princeton.edu ABSTRACT A data
DCT-JPEG Image Coding Based on GPU
, pp. 293-302 http://dx.doi.org/10.14257/ijhit.2015.8.5.32 DCT-JPEG Image Coding Based on GPU Rongyang Shan 1, Chengyou Wang 1*, Wei Huang 2 and Xiao Zhou 1 1 School of Mechanical, Electrical and Information
http://www.springer.com/0-387-23402-0
http://www.springer.com/0-387-23402-0 Chapter 2 VISUAL DATA FORMATS 1. Image and Video Data Digital visual data is usually organised in rectangular arrays denoted as frames, the elements of these arrays
Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR-2006-1
Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR-2006-1 Ying Liu and William A. Pearlman January 2006 Center for Image Processing Research Rensselaer Polytechnic
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics
INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010
Lossless Medical Image Security Shrikhande Rohini 1, Vinayak Bairagi 2 1 Researcher, Electronics & Telecommunication Department, Sinhgad Academy Of Engg. 2 Assistant Professor, Electronics & Telecommunication
Lossless Medical Image Compression using Redundancy Analysis
5 Lossless Medical Image Compression using Redundancy Analysis Se-Kee Kil, Jong-Shill Lee, Dong-Fan Shen, Je-Goon Ryu, Eung-Hyuk Lee, Hong-Ki Min, Seung-Hong Hong Dept. of Electronic Eng., Inha University,
ELECTRONIC DOCUMENT IMAGING
AIIM: Association for Information and Image Management. Trade association and professional society for the micrographics, optical disk and electronic image management markets. Algorithm: Prescribed set
Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder
Performance Analysis and Comparison of 15.1 and H.264 Encoder and Decoder K.V.Suchethan Swaroop and K.R.Rao, IEEE Fellow Department of Electrical Engineering, University of Texas at Arlington Arlington,
Wan Accelerators: Optimizing Network Traffic with Compression. Bartosz Agas, Marvin Germar & Christopher Tran
Wan Accelerators: Optimizing Network Traffic with Compression Bartosz Agas, Marvin Germar & Christopher Tran Introduction A WAN accelerator is an appliance that can maximize the services of a point-to-point(ptp)
Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl [email protected].
Video Encryption Exploiting Non-Standard 3D Data Arrangements Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl [email protected] Andreas Uhl 1 Carinthia Tech Institute & Salzburg University Outline
