MAX-DOAS Measurements of Trace Gas and Aerosol Vertical Profiles. Udo Frieß Institute of Environmental Physics University of Heidelberg Germany

Size: px
Start display at page:

Download "MAX-DOAS Measurements of Trace Gas and Aerosol Vertical Profiles. Udo Frieß Institute of Environmental Physics University of Heidelberg Germany"

Transcription

1 MAX-DOAS Measurements of Trace Gas and Aerosol Vertical Profiles Udo Frieß Institute of Environmental Physics University of Heidelberg Germany

2 Outline MAX-DOAS: The idea Retrieval techniques MAX-DOAS instrumentation Retrieval of trace gas vertical profiles Retrieval of aerosol vertical profiles Summary

3 MAX-DOAS Instrumentation: Telescope 2D scanner (elevation and azimuth) using fused silica prisms allowing to collect light from any direction in the sky Brushless servo motors with position encoder and transmission enabling high accuracy in focusing Achromatic optics with enhanced aluminium coating No polarisation sensitivity due to fibre optics Diffusor plate for direct sun measurements Integrated calibration lamps

4 MAX-DOAS Instrumentation: Spectrometer Unit Three temperature stabilised spectrographs covering the full UV/Vis wavelength range with high spectral resolution Embedded PC allowing fully autonomous measurements and remote control over TCP/IP Indoor operation under stable conditions nm nm MAX nm

5 Multi-Axis DOAS DOAS (Differential Optical Absorption Spectroscopy) of scattered sunlight yields the integrated concentration of trace gases along the atmospheric light path Zenith Sun Stratosphere 45 Zenith-sky measurements: Sensitivity strongly weighted towards the stratosphere 20 Multi-Axis measurements: Spectrograph Troposphere Increasing light path through the troposphere with decreasing elevation angle Trace gas and aerosol vertical profiles can be retrieved using inverse methods (i.e., optimal estimation).

6 Trace Gases detectable by UV/Vis scattered light DOAS O 3 UV (log) SO 2 BrO IO OIO NO 2 I 2 NO 3 O 3 Vis ClO OClO OBrO HCHO Br 2 (CHO) 2 H 2 O HONO O 4 O Wavelength [nm]

7 NO 2 Measurements at Hohenpeißenberg, enberg, Germany Diurnal variation Comparison with in situ measurements

8 NO 2 Measurements at Hohenpeißenberg, enberg, Germany Diurnal variation Wind direction Comparison with in situ measurements

9 Retrieval of NO 2 vertical profiles Cabauw Intercomparison Campaign, June NO 2 Profiles Vis 6.0 Altitude [km] 3 2 NO 2 mixing ratio [ppb] Time [UT]

10 NO 2 surface mixing ratio In situ versus MAX-DOAS 30 Cabauw Intercomparison Campaign NO 2 surface mixing ratio [ppb] EMPA in situ MAX-DOAS Date 2009

11 Retrieval of formaldehyde vertical profiles Cabauw Intercomparison Campaign, June HCHO Profiles Altitude [km] HCHO mixing ratio [ppb] Time [UT]

12 Aerosol retrieval using O 4 absorption MAX-DOAS measurements of a trace gas with a known vertical profile: Contain information on the light path through the atmosphere Allow to gain information on atmospheric aerosols Most suitable trace gas for aerosol retrieval in the UV/Vis is the oxygen collision complex O 4 : Numerous absorption bands, easy to detect with DOAS O 4 concentration proportional to the square of the O 2 concentration Scale height of O 4 profile: ~4km O 4 absorption cross section [arb. units] Absorption cross section of O Wavelength [nm]

13 Sensitivity to observation parameters Elevation α: The atmospheric light path and thus the optical depth of O 4 generally increase with decreasing elevation Information on aerosol extinction profile Wavelength λ: The visibility (average scattering distance along line of sight) and thus the O 4 optical depth generally decreases with decreasing wavelength. Information on wavelength dependence of aerosol extinction (Angstrom coefficient) Further information on aerosol extinction profile Relative azimuth β: Scanning in different azimuth directions yields O 4 optical depth as a function of scattering angle Information on angular dependence of scattering (phase function and single scattering albedo)

14 Sensitivity to observation parameters Elevation α: The atmospheric light path and thus the optical depth of O 4 generally increase with decreasing elevation Information on aerosol extinction profile Wavelength λ: The visibility (average scattering distance along line of sight) and thus the O 4 optical depth generally decreases with decreasing wavelength. Information on wavelength dependence of aerosol extinction (Angstrom coefficient) Further information on aerosol extinction profile Relative azimuth β: Scanning in different azimuth directions yields O 4 optical depth as a function of scattering angle Information on angular dependence of scattering (phase function and single scattering albedo)

15 Sensitivity to observation parameters Elevation α: The atmospheric light path and thus the optical depth of O 4 generally increase with decreasing elevation Information on aerosol extinction profile Wavelength λ: The visibility (average scattering distance along line of sight) and thus the O 4 optical depth generally decreases with decreasing wavelength. Information on wavelength dependence of aerosol extinction (Angstrom coefficient) Further information on aerosol extinction profile Relative azimuth β: Scanning in different azimuth directions yields O 4 optical depth as a function of scattering angle Information on angular dependence of scattering (phase function and single scattering albedo)

16 Comparisons with Raman Lidar Intercomparison measurements in Cabauw, May 2008 Lidar data courtesy of A. Apitouley, RIVM Raman lidar: diurnal variation of the range corrected signal MAX-DOAS: diurnal variation of the aerosol extinction profile MAX

17 Comparisons with Raman Lidar Intercomparison measurements in Cabauw, May 2008 Lidar data courtesy of A. Apitouley, RIVM Raman lidar: diurnal variation of the range corrected signal MAX-DOAS: diurnal variation of the aerosol extinction profile MAX

18 6. Comparisons: : Sun Photometer Time (UTC) 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17: Sun Photometer DOAS Intercomparison measurements in Cabauw, May 2008 AOD at 550 nm AOD at 550 nm Sun photometer data courtesy of B. Henzing, TNO :00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 Time (UTC)

19 6. Comparisons: Raman Lidar 09:30-10:00 UTC of :30-11:00 UTC of a priori MAX-DOAS retrieved MAX-DOAS retrieved Raman lidar a priori MAX-DOAS retrieved MAX-DOAS retrieved Raman lidar Altitude (km) Altitude (km) Aerosol extinction (km -1 ) Altitude (km) :30-13:00 UTC of a priori MAX-DOAS retrieved MAX-DOAS retrieved Raman lidar Aerosol extinction (km -1 ) Intercomparison measurements in Melpitz, June Aerosol extinction (km -1 ) Lidar data courtesy of D. Althausen, IFT

20 Summary Multi-Axis DOAS measurements allow for retrieving trace gas and aerosol vertical profiles and optical properties Typical vertical resolution of m resolve the structure of the boundary layer Measurements can be performed with simple and cost effective fully automated instrumentation Inherently self- calibrating Simultaneous measurement of aerosols and numerous trace gases in the entire UV/Vis range MAX-DOAS is an important tool for satellite validation Potential for integration in world wide remote sensing networks

21 Parameters Affecting DOAS Measurements ( ) σ ( λ ) ρ ( s) + kr ( s) + km ( s) ds Lambert-Beer law: I( λ) = I0 ( λ) e Light path through the atmosphere and trace gas absorption are determined by: Viewing geometry (SZA, elevation, azimuth) Wavelength (dependency of light path and extinction on λ) Aerosol extinction Trace gas profile... DOAS measurements contain (indirect) information on the atmospheric state (e.g., trace gas an aerosol profile) Established method for the retrieval of atmospheric parameters: Optimal Estimation

22 MAX-DOAS: The Idea Spectrally resolved observations of scattered sunlight in the UV/Vis along different lines of sight Detection of various trace gases (NO 2, BrO, HCHO, ) by identifying their individual absorption features Analysis of spectra based on the Lambert- Beer law: I( λ) = I I 0 (λ), I(λ): σ(λ): ρ(s): k r (s), k m (s): ( λ e 0 ) incident and transmitted intensity absorption cross section trace gas concentration Rayleigh and Mie extinction coefficients Basic quantity measured by DOAS is the slant column density (SCD) of an absorber, i.e. the integrated concentration along the light path: S = ρ( s) ds ( σ ( λ ) ρ ( s) + k ( s) + k ( s) ) Instrument Zenith Problem: Length of light path is difficult to determine, requires radiative transfer modelling r m ds Sun Θ Stratosphere α=45 Boundary layer α=20 α=10 α=5 α=2

23 Remote sensing of atmospheric trace gases: Differential Optical Absorption Spectroscopy (DOAS) When sampling the light intensity on a discrete wavelength grid λ k (and neglecting the pressure and temperature dependence of the absorption cross section), the Lambert- Beer law can be solved numerically by minimising n ln I( λk ) ln I0( λk ) + σ i ( λk Si + cn λ k 2 χ ) k i n to determine the integrated concentrations along the light path (Slant Column Density, SCD): The Optical Density is defined as S i L ρ ( s) 0 The polynomial Σc n λ kn removes the broad-banded σ ( λ ) 4.5 A spectral structure caused by Rayleigh- and Miescattering. Thus only compounds with high frequent 0.8 σ '( λ ) = σ ( λ ) - σ b ( λ ) 0.4 absorption features can be detected. The high frequent parts of σ and τ are referred to as the differential absorption cross section and optical -0.6 B -0.8 density σ and τ i ds I( λ) τ ( λ) σ ( λ) S = ln I0( λ) σ [10-19 cm 2 ] σ ' [10-19 cm 2 ] σ b ( λ ) λ [nm]

24 Retrieval of trace gas and aerosol vertical profiles: Inverse Modelling Forward modelling Forward model F Optimal Estimation Atmospheric state [Rodgers, 1990] Simulated Measurement x (Radiative transfer model) The Maximum A Posteriori (MAP) solution xˆ is determined y = F(x) iteratively by minimising 2 χ = T 1 T 1 [ y F( xˆ) ] S [ y F( xˆ) ] + [ xˆ x ] S [ xˆ x ] ε Deviation of Inverse modelling modelled from actual measurement a a a Deviation of state vector from a priori A priori state vector x a, S a Measurement y Measurement error S ε Inverse model (based on F) Estimate for atmospheric state xˆ Error of state vector Ŝ

25 Retrieval of trace gas vertical profiles Forward modelling Atmospheric state x Forward model F (Radiative transfer model) Simulated Measurement y = F(x) The measurement vector The state vector y S( α 1 ) = M S( αm ) Inverse Trace modelling gas SCDs at different x = elevation M angles α A priori state vector x a, S a ρ( z 1 ) ρ( z n ) Trace gas vertical profile Measurement y Measurement error S ε Inverse model (based on F) Estimate for atmospheric state xˆ Error of state vector Ŝ

26 Retrieval of aerosol vertical profiles Atmospheric state x y The measurement Forward vector modelling The state vector τ O4( λ1, α1) Forward k( z1) model F M (SCIATRAN) τ O4( λm, α ) m = k( z n ) I( λ1, α1) I0( λ1) x = q1 Inverse Relative modelling intensity M properties M I( λm, αm ) I0( λm ) qr A priori state vector x a, S a O 4 optical depth Simulated Measurement Aerosol y = extinction M F(x) profile Aerosol optical - phase function - single scattering albedo - size distribution Measurement y Measurement error S ε Inverse model (based on F) Estimate for atmospheric state xˆ Error of state vector Ŝ

27 MAX-DOAS Instrumentation for long-term Measurements: Requirements Large wavelength range to cover many trace gases Sufficient spectral resolution ( nm) High mechanical stability of spectrograph unit Indoor operation, temperature stabilisation High detector sensitivity to achieve low detection limit Flexible telescope unit to observe light from any direction in the sky Direct sun- and moonlight capability Fully autonomous operation Self-calibration capabilities

28 Newly developed MAX-DOAS Instrumentation Spectrometer unit Telescope unit

29 NO 2 Measurements at Hohenpeißenberg, enberg, Germany Hohenpeißenberg

30 NO 2 Measurements at Hohenpeißenberg, enberg, Germany Measured vs. modelled NO 2 SCDs

31 Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments CINDI

32 Comparison of NO 2 Profiles during CINDI

33 NO 2 profiling Averaging Kernels 4.0 Altitude [km] Altitude [km] Averaging Kernel

34 Aerosol retrieval: Comparison of measured and modelled O 4 dscd and intensity Time (UTC) of O 4 optical density measured retrieved Elevation O 4 optical depth, 360 nm O 4 optical depth, 477 nm O 4 optical depth, 577 nm intensity, 360 nm intensity, 577 nm intensity, 477 nm Intensity (a.u.) Comparison of measured and retrieved O 4 optical depths and intensities, for the in Cabauw Time (UTC) of

35 Aerosol Retrieval Results Aerosolextinction (km -1 ) :00 UTC 09:00 UTC 11:00 UTC 13:00 UTC 15:00 UTC 17:00 UTC 4 3 retrieved a priori 3 Altitude (km) Altitude (km) Altitude (km) Single retrieved aerosol extinction profiles and corresponding averaging kernels, for the in Cabauw Averaging Kernel 0

36 6. Comparisons: : Sun Photometer AOD from DOAS Aerosol optical depth in May % 30% 15% 30% AOD from Sun Photometer 1:1 15% 45% Intercomparison measurements in Cabauw, May 2008 AOD from MAX-DOAS measurements are underestimated by ~15% compared to Sun Photometer values

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL)

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Title of project: Study of atmospheric ozone by a LIDAR Project leader and team: Dr. Valentin Simeonov, project

More information

G. Karasinski, T. Stacewicz, S.Chudzynski, W. Skubiszak, S. Malinowski 1, A. Jagodnicka Institute of Experimental Physics, Warsaw University, Poland

G. Karasinski, T. Stacewicz, S.Chudzynski, W. Skubiszak, S. Malinowski 1, A. Jagodnicka Institute of Experimental Physics, Warsaw University, Poland P1.7 INVESTIGATION OF ATMOSPHERIC AEROSOL WITH MULTIWAVELENGTH LIDAR G. Karasinski, T. Stacewicz, S.Chudzynski, W. Skubiszak, S. Malinowski 1, A. Jagodnicka Institute of Experimental Physics, Warsaw University,

More information

Radiation models for the evaluation of the UV radiation at the ground

Radiation models for the evaluation of the UV radiation at the ground Radiation models for the evaluation of the UV radiation at the ground Peter Koepke UV-Group Meteorological Institute Munich Ludwig-Maximilians-University Peter.Koepke@lmu.de www. jostjahn. de Natural UV

More information

FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05.

FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05. PAGE : 1/11 TITLE: Product Specification Authors : P. Wang, R.J. van der A (KNMI) PAGE : 2/11 DOCUMENT STATUS SHEET Issue Date Modified Items / Reason for Change 0.9 19.01.06 First Version 1.0 22.01.06

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties Michael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier Rault NASA Langley Research Center, MS 435,

More information

MAX-DOAS observations of NO 2 in NDACC: status and perspectives

MAX-DOAS observations of NO 2 in NDACC: status and perspectives MAX-DOAS observations of NO 2 in NDACC: status and perspectives F. Hendrick 31/01/2015 C. Gielen, G. Pinardi, B. Langerock, M. De Mazière, and M. Van Roozendael Royal Belgian Institute for Space Aeronomy(BIRA-IASB)

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

Remote Sensing of Clouds from Polarization

Remote Sensing of Clouds from Polarization Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE

More information

ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator

ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator Oliver Reitebuch Institut für Physik der Atmosphäre Background The ADM-Aeolus instrument ALADIN uses several novel techniques, like

More information

Satellite Remote Sensing of Volcanic Ash

Satellite Remote Sensing of Volcanic Ash Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Multiangle cloud remote sensing from

Multiangle cloud remote sensing from Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire

More information

Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ').

Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ'). Lecture 22. Methods for solving the radiative transfer equation with multiple scattering. Part 4: Monte Carlo method. Radiative transfer methods for inhomogeneous ouds. Objectives: 1. Monte Carlo method.

More information

Uses of Derivative Spectroscopy

Uses of Derivative Spectroscopy Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy Anthony J. Owen Derivative spectroscopy uses first or higher derivatives of absorbance with respect to wavelength for qualitative

More information

The study of cloud and aerosol properties during CalNex using newly developed spectral methods

The study of cloud and aerosol properties during CalNex using newly developed spectral methods The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt, Peter Pilewskie University of Colorado, ATOC/LASP

More information

Climatology of aerosol and cloud properties at the ARM sites:

Climatology of aerosol and cloud properties at the ARM sites: Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

ARM SWS to study cloud drop size within the clear-cloud transition zone

ARM SWS to study cloud drop size within the clear-cloud transition zone ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC)

More information

CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406)

CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406) CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406) J. Skupin, S. Noël, M. W. Wuttke, H. Bovensmann and J. P. Burrows Institute

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Cloud screening and quality control algorithms for the AERONET. database

Cloud screening and quality control algorithms for the AERONET. database Cloud screening and quality control algorithms for the AERONET database Automatic globally distributed networks for monitoring aerosol optical depth provide measurements of natural and anthropogenic aerosol

More information

EPA REVIEW OF SHELL BENZENE MONITORING

EPA REVIEW OF SHELL BENZENE MONITORING EPA REVIEW OF SHELL BENZENE MONITORING Publication 1019.1 March 2006 SUMMARY Benzene is an aromatic hydrocarbon found in petrol and is used for a range of industrial purposes. In Corio, the Shell refinery

More information

Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows University of Bremen, Institute for Environmental Physics

Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows University of Bremen, Institute for Environmental Physics Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows University of Bremen, Institute for Environmental Physics 3-5 June 2013 ACSO meeting WMO Geneva, Switzerland 1 Graphics: DLR-IMF 3-5 June

More information

LiDAR for vegetation applications

LiDAR for vegetation applications LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis plewis@geog.ucl.ac.uk Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications

More information

A NEW LOOK AT RISLEY PRISMS. By Craig Schwarze Senior Systems Engineer OPTRA Inc.

A NEW LOOK AT RISLEY PRISMS. By Craig Schwarze Senior Systems Engineer OPTRA Inc. As seen in Photonics Spectra June 2006: A NEW LOOK AT RISLEY PRISMS By Craig Schwarze Senior Systems Engineer OPTRA Inc. Introduction With laser beams finding more and more applications that require aiming

More information

Christine E. Hatch University of Nevada, Reno

Christine E. Hatch University of Nevada, Reno Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only

More information

The Kinetics of Atmospheric Ozone

The Kinetics of Atmospheric Ozone The Kinetics of Atmospheric Ozone Ozone is a minor component of the earth s atmosphere (0.02 0.1 parts per million based on volume (ppm v )), yet it has a significant role in sustaining life on earth.

More information

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0 Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data

More information

UV-Visible Spectroscopy

UV-Visible Spectroscopy UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What

More information

The Sentinel-4/UVN instrument on-board MTG-S

The Sentinel-4/UVN instrument on-board MTG-S The Sentinel-4/UVN instrument on-board MTG-S Grégory Bazalgette Courrèges-Lacoste; Berit Ahlers; Benedikt Guldimann; Alex Short; Ben Veihelmann, Hendrik Stark ESA ESTEC European Space Technology & Research

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

How To Measure Solar Spectral Irradiance

How To Measure Solar Spectral Irradiance Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique. D. Bolsée, N. Pereira, W. Decuyper, D. Gillotay, H. Yu Belgian Institute

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

MCAL Spectrophotometry. Spectrophotometry

MCAL Spectrophotometry. Spectrophotometry MCAL Spectrophotometry Instruments include: Cary 50 UV-vis Spectrophotometer Eclipse Spectrofluorometer HPLC Diode Array and Fluorescence ICP-OES with CCD detection Spectrophotometry The instruments all

More information

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,

More information

The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius

The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 9-, The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSIC/Department

More information

An Introduction to Twomey Effect

An Introduction to Twomey Effect An Introduction to Twomey Effect Guillaume Mauger Aihua Zhu Mauna Loa, Hawaii on a clear day Mauna Loa, Hawaii on a dusty day Rayleigh scattering Mie scattering Non-selective scattering. The impact of

More information

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction

More information

Total radiative heating/cooling rates.

Total radiative heating/cooling rates. Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

A climatology of cirrus clouds from ground-based lidar measurements over Lille

A climatology of cirrus clouds from ground-based lidar measurements over Lille A climatology of cirrus clouds from ground-based lidar measurements over Lille Rita Nohra, Frédéric Parol, Philippe Dubuisson Laboratoire d Optique Atmosphérique université de Lille, CNRS UMR 8518 Objectives

More information

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,

More information

How To Use A Karlsruhe Doppler Lidar

How To Use A Karlsruhe Doppler Lidar Andreas Wieser Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO) First measurements with the new Karlsruhe Doppler Lidar June 03, 2004 Forschungszentrum Karlsruhe we

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY 2nd/3rd Year Physical Chemistry Practical Course, Oxford University 2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY (4 points) Outline Spectrometry is widely used to monitor the progress

More information

Diurnal Cycle: Cloud Base Height clear sky

Diurnal Cycle: Cloud Base Height clear sky Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Apertureless Near-Field Optical Microscopy

Apertureless Near-Field Optical Microscopy VI Apertureless Near-Field Optical Microscopy In recent years, several types of apertureless near-field optical microscopes have been developed 1,2,3,4,5,6,7. In such instruments, light scattered from

More information

T.A. Tarasova, and C.A.Nobre

T.A. Tarasova, and C.A.Nobre SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model

More information

Supplement of Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

Supplement of Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US Supplement of Atmos. Chem. Phys., 16, 3743 3760, 2016 http://www.atmos-chem-phys.net/16/3743/2016/ doi:10.5194/acp-16-3743-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Mercury

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs TracePro Opto-Mechanical Design Software s Fluorescence Property Utility TracePro s Fluorescence Property

More information

Realization of a UV fisheye hyperspectral camera

Realization of a UV fisheye hyperspectral camera Realization of a UV fisheye hyperspectral camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral technique Optical

More information

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Calibration of the MASS time constant by simulation

Calibration of the MASS time constant by simulation Calibration of the MASS time constant by simulation A. Tokovinin Version 1.1. July 29, 2009 file: prj/atm/mass/theory/doc/timeconstnew.tex 1 Introduction The adaptive optics atmospheric time constant τ

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

Sound Power Measurement

Sound Power Measurement Sound Power Measurement A sound source will radiate different sound powers in different environments, especially at low frequencies when the wavelength is comparable to the size of the room 1. Fortunately

More information

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph.

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph. ING LA PALMA TECHNICAL NOTE No. 130 Investigation of Low Fringing Detectors on the ISIS Spectrograph. Simon Tulloch (ING) June 2005 Investigation of Low Fringing Detectors on the ISIS Spectrograph. 1.

More information

Thoughts on Richter et al. presentation. David Parrish - NOAA ESRL

Thoughts on Richter et al. presentation. David Parrish - NOAA ESRL Thoughts on Richter et al. presentation David Parrish - NOAA ESRL Analysis of satellite data moving from pretty pictures to quantitative results. Richter et al. represents one of at least 5 groups pursuing

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Ground based UV/vis observations

Ground based UV/vis observations Ground based UV/vis observations A) History B) Spectroscopy C) Basic viewing directions D) Radiative transport modelling E) Results from different stations Remote sensing in UV / vis spectral range Cloud

More information

Tools for Viewing and Quality Checking ARM Data

Tools for Viewing and Quality Checking ARM Data Tools for Viewing and Quality Checking ARM Data S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Mission Research Corporation (MRC) is developing software tools

More information

Optical Design Tools for Backlight Displays

Optical Design Tools for Backlight Displays Optical Design Tools for Backlight Displays Introduction Backlights are used for compact, portable, electronic devices with flat panel Liquid Crystal Displays (LCDs) that require illumination from behind.

More information

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Naftaly Goldshleger, *Eyal Ben-Dor,* *Ido Livne,* U. Basson***, and R.Ben-Binyamin*Vladimir

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION

SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION G. Thuillier1, D. Bolsee2 1 LATMOS-CNRS, France 2 Institut d Aéronomie Spatiale

More information

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers

BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information