S.GRAF C.LOISEAUX Keywords:abstractinterpretation,simulation,propertypreservation,model-checking. 1.Introduction

Size: px
Start display at page:

Download "S.GRAF C.LOISEAUX loiseaux@imag.fr. Keywords:abstractinterpretation,simulation,propertypreservation,model-checking. 1.Introduction"

Transcription

1 VericationofConcurrentSystems* PropertyPreservingAbstractionsforthe c1995kluweracademicpublishers,boston.manufacturedinthenetherlands. FormalMethodsinSystemDesign,6,1{36(1995) S.GRAF C.LOISEAUX VERIMAG*,RueLavoisier,38330Monbonnot S.BENSALEM A.BOUAJJANI J.SIFAKIS ReceivedOctober1,1992;RevisedFebruary1,1994 Editor:DavidProbst oftwosystems.weproposeandstudyanotionofpreservationofpropertiesexpressedbyformulas S'.Wegiveresultsonthepreservationofpropertiesexpressedinsublanguagesofthebranching toverifyapropertyforasystembyverifyingthesamepropertyonasimplersystemwhichisan Abstract.Westudypropertypreservingtransformationsforreactivesystems.Themainideais abstractionofit.weshowalsounderwhichconditionsabstractionofconcurrentsystemscanbe computedfromtheabstractionoftheircomponents.thisallowsacompositionalapplicationof theproposedvericationmethod. Thisisarevisedversionofthepapers[2]and[16];theresultsarefullydevelopedin[28]. ofalogic,byafunctionmappingsetsofstatesofasystemsintosetsofstatesofasystem time-calculuswhentwosystemssands'arerelatedviah;i-simulations.theycanbeused theuseofsimulationsparameterizedbygaloisconnections(;),relatingthelatticesofproperties Keywords:abstractinterpretation,simulation,propertypreservation,model-checking. 1.Introduction tobeveried,nda(simpler)abstractprogramsuchthatthesatisfactiononthe consistsinusingpropertypreservingabstractions:givenaprogramandaproperty modelsthathavetobeconstructedfortheirapplication.manytechniqueshave itationofautomaticvericationtechniquesistheirapplicabilityonlytorelatively smallnitestateprogramsbecauseoftheexponentialblow-upofthesizeofthe beendevelopedinordertopushfurtherthelimitsofmodel-checking.oneofthem Thegrowingcomplexityofdistributedandreactivesystemsrequiresrigorousde- *ThisworkwaspartiallysupportedbyESPRITBasicResearchAction\REACT" velopmentmethodologiesandautomaticvericationtechniques.awell-knownlim- J.FourierandVerilogSAassociatedwithIMAG *VerimagisajointlaboratoryofCNRS,InstitutNationalPolytechniquedeGrenoble,Universite

2 2abstractprogramimpliesthesatisfactionontheinitialprogram,calledconcrete actlythisproblem.programsarerepresentedbyfunctionsfonsomelatticeof oftheconsideredproperties. byavailabletools,andthatstillcontainsenoughrelevantdetailsforthesatisfaction constructanabstractprogramthatisboth,simpleenoughinordertobeveried programinthiscontext.animportantpointis,givenaconcreteprogram,howto tiongontheabstractlatticeisanabstractionoffiffgholds.this formingagaloisconnection[35]fromtheconcretetotheabstractlattice,afunc- properties.givensomeabstractlatticeofpropertiesandapairoffunctions(;), [40],[41],theideaofabstractinterpretationhasbeenappliedtoprogramsrepresentedbytransitionsystems,wherethelatticeofpropertiesisthepowersetofstates. forthevericationofinvariancepropertiesofsequentialprograms.however,in ofcorrespondingxpointsoff.untilrecently,thisapproachhasonlybeenapplied guaranteesthatgreatestandleastxpointsofgrepresentupperapproximations Theframeworkofabstractinterpretation(seeforexample[7],[8])addressesex- There,resultsshowingpreservationoffragmentsofCTL[9]fromtheabstractto theconcretesystemhavebeengiven. sion(respectivelyequality)ofobservablecomputationsequences(seeforexample in[25],[1],[30]).however,thisnotionofabstractiondoesnotdirectlyinduceaway tionsofabstractionsaregenerallydenedintermsofvariantsofsimulation[31] andbisimulation[32];theproblemoftheconstructionofabstractprogramshas onlybeenaddressedfornotionsofabstractionsdenedbyequivalences. ordersandequivalenceshasalsobeenwidelystudied.inthisframework,theno- Inthelinearsemanticsframework,theintuitivenotionofabstractionisinclu- Intheframeworkofprocessalgebras,theproblemofpropertypreservingpre- coincidesexactlywiththenotionofabstractiondenedbysimulationinthesenseof criterion. Milner[31],parameterizedbytherelationcorrespondingtotheGaloisconnection abstractionontransitionsystemsasasimulationparameterizedbygaloisconnections(;).weshowthatthenotionofabstractioninducedbyh;i-simulation ofcomputinganabstractprogramforagivenconcreteprogramandobservability Here,wetakeupagaintheapproachfollowedin[40],[41].Wedeneanotionof fifforanystateofs1whichsatisesf,allthestatesofs2initsimagealsosatisfy f.iftheconversealsoholds,thenwesaythatstronglypreservesf.apreservation systems1tothepowersetofthestatesofatransitionsystems2preservesaproperty resultofparticularpracticalinterest,saysthatiftwosystemsarerelatedviah;isimulation,thenallformulasofthe-calculususingnonegationandonlyuniversal thebranchingtime-calculusdenedin[24]forthefollowingnotionofproperty preservation:anarbitraryfunctionfromthepowersetofthestatesofatransition Then,wegivepreservationresultsforfragmentsofafutureandpastversionof

3 quanticationovercomputationsequences(called2l)arepreservedbyefrom theabstracttotheconcretesystem(whereeisthedualof). structurehomomorphismfromtheconcretetoabstractsystem. studiedintheparticularcasewherethepropertypreservingfunctiondenesa Ourpreservationresultstogetherwiththefactthat,givensomeconcretesystem Thesepreservationresultsgeneralizeresultsgivenin[10]wherethisproblemis 3 composition,whichisimportantfortheapplicationofthismethodinpractice. andsomeconnection(;),anabstractsystemcanbecomputed,allowtheuse gramofacomposedsystembycompositionofabstractionsofitscomponents.it powersetsofconcreteandabstractstates,computetheassociatedabstractsystem Fromapracticalpointofview,therearetworeasonsforbuildinganabstractpro- SAandverifyfonSA.IffholdsonSA,italsoholdsonS. ofthefollowingvericationmethod.inordertoverifyaproperty expressed asaformulafof2l onasystems,provideaconnection(;)betweenthe iseasiertodeneconnections(;)separatelyforeachcomponentthanforthe compoundsystem;proceedingthisway,allowsalsotoavoidbuildingarepresentationoftheglobaltransitionsystemassociatedwiththecomposedsystem.aswell betweencomponents),wegivecompositionalityresults,thatmeansrules,allowing forsynchronousasforasynchronousparallelcomposition(allowingsharedvariables Finally,wegivearesultconcerningcompositionalityofsimulationoverparallel todeduceh;i-simulationforacompoundsystemfromhi;ii-simulationsforits thedenitionofgaloisconnectionsandsomeinterestingpropertiesofthem.in components,whereh;iisexpressedintermsofhi;ii. Section3,thedenitionofh;i-simulationisgiven.Weshowthatthisnotion coincideswiththeusualnotionofsimulation.insection4,wedeneanotionof \abstractprogram"obtainedfromagivenfunctionoritsassociatedrelation. Section6givesresultsconcerningthepreservationoffragmentsofthe-calculus toprovethatafunctionpreservesthevalidityofformulasofagivenlanguage. Section5presentsthenotionofpropertypreservationandgeneralresultsallowing whentransitionsystemsarerelatedviah;i-simulation.section7,givesresults Thepaperisorganizedasfollows.InSection2,wegivesomenotationsandrecall Finally,AnnexAcontainssometechnicalproofs. concerningthecompositionalityofsimulationwithrespecttoparallelcomposition. 2.Preliminarydenitions InSection3,westudytherelationshipbetweenthenotionsofabstractioninthe gramsaremodeledastransitionsystems,thatmeansasbinaryrelationsontheset ofstates.intheframeworkofabstractinterpretation,programsarerepresentedby denethebasicnotions,necessaryforthiscomparison.inprocessalgebraspro- frameworksofprocessalgebrasandofabstractinterpretation.inthissection,we predicatetransformers,i.e.,functionstransformingsetsofstatesintosetsofstates.

4 4WithanytransitionrelationRcanbeassociateddierentpredicatetransformers, concerningthem,whichareusedintheproofslateron. 2.1.Transitionsystemsandpredicatetransformers WerecallherethedenitionofGaloisconnectionandsomewell-knownproperties theforwardandbackwardimagefunctions,whichwedenoteherebypre[r],respectivelypost[r].intheabstractinterpretationframework,thenotionofabstraction Denition1(Transitionsystems) isbasedontheexistenceofagaloisconnectionbetweenthelatticesofproperties. AtransitionsystemisapairS=(Q;R),whereQisasetofstatesandRisa transitionrelationonq(rqq). Notation1Weadoptthefollowingconventionsandnotations: WeidentifyaunarypredicateonQwithitscharacteristicsetsincethelattice WedenotebyIdQtheidentityfunctionon2Q. GiventworelationsRQQ0andSQ0Q00andtwofunctionsf:Q!Q0 stateq2q,thenotationsp(q)=true,p(q)andq2pareequivalent. ofunarypredicatesisisomorphicto2q.thus,foraunarypredicatepanda asasetofstates(oracorrespondingunarypredicate).therefore,inthesequel \propertylattice"isalwaysthesameas\powersetonthesetofstates". Denition2(Thepredicatetransformerspreandpost) Inthesequel,weconsideralwayspropertiestobestateproperties,i.e.,interpreted gfisappliedtosomeargumentq2q. andg:q0!q00,thendenotethecompositionoftherelationsrandsbyrs GivenarelationQ1Q2,wedenepre[]:2Q2!2Q1andpost[]:2Q1!2Q2 andthecompositionofthefunctionsfandgbygf,respectivelyg(f(q))if statesofq20viatherelationandforq10q1,post[](q10)representsthesetof \successors"ofthestatesofq10via.noticethatwehavepost[]=pre[?1]. by,pre[]def Thatmeans,forQ20Q2,pre[](Q20)representsthesetof\predecessors"ofthe post[]def =X:fq12Q1:9q22X:q1q2g formerspreandpostwhichcanforexamplebefoundin[41]. Thefollowingpropositionsgivesomeusefulresultsconcerningthepredicatetrans- =X:fq22Q2:9q12X:q1q2g Proposition1ForanyrelationfromasetQ1toasetQ2(Q1Q2),we have:

5 Notation2(Dualofafunction) 2.ForanyX1,X2subsetsofQ2,pre[](X1[X2)=pre[](X1)[pre[](X2), 1.pre[](;)=;, 5 Wedenotebyethedualofafunction:2Q1!2Q2thatis Proposition2LetbeQ1Q2andQ2Q3.Then, edef pre[]=pre[]pre[], post[]=post[]post[], =X:(X). 2.2.Galoisconnections WegivehereafterthedenitionofGaloisconnectionsandsomeusefulwell-known resultsaboutthem.moreinformationcan,e.g.,befoundin[35],[39]. gpost[]=gpost[]gpost[]. fpre[]=fpre[]fpre[], LetQ1andQ2betwosetsofstates.Aconnectionfrom2Q1to2Q2isapairof Denition3(Connections) IdQ1andIdQ2. Proposition3Foranyconnection(;)from2Q1to2Q2,wehave, monotonicfunctions(;),where:2q1!2q2and:2q2!2q1,suchthat =,and=, (;)=;, distributesover[anddistributesover\, (e;e)isaconnectionfrom2q2to2q1. Proposition5Foranyconnection(;)from2Q1to2Q2,wehave, Proposition4LetF:2Q1!2Q1andG:2Q2!2Q2betwofunctionsand(;) aconnectionfrom2q2to2q1.then, 8QQ1;Q0Q2:(Q)Q0iQ(Q0). =Y:SfX22Q1:(X)Yg, FGifandonlyifFG

6 betweentheconnectionsfrom2q1to2q2andthebinaryrelationsfromq1toq2. 6=X:TfY22Q2:X(Y)g. Proposition6(Connectionsgeneratedbyabinaryrelationonstates) characterizationsallowtodeducethefollowingtwopropositionsshowingthelinks IfQ1Q2,thenthepair(post[];fpre[])isaconnectionfrom2Q1to2Q2and (pre[];gpost[])isaconnectionfrom2q2to2q1. Proposition7(Relationsinducedbyconnections) Thatmeansthatanddetermineeachotherinauniquemanner.These If(;)isaconnectionfrom2Q1to2Q2,thenthereexistsauniquerelation by(q1;q2)2ifandonlyifq22(q1).since(;)=;anddistributesover[ (Proposition3),wehave=post[]. Q1Q2suchthat=post[]and=fpre[]. Proof:Let(;)beaconnectionfrom2Q1to2Q2.Considertherelationdened tionfrom2q2to2q1,thenwehave, Proposition8If(;)isaconnectionfrom2Q1to2Q2and(0;0)isaconnec- andasdistributesover[,wecanwrite=y:fq2q1:(fqg)yg.now, since=post[],itiseasytodeducethat=fpre[]. Furthermore,bytheProposition5,wehave=Y:SfX22Q1:(X)Yg, Proof:ConsidertherelationQ1Q2suchthat=post[]and=fpre[], whichexistsbyproposition7. totalonq1andidq2post[]pre[]foranyq1q2thatistotalonq2. Now,itiseasytoseethatIdQ1pre[]post[]foranyQ1Q2thatis 1.IdIm(e)eandIdIm()e, pre[0]pre[]pre[0]=pre[0]forsomeappropriaterelations;0.byproposition2,thisisequivalenttopre[00]=pre[0],thatis0=00. Symmetrically,0=00isequivalenttopost[0]=post[00],thatisto ByProposition7,theequatione0ee0=e0isequivalentto 2.e0ee0=e0ifandonlyif00=0. Inthissection,wedeneanotionofsimulationbasedonGaloisconnections(;), 3.Simulations calledh;i-simulation.itsdenitionisinspiredbythenotionofabstractinterpretationinthesenseofcousot[7],[8].there,aprogramisrepresentedbyafunction Fmappingpropertiesintoproperties.AfunctionG,mappingabstractproperties post[0]=post[0]post[]post[0],i.e.,0=00.

7 intoabstractproperties,isanabstractionoffifthereexistsaconnection(;) fromthetheconcretetoabstractlatticeofproperties,suchthatfg. blechoiceforthefunctionfistakingoneofthepredicatetransformersassociated stractionofs"and\ssimulatessa"areequivalent.weshowthatthenotionof withthetransitionrelationr.weconsiderthattheexpressions\saisanab- Inourframework,whereaprogramisatransitionsystemS1=(Q1;R1),apossi- 7 abstractioninducedbythechoicef=pre[r1]coincideswiththenotionofabstractioninducedbysimulationinthesenseofmilner[31]whichisusedinthe S2=(Q2;R2),i.e.,aconnectionfrom2Q1to2Q2. (;)relatingthepropertylatticesoftwotransitionsystemss1=(q1;r1)and frameworkofprocessalgebras. 3.1.Simulationsinducedbyconnections Denition4(vh;iand'h;i) LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystemsand(;)bea First,wedenesimulation(andbisimulations)parameterizedbyaconnection connectionfrom2q1to2q2.dene, fromproposition4. IfS1vh;iS2,wesaythatS1h;i-simulatesS2orS2isanh;i-abstractionof S1.Ausefuldualconditionforthedenitionofh;i-simulationcanbededuced S1'h;iS2ifandonlyifS1vh;iS2andS2vhe;eiS1. S1vh;iS2ifandonlyifpre[R1]pre[R2], Q1andQ2.InPropositions9and10weshowthatthesetwonotionsofsimulation senseofmilnerwhicharebasedonabinaryrelationbetweenthesetsofstates 3.2.Relatingh;i-simulationandbehaviouralsimulation coincide. Denition5(vand') Werecallrstthedenitionsofbehaviouralsimulationandbisimulationinthe LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystemsandbearelation fromq1toq2(q1q2).dene, S1'S2ifandonlyifS1vS2andS2v?1S1. S1vS2ifandonlyifR1?1R2?1,

8 suchthats1vs2(respectivelys1's2).weshownowthath;i-simulation and-simulationcoincide. 8IfS1vS2,wesaythatS1-simulatesS2orS2isa-abstractionofS1. Q1Q2,thereexistsaconnection(;)from2Q1to2Q2suchthat Proposition9(Fromvh;itov) S1vS2ifandonlyifS1vh;iS2. LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystems.Foranyrelation S1simulates(respectively,bisimulates)thesystemS2ifthereexistsarelation Proof:Weshowthattheintendedconnectionis(post[];fpre[])(byProposition6, thispairisindeedaconnection).supposethats1vhpost[];fpre[]is2,i.e., Then,aspost[]ismonotonicandIdQ1fpre[]post[],weobtain, post[]pre[r1]fpre[]pre[r2]. Proposition10(Fromvtovh;i) LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystems.Foranyconnection Itcanbeshowninasimilarwaythattheconversealsoholds.Thisproves, post[]pre[r1]fpre[]post[]pre[r2]post[]whichimplies (;)from2q1to2q2thereexistsarelationq1q2suchthat post[]pre[r1]pre[r2]post[]whichisequivalenttor1?1r2?1. S1vh;iS2ifandonlyifS1vS2. S1'hpost[];fpre[]iS2ifandonlyifS1'S2. abstractioninthecasewhereprogrammodelsaretransitionsystemsisthesame. Therefore,wedonotdistinguishinthesequelbetweensimulationsparameterized tationandthatchosenintheframeworkofprocessalgebra.infact,thenotionof byrelationsandthoseparameterizedbyconnections;inanycontextweusethe notionwhichallowstopresenttheresultsinthesimplestway. Proof:DirectfromPropositions7and9. 4.Computingprogramabstractions Thisresultclariestherelationshipbetweentheapproachofabstractinterpre- Intheframeworkofprocessalgebraandofprogramrenement,thenotionofsimulationisingeneralusedinordertodecidefortwogivenprogramsifoneofthem simulatestheother.butouraimis,givenaprogrampandarelationrelating concreteandabstractstates,toconstructanabstractprogrampasuchthatp -simulatespa.obviously,therearemanyprogramswhichare-abstractionsof

9 i.e.whichisascloseaspossibletotheconcreteprogram. anabstractprogramsatisfying foragiven asmanypropertiesaspossible, theabstractprogrammustalsoberepresentablebysometransitionrelationofthe theabstractsetofstatesisatrivial-abstractionofanyp.weareinterestedin P.InparticulartheprogramChaosdenedbytheuniversaltransitionrelationon Inourframework,wherePisrepresentedbyatransitionsystemS=(Q;R) 9 ofs.insection4.1,wedenerstthecriteriumoffaithfulnesswhichissatised byalltransitionsystemsonqawhicharebisimilartoanysmaller(inthesense ofinclusion)-abstractionsofs.usingtheresultsofsection5,wewillseethat simulation,doesnotnecessarilycorrespondtoasolution,thatmeansafunctionof theformpre[ra]forsometransitionrelationra. formsa=(qa;ra),whereqaisthesetofabstractstates.inthiscasethe faithfulabstractionsarethesetofabstractprogramswhichsatisfyallproperties obviousminimalfunctionpost[]pre[r]fpre[] obtainedfromthedenitionof whicharepossiblysatisedbyany-abstractionofsandwhicharepreservedfrom SAtoS. Itiseasytoseethatingeneral,theremayexistseveral\minimal"-abstractions thecasethatisatotalfunction,pre[]=fpre[]holds,whichtriviallyimpliesthat vwhichwedenoteby.undersomeconditionscoincideswiththenotionof S;thiscasehasbeenwidelystudiedintheliterature(seeforexamplein[25],[10]). Sistheleastabstraction.Then,denesastructurehomomorphismfromSto?1Risafaithfulabstractionifistotalandmoreover=?1holds.In forwardandbackwardsimulationforwhichweobtainstrongerpreservationresults WewillseethattheabstractprogramdenedbyS=(QA;R)withR= andillustratethisonasmallexample. thanforv. abstractionrelationsarerepresentedbypredicatesoversetsofprogramvariables Sisinducedinanobviousmannerbyaslightlystrongernotionofsimulationthan 4.1.Faithfulabstractions Denition6(Faithfulabstractions) GivenS=(Q;R)andQQA,wesaythatSA=(QA;RA)isafaithful InSection4.2,weshowhowScanbecomputediftransitionrelationsaswellas abstractionofsviaifsvsaand8s0=(qa;r0):svs0andr0ra implies90qaqa:sa'0s0. Proposition11LetS=(Q;R)beatransitionsystemandQQA. R=?1R(orequivalently,pre[R]=post[]pre[R]pre[]). GivenS=(Q;R)andQQA,totalonQ,wedeneS=(QA;R)where Notation3(ThesystemS) IfistotalonQ,thenSvS.

10 Proof:Therstandthethirditemsfollowdirectlyfromthefactthatfpre[]pre[] 10Iffurthermore=?1,thenSisafaithfulabstractionofSvia. ifistotalonq(respectivelyfpre[]=pre[]ifisafunction).forthesecond item,weshowthatforanytransitionsystemsa=(qa;ra)suchthatsvsaand RAR,wehaveSA'?1S,theproofofwhichisgivenintheAppendixA.1. Ifisa(total)function,thenSistheleast-abstractionofS.?1.Thereexistexamplesofinterestingabstractionrelationssuchthatisnot fromthepartitiononqinducedby?1intothepartitionofqainducedby successorby,havethesamesuccessorsby.thismeansthatdenesafunction function.if=?1doesnothold,thensisnotnecessarilyfaithful,andin[12] isgivenawaytocomputefaithfulabstractions. vh;i)whichcoincideswiththenotionofforwardandbackwardsimulationused, e.g.in[21],[22]ifistotal. Sisinducedbyaslightlystrongernotionofsimulationthanv(respectively Noticethat=?1ifandonlyifanytwostatesofQhavingacommon Denition7(andh;i) LetS=(Q;R)andSA=(QA;RA)betransitionsystems,andQQAtotal Lemma1(Characterizationof) onqand(;)atotalconnectionfrom2qto2qa.then, LetS=(Q;R)andSA=(QA;RA)betransitionsystems,andQQAtotal onq;denotes?1=(q;r?1)andanalogouslyforsa.then, SSAifandonlyif?1RRA Sh;iSAifandonlyifpre[R]epre[RA] Now,weconsidertheparticularcasewheretransitionrelationsandabstraction 4.2.Symboliccomputationofprogramabstractions relationsarerepresentedbypredicatesoverprogramvariables.thesetsofstates QaretheCartesianproductofthedomainsofatupleofprogramvariables.For SSAifandonlyifSvSAandS?1vS?1 example,ifx=(x;y),thenwehave,q=dom(x)=dom(x)dom(y). theformr(x;x0)wherex0=(x0;y0)isa\copy"ofx,i.e.,dom(x)=dom(x0). XencodesthesourcestateandX0thetargetstateofanytransitioninR.For example.,ifdom(x)=nanddom(y)=bool,thenr=y^(x0=x+1) Then,binaryrelationsonDom(X)canberepresentedbybinarypredicatesof

11 representsthetransitionrelationrelatingany(n;true)2nboolwith(n+1;b0) Thisapproachisused,e.g.,in[27],[37].InthesamewayarelationfromDom(X) whereb0maytakeanybooleanvalueasy0isnotconstraintintheexpressionr. todom(xa)isrepresentedbyabinarypredicateoftheform(x;xa). connectives.forexample,thefactthatarelationr1isincludedinr2isexpressed Inthissetting,operationsonsets(respectivelyrelations)areexpressedbylogical 11 Section7. areusedaslabels(names)forsynchronizationpurposesinparallelcompositionin ofbinarypredicatesonthesametupleofvariables,s=fri(x;x0)gi2iwherei2i onthesamesetofvariables. byr1)r2andr1^r2representstheintersectionofr1andr2iftheyaredened ables,theabstractionsofsiscomputedas Then,givenanabstractionrelation(X;Y),whereYisatupleofabstractvari- Weconsiderthataprogramisafamilyoftransitionrelationsrepresentedbysets containingexpressionsinwhich,atleastinthecasewheredom(x)anddom(y) arenite,alloccurrencesofvariablesxandx0canbeeliminated. Example:areader/writerproblem Wedescribeasimplereaders/writerssystembythefollowing\program"RW;in S=f9X9X0:(X;Y)^(X0;Y0)^Ri(X;X0)gi2I factrwdenesafamilyoflabeledtransitionrelationswhereforreadabilityreasons anexplicitlabel((b-read),(e-read),...)ofeachactionisputbetweenparenthesesin frontoftheexpressiondeningthetransitionrelation. RW=f (b-read)(wr>0)^(aw=0)^(wr0=wr?1)^(ww0=ww)^ (e-read)(ar>0) (b-write)(ww>0)^(aw=0)^ (Ar=0) ^(Wr0=Wr+1)^(Ww0=Ww)^ ^(Wr0=Wr)^(Ww0=Ww?1)^ (Ar0=Ar+1)^(Aw0=Aw); (Ar0=Ar?1)^(Aw0=Aw); wherewrandwwarepositiveintegervariablesrepresentingrespectivelythenumbersofwaitingreadersandwaitingwriters,arandawrespectivelythenumbers ofactivereadersandactivewriters.thetransitionrelationassociatedwithrw (e-write)(aw>0) (n-wait) g ^(Wr0=Wr)^(Ww0=Ww+1)^ ((Wr0=Wr+1)_(Ww0=Ww+1))^ (Ar0=Ar)^(Aw0=Aw+1); hasaninnitenumberofstatesaswrandwwcanalwaysbeincreasedbyaction (n-wait). (Ar0=Ar)^(Aw0=Aw?1), (Ar0=Ar)^(Aw0=Aw)

12 relevantinformationis,whetherthenumberofactivereadersandwritersispositive 12 Wewanttoprovemutualexclusionbetweenreadersandwriters.Then,theonly ornot.therefore,wedeneanabstractionrelationmappingtheprogramvariablesontwobooleanvariablesb1andb2meaningrespectively\thereisnoactive reader"and\thereisnoactivewriter",by thevetransitionrelationsriofrwwehavetocomputetheabstracttransition Asisatotalfunction,RWisafaithfulabstractionofRWvia.Foreachoneof pression: ForthetransitionrelationR1(labeledby(b-read))oneobtainsthefollowingex- (Ri)=9X9X0:(X;Y)^(X0;Y0)^Ri(X;X0) ((Wr;Ww;Ar;Aw);(b1;b2)):=(b1(Ar=0))^(b2(Aw=0)). relation (R1)=9(Ar;Aw;Wr;Ww)9(Ar0;Aw0;Wr0;Ww0): transitionrelations: BydoingasimilarcomputationforallRiweobtainthefollowingfamilyofabstract RW=f(b-read)b2 (b1(ar=0))^(b2(aw=0))^(b01(ar0=0))^(b02(aw0=0))^ (Wr>0)^(Aw=0)^(Wr0=Wr?1)^ (Ww0=Ww)^(Ar0=Ar+1)^(Aw0=Aw) =b2^:b01^b02 (e-read):b1^(b02b2), (e-write):b2^(b01b1), (b-write)b1^b2^b01^:b02, (n-wait) ^:b01^b02, Nowwehavedenedanotionofabstractionandawaytocomputeabstractprograms.Animportantpointistoknowforwhichpropertieswecandeducefrom TheniteglobaltransitionrelationrepresentedbyRWisgivengraphicallyin Figure Generalresultsonpropertypreservation (b01b1)^(b02b2)g thesatisfactionontheabstractsystemitssatisfactionontheconcretesystem.in allstatesofq2initsimagebysatisfypropertyf.wehavestrongpreservation iftheinverseholdsalso;thismeansintuitivelythatwheneverastateofq1does relatedviasomemonotonicfunction:2q1!2q2,thenthesatisfactionofsome statepropertyfispreservedfroms1tos2viaifforanystateofq1satisfyingf ordertoanswerthisquestion,weconsiderrstthegeneralproblemofproperty notsatisfyf,thenthereexistsastateinitsimagebywhichdoesnotsatisfyf. preservationbetweentwosystems.ifthepropertylatticesofthetwosystemsare

13 (b1;b2) 13 (b1;b2) e-write e-readb-write (b1;b2) b-reade-write e-read Figure1.Readers/Writersabstraction (b1;b2) b-read e-read expressedbyformulasofalogicallanguagef(p)wherep=fp1;p2;:::gisa setofpropositionalvariables.foragivensystems=(q;r)andaninterpretationfunctioni:p!2q,thesemanticsoff(p)isgivenbymeansofafunction that(;)isaconnection,becauseinsection6weapplythisnotionofpreservation Wegiveusefulcharacterizationsofthesedenitionsifthereexistsafunctionsuch jjs;i:f(p)!2q,associatingwitheachformulaitscharacteristicset,i.e.,theset ofstatessatisfyingit.thisfunctionissuchthat8p2p:jpjs;i=i(p). strongpreservationfrompreservationinbothdirections. tosystemsrelatedviah;i-simulation.wegivealsoatheoremallowingtodeduce omittedwhenevertheirvaluescanbedeterminedbythecontext. Tosimplifynotations,eitheroneorbothofthesubscriptsSandIinjfjS;Iwillbe Letusrstintroducesomenotations.Wesupposethatprogrampropertiesare anyq2, thatpreserves(respectivelystronglypreserves)fforionifandonlyiffor Letf2F(P)beaformula,S1=(Q1;R1)andS2=(Q2;R2)betwotransition If=Q1,weomittomentionthatthepreservationison. Denition8(Preservation) systems,q1,i:p!2q1aninterpretationfunctionand:2q1!2q2.wesay ofs1andpropertiesofs2.preservationmeansthatthefunctioniscompatible withthesatisfactionrelation.inthesequel,wherethefunctionunderconsiderationisalwaysmonotonic,andevensuchthatthereexistsafunction,such Inthisdenition,thefunctionestablishesacorrespondencebetweenproperties q2jfjs1;iimplies(respectivelyifandonlyif)(fqg)jfjs2;i. that(;)isaconnection,weusethefollowingcharacterizationsofthenotionof preservationinordertoestablishpreservationresults.

14 Letf2F(P)beaformula,S1=(Q1;R1)andS2=(Q2;R2)betwotransition 14 Lemma2(Characterizationofpreservation) systems,i:p!2q1beaninterpretationfunctionand:2q1!2q2. 1.ifismonotonicthen 2.ifthereexistssuchthat(;)isaGaloisconnection,then (A)preservesfforIifandonlyif (jfjs1;i)jfjs2;iimpliespreservesffori andifdistributesover[,theconversealsoholds. Theproofof(2A)isdirectfrom(1)andthelastitemofProposition3.(2B)can (jfjs1;i)=(sq2jfjs1;ifqg)=sq2jfjs1;i(fqg)whichestablishestheresult. Proof:Therstdirectionof(1)isimmediate:fromq2jfjS1;I,weobtainby monotonicityof,(fqg)(jfjs1;i)jfjs2;i.ifdistributesover[,then (B)stronglypreservesfforIifandonlyif jfjs1;i=(jfjs2;i) jfjs1;i(jfjs2;i) thatthereexistsfunctions,0suchthat(;)and(0;0)areconnectionsdoes tos2.noticethatthistheoremusesonlythemonotonicityofand0;thefact bededucedfromthefactthat((fqg)jfjs2;i))q2jfjs1;iisequivalentto Sf(q)jfjS2;IgfqgjfjS1;Iand notallowtoweakentheconditionsrequiredhere.therefore,weuseexactlythis theoreminordertoobtainthestrongpreservationresultsinthefollowingsection. ThefollowingtheoremgivesconditionsunderwhichpreservationbyfromS1to Sf(q)jfjS2;Igfqg=(jfjS2;I)byProposition5. Theorem1(Preservationandstrongpreservation) LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystems.Foranyset S2andpreservationby0fromS2toS1impliesstrongpreservationbyfromS1 that00=0andid0,ifpreservesffori:p!im(0)and0 Q1andforanymonotonicfunctions:2Q1!2Q2and0:2Q2!2Q1such (fqg)jfjs2;i.wehave, preservesfforithenstronglypreservesfforion. Proof:Inordertoshowstrongpreservationbysupposethat,forq2, I=0I0.Thus0I=00I0=0I0=Iwhichimpliesq2jfjS1;I. SinceI:P!Im(0),thereexistsaninterpretationfunctionI0:P!2Q2suchthat 0(fqg)0(jfjS2;I)(monotonicityof0), q20(jfjs2;i)(id0), q2jfjs1;0i(0preservesfforiandlemma2).

15 augmentedbypasttimemodalities,whichwedenotelp. simulationasdenedinsection3.theuniverseofpropertiesthatweconsideris thesetofpropertiesexpressibleinthepropositionalbranching-time-calculus[24] 6.Preservationofthe-calculus Nowwecantackletheproblemofpreservationbetweensystemsrelatedbyh;i- 15 suchasthebranching-timetemporallogicsctl[9]andctl[14]andalsothe forthefragmentsaugmentedbythecorrespondingpasttimemodalityholdalso. linear-timetemporallogicsasptl[36]andetl[42]. pstandsforlogicscontainingpasttimeoperators).weshowfortwosystemss1and S2that,ifS1vh;iS2,thenpreserves3LfromS1toS2andepreserves2L froms2tos1.ifmoreovers1h;is2holds,thenstrongerpreservationresults Thislogicsubsumesinexpressivenessthecommonlyusedspecicationlogics, i.e.,existenceofsimulationsinbothdirections. tionedabovepreservel(p) Weobtainstrongpreservationofthesefragmentsincaseofsimulationequivalence, Inthecasewherethetwosystemsareh;i-bisimilar,thetwofunctionsmen- Wedenefragmentsofthe-calculuscalledL,2L,2Lp,3L,and3Lp(where tion,wereformulatethevericationmethodsketchedintheintroductionandapply ittothesmallexampleintroducedinsection Thepropositional-calculusanditsfragments andinthesecondsubsectionwegivethepreservationresults.inthethirdsubsec- Intherstsubsection,werecallthedenitionofthe-calculusanditsfragments and,undersomeconditions,theystronglypreserveit. Werecallthesyntaxandthesemanticsofthefutureandpastpropositional-calculus Asusually,thenotionoffreeoccurrencesofvariablesinaformulaisdenedasin formulasoflpisdenedbythefollowinggrammar: Lp.LetPbeasetofatomicpropositionsandXasetofvariables.Thesetofthe therst-orderpredicatecalculusbyconsideringtheoperatorasaquantier.a wherefissyntacticallymonotoniconx,i.e.,anyoccurrenceofxinfis f::=>jp2pjx2xj3fj3pfjf_fj:fjx:f andaninterpretationfunctionfortheatomicpropositionsi:p!2q.aformulaf inwhichthepastoperator3pisnotallowed. formulaisclosediftherearenovariablesoccurringfreeinit.listhefragment ThesemanticsoftheformulasisdenedforagiventransitionsystemS=(Q;R) underanevennumberofnegations. aclosedformulaisinterpretedasasetofstates.theinterpretationfunctionis withnfreevariablesisinterpretedasafunctionjfjs;i:(2q)n!2q.inparticular,

16 16 inductivelydenedasfollows,foravaluationv=(v1;:::;vn)2(2q)nofthevariablesoccurringfreeinit. j>js;i =Q, jpjs;i =I(P), jxjjs;i(v)=vj, jf1_f2js;i(v)=jf1js;i(v)[jf2js;i(v), j:fjs;i(v)=q?jfjs;i(v), j3fjs;i(v)=pre[r](jfjs;i(v)), j3pfjs;i(v)=post[r](jfjs;i(v)), jx:fjs;i(v)=tfq0q:jfjs;i[q0=x](v)q0g: WeextendLpbyaddingasusuallytheformulas?,f^g,f)g,X:f(X),2fand 2pfwhicharerespectivelyabbreviationsfor:>,:(:f_:g),:f_g,:X::f(:X), :3:fand:3p:f. Aformulaofthisextendedlanguageisinpositivenormalformifandonlyifall thenegationsoccurringinitareappliedtoatomicpropositions.itcanbeshown thatanyformulaoflphasanequivalentformulainpositivenormalform. WedenefragmentsofLpcalled2L,2Lp,3Land3Lp.Theirsetsofformulas aregivenrespectivelybythetwofollowinggrammarswherethepasttimemodalities 2pand3parenotallowedinthefuturefragments2L,respectively3L. g::=>j?jpj:pjxj2gj2pgjg_gjg^gjx:gjx:g h::=>j?jpj:pjxj3hj3phjh_hjh^hjx:hjx:h Noticethatpropertiesexpressedbyformulasof2L(p) involveonlyuniversalquanticationovercomputationsequences(duetotheuseofthe2(or2p)operator) whereasthoseexpressedbyformulasof3l(p) involveonlyexistentialquantication overcomputationsequences. Weconsiderthepositivefragments2L(p)+ and3l(p)+ obtainedfromtheabove languagesbyforbiddingtheuseofthenegationevenonatomicpropositions.we consideralsothefragmentsl(p)+ correspondingtothesubsetofl(p) formulasin positivenormalformwithoutnegations.wecantranslateanyformulaofl(p) which isinpositivenormalformintoanequivalentformulainl(p)+ byreplacingnegated atomicpropositions,i.e.,formulasintheform:p,bynewatomicpropositions. Thus,sinceanyformulaofL(p) hasanequivalentformulainpositivenormalform, wecanexpressinl(p)+ anypropertyexpressibleinl(p),modulothisencodingof theformulas:p.obviously,thesametranslationcanbedonefroml(p) tol(p)+ for2f2;3g. In2Lwecanexpressbranching-timepropertiesasforinstancethesafetypropertieswithrespecttothesimulationpreorder[3].Theclassoftheseproperties correspondstothefragmentof2lwithouttheleastxpointoperator.

17 pressiblebyanondeterministicbuchiautomaton[6],canbeexpressedin2l[4]. Forexample,thesafetyproperty[26],[29],[34]\alwaysP"canbeexpressedby theformulax:(p^2x).moreover,theguaranteeproperty(accordingto[34]) mulax:(p_2x).propertiesintheotherclassesinthehierarchygivenin[34] \eventuallypinanyinnitecomputationsequence"canbeexpressedbythefor- Furthermore,itcanbeshownthatany!-regularlinear-timeproperty,i.e.,ex- 17 areobtainedbyusingalternationsoftheandtheoperators.thepropertiesof 8CTL*canbeexpressedin2Lifwerestrictourselvestomodelswhosetransition relationistotalas8ctl*allowstoexpressgeneraleventuality.noticethatifthe isexpressedbytheformulax:(p_3true^2x),whichisneitherin2lnorin transitionrelationoftheconsideredmodelsisnotnecessarytotal,\eventuallyp" 3L. :P)X:(:init^2pX). rithmsforinvariantsandeventuallypropertieswhichinsomecasesconvergemuch faster.forexample,theformulainit)x:(p^2x)isequivalentto init.moreover,theymaybeusedinordertodenealternativecomputationalgo- propertieswhichcannotbeexpressedusingonlyfuturemodalities,e.g., X:(init_2pX)holdsexactlyinthesetofstatesreachablefromastatesatisfying Pasttimemodalitiescanbeusedfortwodierentaims:theyallowtoexpress Theformulasof3Larenegationsofformulasof2Landconversely. relatingtwopropertylattices,:2q1!2q2,preservesthemeaningoftheatomic First,wedenethenotionofconsistencywhichexpressesthatachosenfunction 6.2.Preservationresults propositionsdenedbyaninterpretationfunctionion2q1.isconsistentwith :2Q1!2Q2.Then,isconsistentwithIif i.e.,theimagesbyoftheinterpretationofpandof:parenoncontradictory. Lemma3saysthat inthecasethat(;)isaconnection consistencyof atomicpropositions. Denition9(Consistency) LetQ1andQ2betwosetsofstatesandI:P!2Q1aninterpretationandafunction withiexpressesthefactthatestronglypreservestheinterpretationofall IifforallatomicpropositionstheimagesofI(P)andI(P)byaredisjoint, aconnection,thenisconsistentwithiifandonlyif UnderthesameassumptionsasinDenition9,ifthereexistssuchthat(;)is Lemma3(Characterizationofconsistency) 8P2P:(I(P))\(I(P))=; 8P2P:((I(P)))=I(P)

18 18 Proof:AproofbycontradictioncanbeobtainedusingProposition7. Now,wegiveatheoremaboutthepreservationinthecasethatfortwogiven systemss2ands2arerelatedbys1vh;is2.thetheoremsaysthatpreserves formulasof3lfroms1tos2,epreservesformulasof2l(p) froms2tos1andif evens1'h;is2holds,thenaswellasepreservethewholel.furthermore, ifonereplacesvh;ibyh;i,oneobtainsanalogouspreservationresultsforthe fragmentsaugmentedbythecorrespondingpastmodalities. Theorem2(Preservationof2L(p),3L(p) andl(p) ) LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystemsandI1:P!2Q1, I2:P!2Q2twointerpretationfunctions. 1.IfS1vh;iS2(respectivelyS1h;iS2),then (A)preservestheformulasof3L+(respectively3Lp+ )fori1,andifis consistentwithi1thenpreservestheformulasof3l(respectively3lp) fori1. (B)epreservestheformulasof2L+(respectively2Lp+ )fori2,andifeis consistentwithi2thenepreserves2l(respectively2lp)fori2. 2.IfS1'h;iS2(respectivelyS1h;iS2andS2he;eiS1)thenpreserves theformulasofl+(respectivelylp+ )fori1andifisconsistentwithi1then preservestheformulasofl(respectivelylp)fori1. Proof:TheproofthatpreservesL+ifS1'h;iS2consists,duetoLemma2, inshowingthatforanyformulaf2l+andforanyvaluationv,wehave (jfjs1;i1(v))jfjs2;i1((v)). Theproofisdonebyinductiononthestructureoff,andforalloperators(includingxpointoperators),except3and2weneedonlythemonotonicityofin ordertoestablishthisfact.for3weneedthefactthats1vh;is2andfor2 weneedthefactthats2vhe;eis1.thisproofisgiveninappendixa.2. TheproofofpreservationofLp+ undertheconditionthats1h;is2isobtained bylemma1sayingthatforwardandbackwardsimulationimpliess1vh;is2 ands1?1vh;is2?1(wheresi=(qi;r?1 i))andtheobservationthatpost[r]= pre[r?1]. Finally,ifisconsistentwithI1,itisstraightforwardtodeducethat (j:pjs2;i1)j:pjs1;i1. NoticethatwehavealsopreservationofLp+ byebyexchangingtherolesof andeandofs1ands2andthenusingsymmetricalarguments.now,theproofs of(1a)and(1b)areobviousfromthefactthatforthepreservationof3l(p)+ by weneedonlytheconditionthats1vh;is2(respectivelys1h;is2),and forthepreservationof2l(p)+ byetheconditionthats1vhe;eis2(respectively

19 S1he;eiS2),whichisequivalenttoS1vh;iS2(respectivelyS1h;iS2). ItisknownthatinordertohavestrongpreservationofLoneneedstheexistenceof abisimulationbetweenthetransitionsystemss1ands2(theorem4givestheexact 19 offragmentsoflundertheweakerconditionthatistheexistenceofamutual conditions).byusingtheorem1,oneobtainsfromtheorem2strongpreservation simulationbetweens1ands2andtheadditionalconditionsrequiredintheorem1: Theorem3(Strongpreservationof2L(p) LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystems.IfS1vh;iS2 ands2vh0;0is1(respectivelys1h;is2ands2h0;0is1)for;0such that00=0,then 1.IfId0forsomeQ1,then Furthermore,ifisconsistentwithI,thenstronglypreserves3L(respectively3Lp)forIon. stronglypreserves3l+(respectively3lp+ and3l(p) 2.IfIde0eforsomeQ2,then Theorem4(StrongpreservationofL(p) Proof:(1)isadirectapplicationofTheorem1usingTheorem2.(2)isobtained inthesamewaybyusingproposition8whichguaranteese0ee0=e0. tively2lp)forion. Furthermore,ifeisconsistentwithI,thenestronglypreserves2L(respec- estronglypreserves2l+(respectively2lp+ ) )onforanyinterpretationi:p!. LetS1=(Q1;R1)andS2=(Q2;R2)betwotransitionsystems.IfS1'h;iS2 (respectivelys1h;is2ands2he;eis1)andee=ethen taineddirectlyfromtheorems1and2byreplacing0byeandusingthefact Proof:Astheprecedingtheorem,theproofofstrongpreservationbyisob- 1.stronglypreservesL(respectivelyLp)onIm(e)foranyinterpretation thatidim(e)e(proposition8)andthefactthatisconsistentwithany 2.estronglypreservesL(respectivelyLp)onIm()foranyinterpretation I1:P!Im(). I1:P!Im(e)and I1:P!Im()byusingthesameargumentsasintheproofofTheorem1.The proofforeissymmetrical.

20 f22lpandaninterpretationfunctioni:p!2q,onecanproceedasfollowsin Application Theorem2providesthebasisforourvericationmethodbyusingabstraction. GivenaprogramS=(Q;R),asetPofatomicpropositionsoccurringinformula ordertoverifythatssatisesf,i.e.,jfjs;i=q: (1)GiveanabstractionrelationQQAwhichistotalonQandthecorrespondingabstractionfunction=post[]. (2)ComputetheabstractsystemSandverifywhetherthecharacteristicsetof NoticethatasucientconditionforthisisthatjfjS;I=QAexpressingthat fholdsons.iftheanswerin(2)ispositiveandnoatomicpropositionoccurs negatedinf,thenusingtheorem2.(1b),weobtain (3)SsatisesfwiththeinterpretationfunctioneI,i.e.,jfjS;eI=Q. fons,obtainedusingtheinterpretationfunctioni,iscontainedinthe image(q)ofconcretestates,thatmeanswehavetoverifythat Iffurthermore,I(P)=(eI)(P)foranyP2Pthatoccursinf,then e(jfjs;i)=q. thatthisamountstoevaluateastrongerpropertythanf;therefore,themethod functions(infnegationcanonlybeappliedtoatomicpropositions),wededuce Thismeans(byLemma3)thatinordertoapplythevericationmethodone needstheconsistencyofwithiforallatomicpropositionsoccurringnon negatedinf.forpropositionsp2poccurringonlynegatedinf,computing jfjs;iamountstoevaluatefonswithinterpretatione((i(p)))of:p;as e((i(p)))i(p)isalwaystrueandasalloperatorsinfrepresentmonotonic SsatisesfunderinterpretationI,i.e.,jfjS;I=Q. acounter-example,showingthatoneofthestatesinq0doesnotsatisfyf,orwe havetotrywithamoreprecisesetofabstractstatesandcorrespondingconnection. thatsvh;isa(respectivelysh;isaiffcontainspasttimemodalities). Iftheanswerin(2)isnegative,i.e.,e(jfjS;I)=Q0Q,wecantrytond Obviously,insteadoftheabstractsystemS,wecanuseanysystemSAsuch propositionsoccurringonlynegatedinf. canbeappliedeveniftheconsistencyrequirementidnotfullledforatomic functionsoftheatomicpropositionsiandi.inthatcase,itisshownthatthe fromqtoqasuchthatandearerespectivelyconsistentwiththeinterpretation correspondstoh;i-simulationinducedbyrelationswhicharetotalfunctions Asimilarmethodisappliedin[10].Thenotionofhomomorphismconsideredthere

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

Integer Programming: Algorithms - 3

Integer Programming: Algorithms - 3 Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

IP Subnetting Colin Weaver, ITdojo

IP Subnetting Colin Weaver, ITdojo IP Subnetting Colin Weaver, ITdojo Note: This document assumes that subnet zero is NOT used. For a description of subnet-zero, go here (http://www.cisco.com/warp/public/105/40.html). Subnetting IP networks

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Ri and. i=1. S i N. and. R R i

Ri and. i=1. S i N. and. R R i The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Sample Configuration for H.323 Trunk between Avaya IP Office and Cisco Unified Communications Manager 7.0 Issue 1.0

Sample Configuration for H.323 Trunk between Avaya IP Office and Cisco Unified Communications Manager 7.0 Issue 1.0 Avaya Solution & Interoperability Test Lab Sample Configuration for H.323 Trunk between Avaya IP Office and Cisco Unified Communications Manager 7.0 Issue 1.0 Abstract These Application Notes describe

More information

26 Ideals and Quotient Rings

26 Ideals and Quotient Rings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

Application of Design of Experiments to an Automated Trading System

Application of Design of Experiments to an Automated Trading System Application of Design of Experiments to an Automated Trading System Ronald Schoenberg, Ph.D. Trading Desk Strategies, LLC ronschoenberg@optionbots.com www.optionbots.com A Design of Experiments (DOE) method

More information

Stat405. Simulation. Hadley Wickham. Thursday, September 20, 12

Stat405. Simulation. Hadley Wickham. Thursday, September 20, 12 Stat405 Simulation Hadley Wickham 1. For loops 2. Hypothesis testing 3. Simulation For loops # Common pattern: create object for output, # then fill with results cuts

More information

New Car $16,000 5 yr. payments Car note 266.70/month. New Car $30,000 5 yr. payments Car note $500./month Car insurance $250/month Gasoline $75/week

New Car $16,000 5 yr. payments Car note 266.70/month. New Car $30,000 5 yr. payments Car note $500./month Car insurance $250/month Gasoline $75/week Gasoline $75/week Car insurance $250/month Gasoline $75/week Car insurance $250/month Car insurance $250/month Gasoline $90/week Gasoline $60/week Car insurance $80/month Car insurance $250/month Car insurance

More information

Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk

Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow

More information

Class Demonstration Problems on Inventory Errors:

Class Demonstration Problems on Inventory Errors: Class Demonstration Problems on Inventory Errors: 1. Bekins Inc. began operations on January 1, 1995. The following data pertains to the company s first two years in business: Reported Amount Correct Amount

More information

To receive highlights of the information on this page delivered directly to your inbox, please register here.

To receive highlights of the information on this page delivered directly to your inbox, please register here. Fitch Risk and Performance Monitor The following commentary is part of a periodic analysis of recent Credit Default Swap market activity and results generated by Fitch's proprietary Market Implied Ratings

More information

Interest Rates and Bond Valuation

Interest Rates and Bond Valuation and Bond Valuation 1 Bonds Debt Instrument Bondholders are lending the corporation money for some stated period of time. Liquid Asset Corporate Bonds can be traded in the secondary market. Price at which

More information

The Cisco Expert-Level Training for CCIE Collaboration

The Cisco Expert-Level Training for CCIE Collaboration The Cisco Expert-Level Training for CCIE Collaboration The Cisco Expert-Level Training for Cisco CCIE Collaboration is the Cisco authorized training program that helps to develop collaboration network

More information

Overview. 6176 East Molloy Road East Syracuse, NY 13057-0278 TEL:315-431-7200 FAX: 315-431-7200 EMAIL: ppc@ppc-online.com www.ppc-online.

Overview. 6176 East Molloy Road East Syracuse, NY 13057-0278 TEL:315-431-7200 FAX: 315-431-7200 EMAIL: ppc@ppc-online.com www.ppc-online. Overview A BELDEN BRAND PPC s filters deliver unsurpassed mechanical and electrical performance to meet the challenging requirements of today s digital cable, telephony, and high-speed data systems. Small

More information

SWAPTION PRICING OPENGAMMA QUANTITATIVE RESEARCH

SWAPTION PRICING OPENGAMMA QUANTITATIVE RESEARCH SWAPTION PRICING OPENGAMMA QUANTITATIVE RESEARCH Abstract. Implementation details for the pricing of European swaptions in different frameworks are presented.. Introduction This note describes the pricing

More information

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:zoubin@cs.toronto.edu Toronto,CanadaM5S1A4

More information

Business Cycle. Measures of the business cycle include. All of these require leading indicators of the business cycle

Business Cycle. Measures of the business cycle include. All of these require leading indicators of the business cycle Leading Indicators Good forecasting is often determined by finding leading indicators variables which reduce the MSE of multi step forecast errors Leading indicators move in advance of the forecast variable

More information

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

2 When is a 2-Digit Number the Sum of the Squares of its Digits? When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

More information

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.

More information

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

More information

9 Summary of California Law (10th), Partnership

9 Summary of California Law (10th), Partnership 9 Summary of California Law (10th), Partnership I. INTRODUCTION A. [ 1] Statutes Affecting Partnerships. B. Fictitious Business Name. 1. [ 2] In General. 2. [ 3] Fictitious Name Defined. 3. [ 4] Coverage

More information

IT:101 Cisco Networking Academy I Subnetting

IT:101 Cisco Networking Academy I Subnetting IT:101 Cisco Networking Academy I Subnetting The IPv4 address is 32 bits long and it is written in the form of dotted decimal notation. IP address in binary format: 11000000.00000001.00000001.00000020

More information

Answering Student FAQ to getting started on Hotmail Based Microsoft Live@edu

Answering Student FAQ to getting started on Hotmail Based Microsoft Live@edu AnsweringStudentFAQtogettingstartedon HotmailBasedMicrosoftLive@edu WelcometoMicrosoftLive@edu WhatisMicrosoftLive@edu? MicrosoftLive@eduprovidesstudentsofCentenaryCollegeofLouisianawithasetoffree hostedcommunicationsandcollaborationservices,i.e.e

More information

The Boogie Board ewriter. August 2012

The Boogie Board ewriter. August 2012 The Boogie Board ewriter August 2012 Kent Displays Inc., Introduction Kent Displays is a global leader in The design, development and sale of cutting edge consumer electronics products based on flexible

More information

Residential BB, Enterprise, and Service Providers

Residential BB, Enterprise, and Service Providers Emerging VoIP Markets: Residential BB, Enterprise, and Service Providers Daniel Liu Technical Director Cisco Systems Taiwan 14 In Perspective 2003, 2005 Cisco Systems, Inc. All rights reserved. 15 Voice

More information

Energy Storage and Distribution

Energy Storage and Distribution Energy Storage and Distribution Energy Infrastructure 2050 Cost Calculator An Energy Technologies Institute project Delivered by Buro Happold 02 03 Energy Technologies Institute www.eti.co.uk Energy Infrastructure

More information

Credit Management. Why Credit Exists

Credit Management. Why Credit Exists Credit Management (Text reference: Chapter 29) why credit exists terms of sale optimal credit policy credit analysis collection policy factoring AFM 271 - Credit Management Slide 1 Why Credit Exists clearly,

More information

SQL Server PowerPivot for Excel 2010 tool using Office365 Team Site in the Cloud (Microsoft Azure)

SQL Server PowerPivot for Excel 2010 tool using Office365 Team Site in the Cloud (Microsoft Azure) SQL Server PowerPivot for Excel 2010 tool using Office365 Team Site in the Cloud (Microsoft Azure) (21 December 2011) RWF Consulting LLC embarked in 2001 on a project to address major financial issues

More information

Cisco Advanced Services for Network Security

Cisco Advanced Services for Network Security Data Sheet Cisco Advanced Services for Network Security IP Communications networking the convergence of data, voice, and video onto a single network offers opportunities for reducing communication costs

More information

ON DEGREE OF APPROXIMATION ON A JORDAN CURVE TO A FUNCTION ANALYTIC INTERIOR TO THE CURVE BY FUNCTIONS NOT NECESSARILY ANALYTIC INTERIOR TO THE CURVE

ON DEGREE OF APPROXIMATION ON A JORDAN CURVE TO A FUNCTION ANALYTIC INTERIOR TO THE CURVE BY FUNCTIONS NOT NECESSARILY ANALYTIC INTERIOR TO THE CURVE ON DEGREE OF APPROXIMATION ON A JORDAN CURVE TO A FUNCTION ANALYTIC INTERIOR TO THE CURVE BY FUNCTIONS NOT NECESSARILY ANALYTIC INTERIOR TO THE CURVE J. L. WALSH It is our object here to consider the subject

More information

ISDX Network Connectivity 26 October 2012

ISDX Network Connectivity 26 October 2012 ISDX Network Connectivity 26 October 2012 Derivatives Exchange Limited is registered in England and Wales (Co. No. 04309969) with its registered office at 2 Broadgate, London EC2M 7UR. CONTENTS Overview...

More information

ยกระด บผลส มฤทธ ทางการเร ยน(O-NET) ป การศ กษา 2556 แผนงาน

ยกระด บผลส มฤทธ ทางการเร ยน(O-NET) ป การศ กษา 2556 แผนงาน โครงการ ยกระด บผลส มฤทธ ทางการเร ยน(O-NET) ป การศ กษา 2556 แผนงาน ขยายโอกาสทางการศ กษา สนองกลย ทธ จ ดเน นสาน กงานคณะกรรมการการศ กษาข นพ นฐาน กลย ทธ ท 1 พ ฒนาค ณภาพ และมาตรฐานการศ กษาท กระด บตามหล กส ตรและเสร

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

LISBON INFO FLASH NO. LO13/07

LISBON INFO FLASH NO. LO13/07 LISBON INFO FLASH NO. LO13/07 Equivalent Info Flashes are being issued to all NYSE Liffe Markets Issue Date: 7 May 2013 NYSE EURONEXT EUROPEAN CASH AND DERIVATIVE MARKETS BUSINESS CONTINUITY: DISASTER

More information

all degree Faculty of BMSS Summer semester all degree all degree all degree all degree all degree all degree Page 1 of 17

all degree Faculty of BMSS Summer semester all degree all degree all degree all degree all degree all degree Page 1 of 17 COURSE CATALOG FOR VISITING STUDENTS Faculty of Business and Social Sciences (BMSS) as of April 2016 www.hs-osnabrueck.de/en/wiso/international/incoming/#c209980 Module title and code Module type Study

More information

Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

More information

MOSFETs: Discharging Filter Capacitors. 2008 Oregon State University ECE 322 Manual Page 51

MOSFETs: Discharging Filter Capacitors. 2008 Oregon State University ECE 322 Manual Page 51 SECTION FIVE MOSFETs: Discharging Filter Capacitors 2008 Oregon State University ECE 322 Manual Page 51 SECTION OVERVIEW You may have noticed that the power LED on your power supply stays on for a long

More information

Beyond Market Research

Beyond Market Research Beyond Market Research A New Look At Defining The Insights Sector Harry Henry VP & Lead Analyst IIeX 2014 June, 2014 Atlanta, GA A d v a n c i n g t h e B u s i n e s s o f I n f o Ar md va at ino cn i

More information

An Hybrid Optimization Method For Risk Measure Reduction Of A Credit Portfolio Under Constraints

An Hybrid Optimization Method For Risk Measure Reduction Of A Credit Portfolio Under Constraints An Hybrid Optimization Method For Risk Measure Reduction Of A Credit Portfolio Under Constraints Ivorra Benjamin & Mohammadi Bijan Montpellier 2 University Quibel Guillaume, Tehraoui Rim & Delcourt Sebastien

More information

Solving Integer Programming with Branch-and-Bound Technique

Solving Integer Programming with Branch-and-Bound Technique Solving Integer Programming with Branch-and-Bound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

E-procurement overview

E-procurement overview E-procurement overview Prof. Marcella Corsi Università La Sapienza di Roma January 2006 1 Why we focus on e-procurement The basic tenet of our exercise is that e- government and, in particular, e-procurement

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Credit & Risk Management. Lawrence Marsiello Vice Chairman and Chief Lending Officer

Credit & Risk Management. Lawrence Marsiello Vice Chairman and Chief Lending Officer Credit & Risk Management Lawrence Marsiello Vice Chairman and Chief Lending Officer 2006 Progress and 2007 Expectations Well-positioned to perform through the cycle Robust and consistent credit grading

More information

The Role of Priorities in Assigning Indivisible Objects: A Characterization of Top Trading Cycles

The Role of Priorities in Assigning Indivisible Objects: A Characterization of Top Trading Cycles The Role of Priorities in Assigning Indivisible Objects: A Characterization of Top Trading Cycles Atila Abdulkadiroglu and Yeon-oo Che Duke University and Columbia University This version: November 2010

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

MTAT.07.003 Cryptology II. Digital Signatures. Sven Laur University of Tartu

MTAT.07.003 Cryptology II. Digital Signatures. Sven Laur University of Tartu MTAT.07.003 Cryptology II Digital Signatures Sven Laur University of Tartu Formal Syntax Digital signature scheme pk (sk, pk) Gen (m, s) (m,s) m M 0 s Sign sk (m) Ver pk (m, s)? = 1 To establish electronic

More information

End User Training and Documentation a capability of Solution Implementation. August 2011

End User Training and Documentation a capability of Solution Implementation. August 2011 End User Training and Documentation a capability of Solution Implementation August 2011 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase

More information

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013 Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

More information

Where is SOA taking us in OSS Design?

Where is SOA taking us in OSS Design? Where is SOA taking us in OSS Design? Telcordia Contact: Francesco Caruso caruso@research.telcordia.com April 2006 Copyright 2005 Telcordia Technologies All Rights Reserved Where is SOA coming from? Pre

More information

A couple of things involving environments

A couple of things involving environments A couple of things involving environments Will Robertson 2014/05/04 v0.3 Abstract This package provides two things, one for document authors and one for macro authors. For the document authors, a new method,

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Fitch Risk Performance Monitor

Fitch Risk Performance Monitor Fitch Risk Performance Monitor The following commentary is part of a periodic analysis of recent Credit Default Swap market activity and results generated by Fitch s proprietary Market Implied Ratings

More information

*) Online Read The Conversion Code: Capture Internet Leads, Create Quality Appointments, Close More Sales download ebook free pdf format ID:gaucpe

*) Online Read The Conversion Code: Capture Internet Leads, Create Quality Appointments, Close More Sales download ebook free pdf format ID:gaucpe *) Online Read The Conversion Code: Capture Internet Leads, Create Quality Appointments, Close More Sales download ebook free pdf format ID:gaucpe Click Here to Read The Conversion Code: Capture Internet

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Optimizing IT Deployment Issues

Optimizing IT Deployment Issues Optimizing IT Deployment Issues Trends and Challenges for Engineering Simulation Barbara Hutchings barbara.hutchings@ansys.com 1 Outline Deployment Challenges and Trends Extreme scale up and scale out

More information

/Amended by 26th resolution of 2009, 4th resolution of 2012, 39th resolution of 2014 of CRC respectively/

/Amended by 26th resolution of 2009, 4th resolution of 2012, 39th resolution of 2014 of CRC respectively/ Annex No.1 to the 25th resolution of the Communications Regulatory Commission, 2007 REGULATION ON VOICE OVER INTERNET PROTOCOL /Amended by 26th resolution of 2009, 4th resolution of 2012, 39th resolution

More information

PivotStream Cloud Hosted PowerPivot for Excel 2010/2013 tool

PivotStream Cloud Hosted PowerPivot for Excel 2010/2013 tool PivotStream Cloud Hosted PowerPivot for Excel 2010/2013 tool (5 February 2014) RWF Consulting LLC embarked in 2001 on a project to address major financial issues impacting manufacturing industries. The

More information

Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve

Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The

More information

Definitions for Predicate Encryption

Definitions for Predicate Encryption Definitions for Predicate Encryption Giuseppe Persiano Dipartimento di Informatica, Università di Salerno, Italy giuper@dia.unisa.it Thursday 12 th April, 2012 Cryptographic Proofs 1 Content Results on

More information

Filings With the U.S. Securities and Exchange Commission Under the Securities Act of 1933

Filings With the U.S. Securities and Exchange Commission Under the Securities Act of 1933 Filings With the U.S. Securities and Exchange Commission 1073 AU-C Section 925 Filings With the U.S. Securities and Exchange Commission Under the Securities Act of 1933 Source: SAS No. 122. Effective for

More information

Application Notes for Configuring NMS Adaptive Suite with Avaya IP Office R8 using Avaya IP Office TAPI Service Provider - Issue 1.

Application Notes for Configuring NMS Adaptive Suite with Avaya IP Office R8 using Avaya IP Office TAPI Service Provider - Issue 1. Avaya Solution & Interoperability Test Lab Application Notes for Configuring NMS Adaptive Suite with Avaya IP Office R8 using Avaya IP Office TAPI Service Provider - Issue 1.0 Abstract These Application

More information

committed to Europe Digital Communication Services need new rules March 2014

committed to Europe Digital Communication Services need new rules March 2014 Digital Communication Services need new rules March 2014 Marc Lebourges Disclaimer: Views of the speaker, not necessarily views of Orange committed to Europe Policies and Regulations : What is it about?

More information

Deploying Intel Architecturebased Tablets with Windows* 8 at Intel Tiffany Pany, Intel IT April 2013

Deploying Intel Architecturebased Tablets with Windows* 8 at Intel Tiffany Pany, Intel IT April 2013 Deploying Intel Architecturebased Tablets with Windows* 8 at Intel Tiffany Pany, Intel IT April 2013 Legal Notices This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS

More information

The default setting has been changed to be Direct Thermal on the Zebra 2746 and 2746e printers.

The default setting has been changed to be Direct Thermal on the Zebra 2746 and 2746e printers. Changes from v3.97 to v3.98 Added support for the new Zebra TLP2824 printer model. Added USB support for the new Zebra TLP/LP2824 printer model. Added support for the new Zebra 2746e printer model. The

More information

ALGEBRAIC EIGENVALUE PROBLEM

ALGEBRAIC EIGENVALUE PROBLEM ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.

More information

Analysis of Rhode Island Commercial Insurance Enrollment Trends by Line of Business and Carrier as of December 2010

Analysis of Rhode Island Commercial Insurance Enrollment Trends by Line of Business and Carrier as of December 2010 Analysis of Rhode Island Commercial Insurance Enrollment Trends by Line of Business and Carrier as of December 2010 Overview: The following graphs measure total health plan enrollment by the following

More information

Operating Systems Group

Operating Systems Group Course Group Status Report Group Course no. Title Credit hours Reqd core (R)/ Reqd opt (O)/ Elective (E) Capstone? CIS660 CIS662 CIS741 CIS760 CIS762 CIS763 Introduction to Laboratory Comparative Advanced

More information

SOME EXAMPLES OF INTEGRAL DEFINITE QUATERNARY QUADRATIC FORMS WITH PRIME DISCRIMINANT KI-ICHIRO HASHIMOTO

SOME EXAMPLES OF INTEGRAL DEFINITE QUATERNARY QUADRATIC FORMS WITH PRIME DISCRIMINANT KI-ICHIRO HASHIMOTO K. Hashimoto Nagoya Math. J. Vol. 77 (1980), 167-175 SOME EXAMPLES OF INTEGRAL DEFINITE QUATERNARY QUADRATIC FORMS WITH PRIME DISCRIMINANT KI-ICHIRO HASHIMOTO Introduction In the theory of integral quadratic

More information

Enhancing the Understanding of the Total Customer Experience Through Linkage

Enhancing the Understanding of the Total Customer Experience Through Linkage Enhancing the Understanding of the Total Customer Experience Through Linkage February 17, 2005 Dave Kreiner Manager, Total Customer Experience and Quality Technology Solutions Group Why are we here? Purpose:

More information

What Benefits Can I Change Mid Year?

What Benefits Can I Change Mid Year? What Benefits Can I Change Mid Year? Mid Year Benefits ment/change Summary* FAMILY STATUS EVENTS Options to Consider Marriage Add your legal spouse to your medical, dental, vision coverage Add newly acquired

More information

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances METRON - International Journal of Statistics 2008, vol. LXVI, n. 3, pp. 285-298 SHALABH HELGE TOUTENBURG CHRISTIAN HEUMANN Mean squared error matrix comparison of least aquares and Stein-rule estimators

More information

Testing Market Efficiency in a Fixed Odds Betting Market

Testing Market Efficiency in a Fixed Odds Betting Market WORKING PAPER SERIES WORKING PAPER NO 2, 2007 ESI Testing Market Efficiency in a Fixed Odds Betting Market Robin Jakobsson Department of Statistics Örebro University robin.akobsson@esi.oru.se By Niklas

More information

VI. Real Business Cycles Models

VI. Real Business Cycles Models VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

More information

The University of Texas at El Paso Information Security Office Change Management Guidelines

The University of Texas at El Paso Information Security Office Change Management Guidelines The University of Texas at El Paso Information Security Office Change Management Guidelines 10/1/2007 1 Contents Purpose... 3 Scope... 3 Roles and Responsibilities... 3 Documenting Change Requests... 5

More information

4.1 Modules, Homomorphisms, and Exact Sequences

4.1 Modules, Homomorphisms, and Exact Sequences Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

POLICY STATEMENT: Issuing institutions of insurance policies accepted by the City must meet specific rating requirements.

POLICY STATEMENT: Issuing institutions of insurance policies accepted by the City must meet specific rating requirements. PAGE: 1 OF 5 POLICY STATEMENT: Issuing institutions of insurance policies accepted by the City must meet specific rating requirements. PURPOSE: Acceptance of insurance policies from insurers that meet

More information

XML Export Interface. IPS Light. 2 April 2013. Contact

XML Export Interface. IPS Light. 2 April 2013. Contact IPS Light XML Export Interface 2 April 2013 Contact Postal Technology Centre - Universal Postal Union - Weltpoststrasse 4-3000 Bern 15 - Switzerland Phone: +41 31 350 31 11 / Fax: +41 31 352 43 23 Email:

More information

LITIGATION READINESS

LITIGATION READINESS What is Litigation Readiness? LITIGATION READINESS A strong compliance function has been a fundamental requirement for any business. But the compliance function is only the first step in being able to

More information

Corporate Payables via Virtual Credit Card

Corporate Payables via Virtual Credit Card TREASURY MANAGEMENT Corporate Payables via Virtual Credit Card Presenter: Dan Trbovic Index 1 Industry Evolution 2 Virtual Card Technology 3 Supplier Enrollment 2 Industry Evolution 3 Card Payments: The

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

SETTING UP HRD ON THE HOST COMPUTER

SETTING UP HRD ON THE HOST COMPUTER SETTING UP HRD ON THE HOST COMPUTER Firstly you will need someway for your remote HRD installation find your host computer. If you have a static I.P. address then that is what you will need, if like most

More information

Market Overview. Business Highlights. Financials. Q&A Session

Market Overview. Business Highlights. Financials. Q&A Session Second Quarter 2013 Earnings Release Conference e Call Presentation Disclaimer This presentation is based on audited financial statements and may include statements that could constitute forward-looking

More information

Company Brief 4brands Reply GmbH & Co. KG

Company Brief 4brands Reply GmbH & Co. KG 01.12.2011 Company Brief 4brands Reply GmbH & Co. KG Dr. Rolf Sundermeier Managing Director Agenda 4brands Reply at a glance Solution components supporting a holistic CRM approach in sales and marketing

More information

System Optimizer Solution for resource planning, capacity expansion, and emissions compliance for portfolio optimization

System Optimizer Solution for resource planning, capacity expansion, and emissions compliance for portfolio optimization System Optimizer Solution for resource planning, capacity expansion, and emissions compliance for portfolio optimization System Optimizer is the portfolio management solution to prepare resource plans,

More information

Life Insurer Financial Profile

Life Insurer Financial Profile Life Insurer Financial Profile Company Ratings A.M. Best Company (Best's Rating, 15 ratings) Standard & Poor's (Financial Strength, 20 ratings) Moody's (Financial Strength, 21 ratings) Fitch Ratings(Financial

More information

Application Notes for Multi-Tech FaxFinder IP with Avaya IP Office Issue 1.0

Application Notes for Multi-Tech FaxFinder IP with Avaya IP Office Issue 1.0 Avaya Solution & Interoperability Test Lab Application Notes for Multi-Tech FaxFinder IP with Avaya IP Office Issue 1.0 Abstract These Application Notes describe the configuration steps required to integrate

More information

Life Insurer Financial Profile

Life Insurer Financial Profile Life Insurer Financial Profile Company Ratings A.M. Best Company (Best's Rating, 15 ratings) Standard & Poor's (Financial Strength, 20 ratings) Moody's (Financial Strength, 21 ratings) Fitch Ratings(Financial

More information

Deliverable DN1.0.5: Report on Intellectual Property Rights (IPR)

Deliverable DN1.0.5: Report on Intellectual Property Rights (IPR) 28.07.09 Deliverable DN1.0.5: Report on Intellectual Property Rights (IPR) Deliverable DN1.0.5 Contractual Date: 30/06/08 Actual Date: 28/07/09 Contract Number: 511082 Instrument type: Integrated Infrastructure

More information